1B5N21189	(Pages: 2)	Reg. No:
		Name:

Fifth Semester B.Sc Physics Degree Examination, November 2021

BPH5B06 - Computational Physics

(2019 Admission onwards)

Time: 2 hours Max. Marks: 60

SECTION A

Short answer type.

(Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks)

- 1. What do you mean by a high level language? Give any two examples.
- 2. Write any two advantages of Python in comparison to other languages.
- 3. How will you define dictionaries in Python. Give an example.
- 4. Give the lines of code for creating a new file and write to it.(Use any example)
- 5. Write any two difference between a tuple and a list
- 6. Write the line of codes used for plotting the relation "y=2x" with axis labeling.
- 7. What is meant by curve fitting?
- 8. Write the formula for integral in Trapezoidal rule and Simpson's 1/3 rule.
- 9. Write any two advantages of numerical methods over analytical method
- 10. Explain how truncation error and round off error varies with step size
- 11. Write a python program to find the real roots of a quadratic equation.
- 12. Write the forward difference table for the set of values given below

X	1.1	1.2	1.3	1.4	
У	3.54	4.87	6.98	8.04	

(Ceiling-20 marks)

SECTION B

Paragraph/Problem type

(Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks)

13. Fit a straight line to the following set of data points using least square curve fitting.

X	1	2	3	4	5	6	7	8
у	6.7	7.8	8.9	10.0	11.1	12.2	13.3	14.4

- 14. Discuss any five list operations with one example for each.
- 15. Evaluate the integral $\int_0^1 3x^3 dx$ using Simpson's 1/3 rule. (Use step size=0.2)
- 16. Write a Python program for simulating fall of a body in a viscous medium
- 17. How will you define user defined functions? Write Python programs for defining (1) square and (2)square roots of a number as a function.
- 18. Given that $\frac{dy}{dx} = x + y$ with initial condition y(0)=1. Evaluate y(0.5) using second order Euler method. Use step size as 0.1
- 19. Find the positive root of the equation $x^4 x = 10$ correct to three decimal places. Given that root lies between 1 and 2.

(Ceiling-30 marks)

SECTION C: Essay type

(Answer in about two pages, any one question. Answer carries 10 marks)

- 20. (A) Explain how conditional statements(if, elif,else) are executed in Python with suitable examples.
 - (B)Explain the use of "for" and "while" statements with two examples for each.
- 21. (A)Explain how Runge-Kutta method(second order) is used to find the solution of a differential equation.
 - (B) Write a Python program to plot the trajectory of a projectile (Use Euler's method).

 $(1 \times 10 = 10 \text{ Marks})$

1B5N21190	(Pages: 2)	Reg. No:
		Name:

Fifth Semester B.Sc Physics Degree Examination, November 2021

BPH5B07 - Quantum Mechanics

(2019 Admission onwards)

Time: 2 hours Max. Marks: 60

Section A - Short Answer type

(Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks)

- 1. What is ultraviolet catastrophe of classical physics?
- 2. Explain the term cutoff frequency in photoelectric effect.
- 'Compton wavelength is not a true wavelength but it is a change of wavelength'.
 Explain.
- 4. What is 'Bremsstrahlung' emission?
- 5. Wave particle duality can be explained if you use photographic film instead of screen in Young's double slit experiment. Explain.
- 6. What do you mean by Probability Amplitude?
- 7. Describe any two basic properties of atom.
- 8. Write down Rutherford scattering formula and list the symbols.
- 9. Draw the experimental arrangement of Franck-Hertz apparatus and explain the parts in it.
- 10. State and explain 'Correspondence principle'.
- 11. What is meant by normalisation of wave functions:
- 12. What is the working principles of a tunnel diode?

(Ceiling 20)

Section B - Paragraph / Problem type

(Answer all questions in a paragraph of about half a page to one page. Each correct answer carries a maximum of 5 marks)

- 13. How does the photoelectric effect support quantum theory of light?
- 14. Obtain the expression of ground state energy and plot the energy level diagram of a quantum mechaical simple harmonic oscillator.
- 15. Discuss the quantum numbers used to explain 3D hydrogen atom.
- 16. Explain the 'Normal Zeeman effect'. Derive the expression for the 'Bohr Magneton'.
- 17. The Andromeda nebula at a distance of $2x10^{22}$ m from earth radiates $8x10^{27}$ W in the spectral line frequency 1420 MHz. What is the number photons received/second when the nebula is observed by a 100 m² radio telescope?
- 18. A hydrogen atom is 5.3×10^{-11} m in radius. Use uncertainty principle to estimate the minimum energy an electron can have in this atom.
- 19. Normalize the wave-function $\psi = Ae^{-ax}$ for x > 0

and
$$\psi = Ae^{ax} for x < 0$$

where a is a positive constant.

(Ceiling 30 Marks)

Section C - Essay type

(Answer in about two pages, any one question. Answer carries 10 marks)

- 20. Obtain time independent Schrodinger's equation for one –dimensional motion hence discuss the eight steps involved in the *Schrodinger's recipe*.
- 21. Explain the Bohr concept of the atomic structure and derive an expression for the total energy of the hydrogen atom.

(Marks $10 = 10 \times 1$)

1B5N21191	(Pages: 2)	Reg. No:
		Name:

Fifth Semester B.Sc Physics Degree Examination, November 2021

BPH5B08 - Optics

(2019 Admission onwards)

Time: 2 hours Max. Marks: 60

The symbols used in this question paper have their usual meanings

Section A - Short Answer type.

(Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks)

- 1. State and explain Fermat's principle of least time.
- 2. What are coherent sources? Give 2 examples.
- 3. Draw the intensity distribution curve of interference pattern.
- 4. Explain the phenomenon of colours of thin films
- 5. Give two uses of Michelson's interferometer.
- 6. Define the resolving power of a grating. Write down an expression for it.
- 7. Write down the condition for obtaining intensity minima & maxima in Fraunhofer single slit diffraction pattern and explain the symbols.
- 8. Compare a zone plate and a convex lens.
- 9. State and explain Brewster's law.
- 10. What are negative and positive crystals? Give two examples for each.
- 11. Distinguish between photography and holography.
- 12. What is the difference between step index fibre and graded index fibre?

(Ceiling - 20)

Section B - Paragraph / Problem type

(Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks)

- 13. Derive the first law of refraction from Fermat's principle.
- 14. Fresnel's biprism of refractive index 1.5 has an angle of 1⁰. If the biprism is kept at a distance of 0.3m from the slit illuminated by a monochromatic light of wavelength 6000 A⁰. Find the fringe width. D = 8m
- 15. A parallel beam of sodium light ($\lambda = 5890 \text{ A}^0$) strikes a film of oil floating on water. When viewed at an angle of 30^0 from the normal, 8th dark band is seen. Determine the thickness of the film (μ of oil = 1.5)
- 16. A parallel beam of monochromatic light is allowed to be incident normally on a plane transmission grating having 5000 lines / cm and the third order spectral line is found to be diffracted through 45°. Calculate the wavelength of light.
- 17. A narrow slit is illuminated by a light of wavelength 6.4 x 10⁻⁷ m is placed at a distance of 3m from a straight edge. If the distance between the straight edge and the screen is 6m, calculate the distance between the first and the fourth dark bands.
- 18. Calculate the thickness of (i) a quarter wave plate and (ii) a half wave plate. Given that $\mu_0 = 1.973$, $\mu_e = 2.656$, $\lambda = 590$ nm
- 19. Derive the expression for acceptance angle of an optical fibre.

 In an optical fibre, the core has a refractive index of 1.6 and the cladding has a refractive index of 1.3. Find the values of critical angle and acceptance angle for the fibre.

(Ceiling - 30)

Section C - Essay type

(Answer in about two pages, any one question. Answer carries 10 marks)

- 20. Describe the experiment to determine the wavelength of light using Newton's ring arrangement.
- 21. Explain with theory the production of circularly polarised and elliptically polarised light waves.

(1x10 = 10 marks)

B5N21192	(Pages: 2)	Reg. No:
		Name:

Fifth Semester B.Sc Physics Degree Examination, November 2021

BPH5B09 - Electronics (Analog & Digital)

(2019 Admission onwards)

Time: 2 hours Max. Marks: 60

The Symbols used in this question paper have their usual meaning

Section A- Short Answer Type

(Answer all question in two or three sentences. Each correct question carries a maximum of 2 Marks)

- 1. Explain construction and working of π filter.
- 2. Define current gain in a common base and common emitter configuration.
- 3. Sketch the direct coupled multistage amplifier. Mention one of its applications.
- 4. An amplifier is normally employed negative feedback. Explain why?
- 5. State and explain Demorgan's theorem.
- 6. Convert 31.5₁₀ in to Binaryand HexaDecimal number system.
- 7. Using 1's complement subtracts 101110 from 111011.
- 8. Explain construction of a Half Adder with its truth table.
- 9. What is an oscillator? Explain Barkhausen criterion for sustained oscillation.
- 10. Explain how Zener diode can be used a voltage regulator.
- 11. Briefly explain (a) gain-band width product (b) frequency response curve.
- 12. Draw DC and AC equivalent circuit for a single stage transistor amplifier.

(Ceiling -20 Marks)

Section B- Paragraph/Problem Type

(Answer all question in a paragraph or half page to one page. Each correct question carries a maximum of 5 Marks)

- 13. Explain with neat diagram construction and working of OPAMP integrator.
- 14. Explain construction and working of a voltage tripler circuit.
- 15. With a neat sketch explain construction and working of a transformer coupled amplifier. Mention one application.

16. For the transistor amplifier shown in Figure R₁=10 k Ω , R₂=5 k Ω , R_C =1k Ω , R_E =2 k Ω , R_L=1 k Ω , V_{CC} =15 V and V_{BE}=0.7 V (i) Draw dc load line (ii) Find Operating point (iii) Draw ac load line.

- 17. In a phase shift oscillator $R_1=R_2=R_3=1$ M Ω and $C_1=C_2=C_3=50$ pF. At what frequency the circuit will oscillate? What will be the resistance R used to produce frequency of 10 kHz for the same capacitors?
- 18. For an OPAMP inverting amplifier with R_1 = 2.2 k Ω and R_F =15 k Ω . (i) Calculate closed loop gain and draw the output wave form if input signal 5 mV is applied across the inverting terminal. (ii) Instead of applying input signal at the inverting terminal, if same signal is applied at the non-inverting terminal what is closed loop gain and sketch the output wave form.
- 19. An amplifier has a bandwidth of 200 kHz and voltage gain of 80, what will be the new bandwidth and gain if 5% of negative feedback is introduced? What will be the input and output impedance of the network with feed back if their values without feedback were 20 k Ω and 1 k Ω respectively?

(Ceiling -30 Marks)

Section C

(Answer all question in a paragraph or half page to one page. Each correct question carries a maximum of 10 Marks)

- 20. Explain transistor biasing. What is need of transistor biasing? With a neat diagram explain voltage divider bias. Obtain Stability factor.
- 21. With the help of diagrams and truth table explain the working of RS and JK Flipflop.

 $(1 \times 10 = 10 \text{ Marks})$

1B5N21193	(Pages: 2)	Reg. No:.

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Physics Degree Examination, November 2021 (Open Course)

BPH5D01 - Non Conventional Energy Sources

(2019 Admission onwards)

Time: 2 hours Max. Marks: 60

Section A - Short Answer type. (Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks)

- 1. Give the differences between renewable and non-renewable sources of energy.
- 2. Define solar constant.
- 3. Why the sun is called the ultimate source of fossil fuels?
- 4. Mention two disadvantages of using wood as fuel.
- 5. A sheet of glass is used in solar heating devices. Why?
- 6. Write the principle of the windmill?
- 7. What is anaerobic degradation?
- 8. What are the different forms of energy obtained from the ocean?
- 9. What are the raw materials required for a biogas plant?
- 10. What is the difference between biomass and biogas?
- 11. Give the difference between primary and secondary cells.
- 12. What are natural geysers?

(Ceiling -20)

Section B - Paragraph/Problem type. (Answer all questions in a paragraph of about half a page to one page, each correct - carries a maximum of 5 marks)

- 13. What is fuel? Give any four characteristics of good fuel.
- 14. Explain the working of a solar greenhouse with a neat diagram.
- 15. Discuss the advantages and disadvantages of using solar cells.
- 16. Explain the working of tidal energy power plant with a neat diagram.
- 17. Discuss the advantages and disadvantages of the wind energy conversion system.
- 18. How biomass conversion takes place?
- 19. What are the main applications of geothermal energy?

(Ceiling -30)

Section C - Essay type

(Essays - Answer in about two pages, any one question. The answer carries ten marks)

il to take prima in regular the sub Grandog effect the odd imposition

- 20. Describe with a neat sketch the working of a wind energy system (WECS) with main components.
- 21. Describe the principle of working of solar furnace. What are its main applications? What are the advantages and limitations of the solar furnace?

 $(1 \times 10 = 10 \text{ marks})$