1M1	N	22	3	06
TIVE	17	LIL	J	vv

(Pages : 1	2)
------------	----

Reg. No:	Reg.	No:	٠.						•							•			•	•	•		•		•	•
----------	------	-----	----	--	--	--	--	--	---	--	--	--	--	--	--	---	--	--	---	---	---	--	---	--	---	---

Name:
FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Physics Degree Examination, November 2022

MPH1C01 - Classical Mechanics

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A-Short Answer Questions (Answer all questions, Each carry weightage 1)

- 1. What do you understand by generalized momentum?
- 2. Write equation of motion in Poisson bracket form.
- 3. What do you mean by normal modes and normal frequencies?
- 4. Obtain Lagrangian for a charged particle in electromagnetic field.
- 5. What is the physical significance of Hamilton characteristic function.
- 6. What is period doubling bifurcation in chaotic system?
- 7. What are Euler angles?
- 8. Give an example for velocity dependant potential.

 $(8 \times 1 = 8 \text{Weightage})$

Section B-Essay Questions (Answer any two questions, Each carry weightage 5)

- 9. Discuss the motion of a particle moving in a plane under the action of central force using Hamilton Jacobi equation.
- 10. Discuss small oscillations of CO₂ like molecule.
- 11. State Hamilton's principle and deduce Lagrange's equation from Hamilton's principle and hence find the equation of motion of one-dimensional Harmonic Oscillator.
- 12. Obtain an expression (a) moment of inertia tensor (b) rotational kinetic energy of a rigid body.

 $(2 \times 5 = 10 \text{Weightage})$

Section C-Problem Questions (Answer any four questions, Each carry weightage 3)

- 13. Obtain the equation of motion of a projectile in space by using Hamilton's method.
- 14. Two rigid bodies of masses 'm' and '2m' are connected by a light spring of spring constant K. Write down the Lagrangian of the system and obtain Lagrange's equation of motion.
- 15. Obtain the Hamiltonian for particle of mass 'm' moving in a force field with its potential given by $V = \frac{-K\cos\theta}{r^2}$
- 16. For what values of α and β , $Q = q^{\alpha} \cos \beta p$, $P = q^{\alpha} \sin \beta p$ equations represent a canonical transformation? Find generating function in this case.
- 17. Derive Euler's equation of motion.
- 18. Derive the expression for Coriolis force. Discuss its importance in earth related phenomenon.
- 19. Explain Legendre transformations.

 $(4 \times 3 = 12 \text{Weightage})$

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Physics Degree Examination, November 2022

MPH1C02 – Mathematical Physics – I

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A (8 Short questions, each answerable within 7.5 minutes) (Answer all questions, each carry weightage 1)

- 1. Explain contraction of a tensor using an example.
- 2. Distinguish between elliptic and parabolic partial differential equations.
- 3. Describe the Dirac delta function.
- 4. What are self-adjoint differential equations?
- 5. Explain spherical harmonics with special emphasis on its significance.
- 6. State and prove convolution theorem for Fourier transforms.
- 7. Define orthogonal matrix. Explain orthogonal transformation.
- 8. What is binomial distribution? Give its properties.

 $(8 \times 1 = 8 weightage)$

Section B

(4 Essay questions, each answerable within 30 minutes) (Answer ANY TWO questions, each carry weightage 5)

Explain Frobenius method and find the power series solution of the differential equation

$$\frac{d^2y}{dx^2} + x\frac{dy}{dx} + (x^2 + 2)y = 0, about x_0 = 0.$$

- 10. Explain the diagonalization of the matrix $\begin{bmatrix} 3 & 2 & -1 \\ 2 & 2 & 3 \\ -1 & 3 & 1 \end{bmatrix}$.
- 11. Using orthogonal curvilinear coordinates, find the expression for the divergence of a vector field. Hence express the divergence in terms of spherical polar coordinates.
- 12. Briefly explain Bessel functions of first and second kind. Find the generating function and recurrence formula for the Bessel functions.

 $(2 \times 5 = 10 weightage)$

Section C

(7 Problem questions, each answerable within 15 minutes) (Answer ANY FOUR questions, each carry weightage 3)

- 13. Define Hermitian matrix. Show that the eigenvalues are real and the eigenvectors are orthogonal to each other for a Hermitian matrix.
- 14. Show that $P_n(-x) = (-1)^n P_n(x)$ for the Legender's polynomial.
- 15. Show that $2J'_n(x) = J_{(n-1)}(x) J_{(n+1)}(x)$ for Bessel functions.
- 16. Find the components of unit vectors of spherical polar coordinates in Cartesian coordinates.
- 17. Evaluate the surface integral of the function $\vec{V} = 4xz\hat{\imath} y^2\hat{\jmath} + yz\hat{k}$.
- 18. Find the Fourier series for the periodic function

$$f(x) = -\pi \text{ if } -\pi < x < 0,$$

= $x \text{ if } 0 < x < \pi.$

Hence prove that $\frac{\pi^2}{8} = 1 + \frac{1}{3^2} + \frac{1}{5^2} + \cdots$

19. Show that $\beta(m, n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$.

 $(4 \times 3 = 12 weightage)$

1	N/II	N223	ne
1	IVI	NZZA	แก

(Page	s:	2

Reg.	No	:.												,		•	*							•	
105.	110	••	•	•	•	•	•	•	•	•	•	•	•	•	•	*	*	•	•	•	•	•	٠	•	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Physics Degree Examination, November 2022 MPH1C03 – Electrodynamics & Plasma Physics

(2022 Admission onwards)

Time: 3 hours

JE5

Max. Weightage: 30

Section A (Answer all questions, each question carries 1 weightage)

- What are electric and magnetic potentials?.
- 2. What do you mean by a plane wave. Write the equation for it.
- 3. What is meant by a Poynting vector. Explain.
- 4. What are cavity resonators?
- 5. What is a wave guide. Give an use of it.
- 6. What is covariant formalism in electrodynamics?
- Define plasma and give examples.
- 8. Explain plasma oscillations.

 $(8 \times 1 = 8 \text{ weightage})$

Section B (Answer any two. Each carries 5 weightage)

- 9. Obtain the Maxwell's equations in integral and differential forms.
- 10. Explain the behavior of plane waves in a lossy media and hence derive an expression for the depth of penetration.
- 11. Discuss the motion of TEM wave along a parallel plate transmission line. Obtain expressions for inductance and capacitance per length.
- 12. Explain electromagnetic field tensor. Show that the four Maxwell's equations can be reduced to two using electromagnetic field tensor.

 $(2 \times 5 = 10 \text{ weightage})$

Section C (Answer any four questions. Each carries 3 weightage)

- 13. Obtain electromagnetic boundary conditions.
- 14. Find the Poynting vector on the surface of a long straight conducting wire of radius b and conductivity σ that carries a direct current I. Verify Poynting theorem.
- 15. A narrow band signal propagates in a lossy dielectric medium which has a loss tangent 0.2 at 550 kHz the carrier frequency of the signal. The dielectric constant is 2.5. Find α and β .

- 16. Determine the wave impedance and guide wavelength at a frequency equal to twice the cutoff frequency in a wave guide for TM and TE modes.
- 17. The attenuation on a 50 Ω distorsionless transmission line is 0.01 dB/m. If the line has a capacitance of 0.02 nF/m, find resistance, inductance and conductance per meter of the line and velocity of propagation.
- 18. Obtain the four vector form of continuity equation and wave equations for potentials
- 19. If B = 0.32 T and $n = 10^18$ /cubic meter show that plasma frequency is approximately equal to cyclotron frequency for electrons

 $(4 \times 3 = 12 \text{ weightage})$

1	N	1	IN	122	23	09

(Pages : 2

Reg.	No:	٠.	٠.						•	•	•	٠	•	٠	٠	٠	٠	•	•		•	•	•	
------	-----	----	----	--	--	--	--	--	---	---	---	---	---	---	---	---	---	---	---	--	---	---	---	--

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Physics Degree Examination, November 2022

MPH1C04 - Electronics

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A (Answer All questions, each carry Weightage 1)

- 1. Write any two properties of an ideal opamp.
- 2. Define slew rate of an opamp.
- 3. Draw a neat circuit diagram of a Schmitt trigger using an opamp.
- 4. What are notch filters?
- 5. Draw the logic diagram and truth table of a D flip flop.
- 6. What is a charge coupled device?
- 7. Define transconductance of an FET.
- 8. Define fill factor of a solar cell.

(8x1 = 8 Weightage)

Section B (Answer any two questions, each carry weightage 5)

- Compare Dominant-Pole and Pole-Zero compensation.
- 10. What are registers? Mention different types of shift registers. With a neat diagram and waveform representation explain the construction and working of a 4 bit serial in-serial out shift register.
- 11. Explain the construction, working and characteristics of a depletion type MOSFET.
- 12. Explain the principle of a tunnel diode. Discuss its construction and characteristics.

(2x5 = 10 Weightage)

Section C (Answer any four questions, each carry weightage 3)

- 13. Sketch the transfer curve of a JFET defined by $I_{DSS} = 12 \text{mA}$ and $V_P = -6 \text{V}$.
- 14. If (i) $V_1 = 50\mu V$ and $V_2 = -50\mu V$ and (ii) $V_1 = 1,050\mu V$, $V_2 = 950\mu V$ and common mode rejection ratio 100, calculate the percentage difference in output voltage obtained for the two sets of input signals.
- 15. Show that the output of the inverting integrator is the time integral of the input signal
- 16. The JK flip-flop removes the intermediate or not allowed state of the RS flip-flop. Discuss the operation of the JK flip-flop and construct its truth table.
- 17. Write a short note on Light emitting diodes.
- 18. Given $g_{fs} = 3.8 \text{mS}$ and $g_{os} = 20 \mu \text{S}$, sketch the FET ac equivalent model.
- Draw the logic symbol, truth table and waveform of Mod-8 binary counter with parallel clock input.

(4x3 = 12 Weightage)