1M1	N21	1	no
TIATI	1141		U7

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2021

MST1C01 - Analytical Tools for Statistics - I

(2019Admission onwards)

Time: 3 hours

Max. weightage: 30

PART A Answer any four(2 weightages each)

- 1. Define the limit of multivariable function. Give an example.
- 2. Define absolute maxima and minima of multivariable function.
- 3. Find the real and imaginary part of the complex function: w= 3z; where z=4+2i.
- 4. State Morera's Theorem.
- 5. Define analyticity of a complex function. Is f(z) = |z| analytic? Justify
- 6. What is singularity. Give one example.
- 7. Define Laplace transform. Find Laplace transform of $f(t) = e^{at}$

(2 x 4=8 weightages)

PART B Answer any four(3 weightages each)

- 8. Check whether the function $f(x,y) = \begin{cases} \frac{x^2y}{x^2+y^2}, (x,y) \neq (0,0) \\ 0, (x,y) = (0,0) \end{cases}$ is continuous at origin.
- 9. Find partial derivatives of the function $f(x, y) = x^3 + y^3 3x 12y + 20$.
- 10. Obtain series expansion of the function $f(z) = \frac{1}{z-a}$ at the point z = a.
- 11. State and prove Cauchy's residue theorem.
- 12. State and prove Cauchy's integral theorem.
- 13. Prove the Taylor's theorem for multivariable function.
- 14. Solve the initial value problem using Laplace transformation

$$y'' - y = t$$
, $y'(0)=1$, $y(0)=1$

(3x 4=12 weightages)

PART C Answer any two(5 weightages each)

- 15. Suppose that D is a closed and bounded set in R^n . If $f:D\to R^n$ is continuous, then show that it is uniformly continuous in D.
- 16. (a) Check whether Cauchy-Riemann equations satisfy for the function f(z)=z+1
 - (b) f(z) = u+iv is an analytic function with u=2x(1-y). Determine the function completely.
- 17. Obtain the inverse Laplace transform for the function $\frac{20}{s^3-2s^2}$.
- 18. Find Laplace transforms of following functions
 - (a) $Cos^2\theta t$
 - (b) $Sinh4t.e^{-t}$
 - (c) $te^t + \cos(ht + a)$

(5x2=10 weightages)

1M1N21110	(Pages :2)	Reg. No:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2021

MST1C02 - Analytical Tools for Statistics - II

(2019Admission onwards)

Time: 3 hours

Part A Short Answer Type questions (Answer any four questions. Weightage 2 for each question)

- 1. Define quotient space, sub spaces and orthogonality.
- 2. Distinguish between Hermitian and skew Hermitian matrices.
- 3. Explain the working procedure of Inverse of a partitioned matrix.
- 4. Define minimal polynomial of a matrix.
- 5. Find the eigen values and eigen vectors of the matrix.

$$A = \begin{bmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{bmatrix}$$

- 6. Write the properties of g-inverse.
- 7. What do you mean by extreme of quadratic forms.

 $(4 \times 2 = 8 \text{ weightage})$

Max. weightage: 30

Part B Short Essay Type/ problem solving type questions (Answer any four questions. Weightage 3 for each question)

- 8. a) Define linear dependence
 - b) Show that all subsets of a linear independent sets are linear independent.
- 9. a) Explain the uses of rank factorization of a matrix.
 - b)Construct the specific rank factorization of a matrix for the following matrix

$$A = \begin{bmatrix} 1 & 3 & 1 & 4 \\ 2 & 7 & 3 & 9 \\ 1 & 5 & 3 & 1 \\ 1 & 2 & 0 & 8 \end{bmatrix}$$

- 10. a) Show that all eigen values of a Hermitian matrix are real.
 - b) Show that a matrix A is idempotent if and only if all its eigenvalues are either 0 or 1.
- 11. a) What is spectral representation of a real symmetric.
 - b) Show that geometric multiplicity can never exceed the algebraic multiplicity.

- 12. a) Explain Jordan canonical form.
 - b) Find Jordan canonical form of

$$A = \begin{bmatrix} 5 & 4 & 2 & 1 \\ 0 & 1 & -1 & -1 \\ -1 & -1 & 3 & 0 \\ 1 & 1 & -1 & 2 \end{bmatrix}$$

- 13. a) Explain rank and signature of quadratic form.
 - b) Classify the quadratic form $Q(x_1, x_2, x_3) = x^2_1 + 2x^2 7x^2_3 4x_1x_2 + 8x_1x_3$. Then find its rank and the signature.
- 14. a) Solve the system of linear equation

$$x + y + z + w = 13, 2x + 3y - w = -1, -3x + 4y + z + 2w = 10$$
 and $x + 2y - z + w = 1$.

b) Show that a homogeneous system always has at least one solution.

 $(4 \times 3 = 12 \text{ weightage})$

Part C Long Essay Type questions (Answer any two questions. Weightage 5 for each question)

- 15. a) Define vector space
 - b) Check the set of vectors are linear independent or not,

$$S = \{(1,2,3), (2,3,4), (3,4,6)\}$$

- c) Show that two vectors are linearly dependent if and only if one of them is a scalar multiple of the other
- 16. a) Define triangular matrix. State its properties.
 - b) If A is an $m \times n$ matrix and B is $n \times k$, then show that rank $(A) + \operatorname{rank}(B) n \le \operatorname{rank}(AB)$.
 - c) Define projection matrix. Also write the properties of a projection matrix.
- 17. a) Explain singular value decomposition.
 - b) What is meant by diagonalization of a matrix?
 - c) Show that every symmetric matrices are orthogonally diagonalizable.
- 18. a) Find the Moore-Penrose inverse for the following matrix $A = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 1 & 1 \\ 2 & 2 & 2 \end{bmatrix}$.
 - b) Show that original matrix is the generalized inverse of its generalized inverse.
 - c) If A is an invertible matrix, then show that for each and every b in \mathbb{R}^n , the equation Ax = b has the unique solution $x = A^{-1}b$.

IM1N21111	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2021

MST1C03 - Distribution Theory

(2019 Admission onwards)

Time: 3 hours Max. weightage: 30

Part A Short Answer Type questions (Answer any four questions. Weightage 2 for each question)

- 1. For any integer valued random variable X, show that $\sum_{n=0}^{\infty} t^n \ P(X \le n) = \frac{P(t)}{1-t}$ where P(t) is the p.g.f of X.
- 2. If X is a non-negative continuous r.v with distribution function F(x), whose $E(X) = \mu$ exists. Show that $\mu = \int_0^\infty [1 F(x)] dx$.
- 3. Let X be an exponential random variable with parameter λ and Y=[X], integer part of X. Find the distribution of Y and identify the distribution.
- 4. Obtain the characteristic function of the standard Laplace distribution.
- 5. If E(X) exist, show that $E(X)=E\{E(X/Y)\}$.
- 6. Establish additive property of Chi-square distribution.
- 7. Find the expectation of the n^{th} order statistic taken from a random sample of size n, from the uniform distribution over $(0, \theta)$.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Short Essay Type/ problem solving type questions

(Answer any four questions. Weightage 3 for each question)

- 8. Show that under certain conditions (to be specified) Hypergeometric distribution tends to Binomial distribution.
- 9. What is Pearson system of distributions? Obtain the distribution when the roots of the quadratic equation involved in the system are real and of opposite signs.
- 10. If (X, Y) follows Bivariate Normal with parameters $(0,0,1,1,\rho)$ show that X+Y and X-Y are independently distributed.
- 11. Let X, Y be random samples from exponential distribution $f(x) = \exp(-x)$, $0 < x < \infty$. Show that X + Y and X/Y are independently distributed. Identify their distributions.

1M1	N21	112

22	
Dagge	γ
(Pages	4

Reg. No:

Name: ...

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Statistics Degree Examination, November 2021

MST1C04 - Probability Theory

(2019Admission onwards)

Time: 3 hours

Max. weightage: 30

Part A [Answer any 4 questions. Weightage 2 for each questions]

- 1. Define limsup and liminf of a sequence of set. Show by an example that $\limsup A_n \supseteq \liminf A_n$.
- 2. Define a random variable and probability space induced by a random variable. Explain it with the help of an example.
- 3. Define distribution function of a random variable. Show that a distribution function is right continuous.
- 4. If X is a non-negative integer valued random variable, show that $E(x) = \sum_{k=1}^{\infty} P(X \ge k)$
- 5. Define independence of events. Show by an example that pair wise independence need not imply mutual independence.
- Define convergence in law and convergence in probability. Show by an example that convergence in law need not imply convergence in probability.
- 7. Define a characteristic function. Show that a characteristic function is uniformly continuous.

Part B [Answer any 4 questions. Weightage 3 for each questions]

- 8. Define Borel field in two ways and establish their equivalence.
- 9. Establish continuity property of a probability measure.
- 10. State and prove Liapunov inequality.
- 11. Let X₁, X₂, ... be iid random variables with finite second moments.

Let
$$Y_n = \frac{2}{n(n+1)} \sum_{i=1}^n i X_i$$
 show that $Y_n \to E(X_1)$ in probability.

- 12. State and prove Kolmogorov 0-1 law.
- 13. Show that convergence in probability implies convergence in law.
- 14. State and prove Lindberg-Levy Central limit theorem.

Part C, [Answer any 2 questions. Weightage 5 for each questions]

15. State and establish Jordan decomposition of a distribution function.

Obtain the Jordan decomposition of

$$F(x) = 0, x < 0$$

$$= \frac{1}{4}, 0 \le x < 1$$

$$= \frac{3}{8}, 1 \le x < 2$$

$$= \frac{3}{8} + \frac{5}{8} * e^{x-2}, x > 2$$

16. State and prove Khinchin's theorem.

Determine whether the WLLN holds for the independent sequence of random variables

$$P\left(x_{n} = \frac{n}{\ln(n)}\right) = \frac{\ln(n)}{2n} = P\left(X_{n} = -\frac{n}{\ln(n)}\right)$$
And $P(X_{n} = 0) = 1 - \frac{\ln(n)}{n}, n = 2,3,...$

- 17. State and prove Kolmogrov's strong law of large numbers for iid sequence of random variables.
- 18. State and prove Levy continuity theorem for a sequence of characteristic functions.