7	A	1	1	N	7	3	3	7	7
L	14	1	£.	T 4	L	J	J	fee.	ź

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2023

MST1C01 - Analytical Tools for Statistics - I

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A (Answer any four questions. Each carries 2 weightage)

- 1. If f is a bounded function and α is monotonic increasing on [a,b], then define the terms (i) Partition (ii) Refinement of partitions and (ii) Lower and Upper sums, of f with respect α .
- 2. Find $\int_{1}^{5.3} [x] dx$.
- 3. Define uniform convergence of (i) a sequence of functions and (ii) a series of functions.
- 4. State the Cauchy criterion for the convergence of a sequence of functions.
- 5. State the inversion theorem of a multivariable function.
- 6. Define (i) directional derivative and (ii) total derivative of a multivariable function.
- 7. Given L{ F(t)}= f(s) then find L{ e^{at} F(t)}.

(4*2=8 weightage)

PART B

(Answer any four questions. Each carries 3 weightage)

- 8. If $f \in R(\alpha)$ on [a,b] and $f \in R(\beta)$ show that $f \in R(c_1\alpha + c_2\beta)$ and $\int_a^b f \ d(c_1\alpha + c_2\beta) = c_1 \int_a^b f \ d\alpha + c_2 \int_a^b f \ d\beta$, where c_1, c_2 are constants.
- 9. Discuss on the convergence of the series $\sum_{n=1}^{\infty} \frac{n^2-1}{n^2+1} x^n$, x > 0.
- 10. Show that $\{f_n(x)\}\$, where $f_n(x) = \frac{nx}{1+n^2x^2}$, $0 \le x \le 1$, cannot be differentiated term by term at x=0.
- 11. Examine the function $x^2 + y^2 + x + y + xy$ for maximum and minimum.
- 12. If $f(x,y) = x^3 y^2$, $x = e^t \cos t$, $y = \cos t + \sin t$, find $\frac{df(x,y)}{dt}$.
- 13. If the Laplace transform $L\{F(t)\} = f(s)$, then show that $L\{t^nF(t)\} = (-1)^n \frac{d^n}{ds^n} f(s)$.
- 14. Find inverse Laplace transform of (i) $\frac{1}{(s+a)(s+b)}$ and (ii) $\frac{1}{s^2(s+1)^2}$.

(4*3=12weightage)

PART C (Answer any two questions. Each carries 5 weightage)

- 15. (a) If f is continuous on [a,b] and α is of bounded variation on [a,b], show that $f \in R(\alpha)$ on [a,b].
 - (b) State and prove the first mean value theorem of Riemann Stieltjes integral.
- 16. (a) Prove that if a sequence {f_n} converges to f uniformly on [a,b], and each function f_n is integrable, then f is integrable on [a,b] and the sequence ∫_a^b f_ndt converges uniformly to ∫_a^b f dt on [a,b].
 - (b) Test for the uniform convergence of $\{f_n\}$ where $f_n(x) = e^{-nx}$, $x \ge 0$.
- 17. (a) Check the continuity at (0,0) of $f(x,y) = \begin{cases} x \ y \ \frac{x^2 y^2}{x^2 + y^2} & when (x,y) \neq (0,0) \\ 0 & when (x,y) = (0,0) \end{cases}$
 - (b) Show that the function $f(x, y, z) = 3\log(x^2 + y^2 + z^2) 2(x^3 + y^3 + z^3)$ has only one extreme value, $\log\left(\frac{3}{e^2}\right)$.
- 18. (a) If the Laplace transform $L\{F(t)\}=f(s)$, then show that, $L\{F(^n)(t)\}=s^nf(s)-s^{n-1}F(0)-s^{n-2}F'(0)-\cdots-F^{n-1}(0) \text{ (in usual notations)}.$
 - (b) Determine the Laplace transform of (a) $(1 + te^{-t})^3$ (b) $(t^2 + 1)^2$.

(2 x 5=10 weightage)

(Pages: 2)

Reg. No:.....
Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2023

MST1C02 - Analytical Tools for Statistics - II

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

Short Answer Type questions
(Answer any four questions. Weightage 2 for each question)

- 1. Define vector space and give one example.
- 2. Define basis and dimension of a vector space.
- 3. Define unitary matrix. Show that determinant of a unitary matrix has modulus 1.
- 4. Define Row and column space of a matrix.
- 5. Define null space and state rank-nullity theorem.
- 6. Briefly describe Spectral representation of a real symmetric matrix.
- 7. Define the rank, signature and index of a real quadratic form. State the interrelationship between them, if any.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Short Essay Type/ problem solving type questions (Answer any four questions. Weightage 3 for each question)

- 8. Define linearly independent and linearly dependent vectors. Check whether the vectors (2,3,-1,-1),(1,-1,-2,-4),(3,1,3,-2),(6,3,0,-7) are linearly dependent.
- 9. Describe Gram-Schmidt orthogonalization process.
- 10. Describe the method of finding inverse of a matrix by partition.
- 11. Show that the sum of the characteristic roots of the matrix A is the trace of A and the product of the characteristic roots of A is the determinant of A.
- 12. Define geometric and algebraic multiplicities of a matrix. Prove that the geometric multiplicity of a characteristic root cannot exceed algebraic multiplicity of the same.
- 13. Define g-inverse of matrix A. Find g-inverse of $A = \begin{bmatrix} 4 & 2 & 1 \\ -1 & 0 & 3 \\ 1 & 2 & 3 \end{bmatrix}$.
- 14. Briefly describe definiteness of a quadratic form. Classify the following quadratic form $3x_1^2 + x_2^2 + 5x_3^2 3x_1x_2 + 8x_1x_3 + 10x_2x_3$.

Part C. Long Essay Type questions (Answer any two questions. Weightage 5 for each question)

- 15. (a) Define vector subspace. If W_1 and W_2 are two subspaces of a vector space \mathcal{V} , then prove that $W_1 \cap W_2$ is a subspace of \mathcal{V} .
 - (b) Show that $\mathcal{W}_1 \cup \mathcal{W}_2$ is a subspace if and only if one is subset of the other.
- 16. Define inner product. State and Prove Cauchy-Schwartz's inequality.
- 17. (a) Define rank of a matrix. If r(A) is rank of A then show that

$$r(A) + r(B) - n \le r(AB) \le \min(r(A), r(B)).$$

- (b) Also show that $r(A + B) \le r(A) + r(B)$.
- 18. (a) State and prove the necessary and sufficient condition that a real quadratic form is positive definite.
 - (b) Define Moore-Penrose inverse of a matrix and show that it is unique.

 $(2 \times 5 = 10 \text{ weightage})$

2M1	N	23	3	74
ALTE E	1.1	20	J	7

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2023

MST1C03 - Probability Theory - I

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A: Short Answer Type Questions (Answer any four questions. Weightage 2 for each question.

 Differentiate between discrete and continuous random variables. Give an example for each .Examine whether the following is a distribution function.

$$F(x) = 0, x \le 0$$

= 1, x > 0.

- 2. Define a sigma field. By an example show that union of two sigma field need not be a sigma field.
- 3. Explain sigma field generated by a class of sets. Illustrate it by a simple example.
- 4. Discuss the concept of Lebesgue measure and Lebesgue -Stieltjes measure.
- Describe the concept of product measure
- 6. State and prove Jensen's inequality.
- State convergence in probability and almost sure convergence. By an example show that
 convergence in probability need not imply almost sure convergence.

Part B: Short essay/problem solving. (Answer any four questions, weightage three for each question.

- 8. Show that a distribution function is right continuous. Also show that a distribution function can have at the most a countable number of discontinuity points.
- 9. State and prove correspondence theorem associated with a distribution function.
- 10. Obtain the moment generating function of a multinomial random vector. Use it to obtain its first and second order moments.

- 11. Define convergence in probability and convergence in distribution. How they are related? Establish.
- 12. State and prove basic in equality.
- If A_n is sequence of independent events show that P(limsupA_n) is either equal to zero or one.
- 14. State and prove Helly's theorem on a sequence of distribution function.

Part C: long essay Answer any two questions. Weightage five for each question.

- 15. What you mean by sigma field induced by a random variable and a sigma field generated by a sequence of random variables. Use it to obtain tail-sigma field. Also establish Kolmogorov 0-1 law.
- 16. State and prove Holder's inequality .Use it to obtain Liapunov inequality.
- 17. Show that every distribution function can be written as the convex combination of a step function and a continuous distribution function. Use It to obtain the decomposition of

$$F(x) = 0, x<0$$

$$= e^{-\mu}, 0 \le x < 1$$

$$= e^{-\mu} + (1 - e^{\mu})(1 - e^{-(x-1)}), x \ge 1$$

18. State and prove Slutstkey's theorem. Also show that convergence in probability implies convergence in law.

2M1N22325		(Pages: 2)	Reg. No:
	•		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2023 MST1C04 – Distribution Theory

(2022 Admission onwards)

Time : 3 hours

Max. Weightage: 30

Part A Answer any four (2 weightages for each)

- Determine the MGF of the Negative binomial distribution. Check that it has the additive property.
- 2. Define power series distributions. Obtain its mean.
- 3. Derive beta type II distribution from Gamma variates.
- 4. Define Lognormal distribution. Find the rth order raw moment of if
- 5. What do you mean by Mixture distributions? Write an example.
- 6. Derive pmf of rth order statistic of Geometric variate.
- Define noncentral F statistic

(2 x 4=8 weightages)

Part B Answer any four (3 weightages each)

- 8. Demonstrate that the Binomial distribution tends to the Poisson distribution under specific conditions (to be described).
- 9. State and prove renovsky formula
- 10. Let X and Y be independent random variates. Then X + Y follows Normal if and only if both X and Y follows Normal.
- 11. Let X and Y are independent Gamma variates, then show that both $\frac{X}{Y}$ and $\frac{X}{X+Y}$ are independent to X+Y
- 12. Let f(x) and F(X) are PDF and CDF of random variable X. Then derive the distribution of range. Also, find the distribution of range when X follows an exponential distribution.
- 13. Derive non-central t distribution.
- 14. Derive the MGF of chi-square random variate. Check that is holds additive property

Part C Answer any two (5 weightages each)

- 15. A) A box contains Nidentical balls numbered 1 through N. Of these balls, n are drawn at a time. Let $X_1, X_2, ..., X_n$ denote the numbers on the n balls drawn. Let $S_n = \sum X_i$. Find $Var(S_n)$.
 - B) Show that geometric distribution possesses Lack of memory property
- 16. Let $X \sim N(0,1)$, derive the rth order central moments
- 17. A) State and prove Cauchy-Schwarz inequality.
 - B) Justify that for any two random variables X and Y, X^2 and Y^2 are independent implies X and Y are independent.
- 18. Let $X \sim N(0,1)$, Then find the distribution of X^2 and $\sum (X_i \bar{X})^2$.

(5 x 2=10 weightages)

2M1N23325(B)

(Pages: 2)

	5000													
Reg.	No:					•					•		٠	•

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2023

MST1C05 - Sampling Theory

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Short Answer Type Questions Answer any four questions. (Weightage 2 for each question)

- Write about Sampling frame. Explain various defects associated with it.
- 2. Write about systematic sampling.
- 3. Write about Multistage Sampling.
- 4. Explain Murthy's unordered estimator
- 5. Define ratio estimator. Derive its bias.
- 6. If the regression on Y on X is perfectly linear, the variance of the regression estimator becomes zero. Is it true? Prove.
- 7. Write a note on proportional allocation.

 $(4 \times 2 = 8 \text{ weightage})$

Part B Short Essay Type / Problem solving type questions Answer any four questions. (Weightage 3 for each question)

- Obtain an unbiased estimate of population mean in simple random sampling without replacement. Find the variance of the estimate.
- 9. Obtain the mean and its variance in equal cluster sampling
- 10. Show that for a population with linear trend $V_{st}:V_{sy}:V_{ran}^*$ 1/n: 1: n
- 11. Derive Hartley Ross unbiased ratio type estimator.
- 12. Derive Neyman allocation.
- 13. (a) Write about probability sampling
 - (b) What are non -sampling errors? Explain its sources
- 14. Write about π ps sampling.

(4 x3=12 weightage)

Part C Long Essay Type questions Answer any two questions. (Weightage 5 for each question)

- 15. (a) Prove that $V(ran) \ge V(prop) \ge V(opt)$.
 - (b) Explain the principles of stratification.
- 16. (a) Differentiate between Cumulative Total Method and Lahiri's method. Explain them with the help of an example.
 - (b) Explain the general selection procedure in PPS sampling.
 - (c) Compute the gain due to PPS sampling with replacement compared to simple random sampling.
- 17. (a)Derive the sampling variance of regression estimator.
 - (b)Differentiate between Hansen & Hurwitz method and Politz- Simmon's technique.
- 18. (a) Show that in SRSWOR Sample mean \overline{y} is the BLUE of \overline{Y} .
 - (b) Give any three estimators of population mean in cluster sampling where clusters are of unequal size and discuss their properties.

(2 x5=10 weightage)