2B3N2124	16
----------	----

(Pages: 2)

Reg. No:									
Name:					45				

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2021

BCH3C03 - Organic Chemistry

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A (Short answers) (Answer questions up to 20 marks. Each question carries 2marks)

- 1. What is meant by electromeric effect?
- 2. Draw the resonance structures of aniline.
- 3. Mention a method to distinguish maleic acid and fumaric acid.
- 4. Draw the possible conformations of methyl cyclohexane.
- 5. Illustrate Friedel-Crafts alkylation reaction with a suitable example. Give equation and name the product.
- 6. Explain the term Williamson's synthesis with an example?
- 7. What is Fittig reaction? Illustrate with an example.
- 8. What is meant by denaturation of alcohol?
- 9. How can fluorobenzene be obtained from benzene diazonium chloride?
- 10. What are essential aminoacids? Name two of them.
- 11. Draw the structure of nicotine.
- 12. What is meant by vulcanization? Explain with example.

[Ceiling of marks: 20]

Section B (Paragraph) (Answer questions up to 30 marks. Each question carries 5 marks)

- 13. Explain the different kinds of bond fission observed in organic reactions.
- 14. Explain the term hyper conjugation and its significance with illustrative examples.
- 15. Explain the relative stability of conformations of cyclohexane.
- 16. State and explain Hückel's rule.
- 17. Explain the Lucas test to distinguish between 1°, 2° and 3 alcohols.
- 18 Arrange aniline, N-methylaniline and N, N dimethylaniline in the increasing order of basicity and explain the variation.
- 19. State the important characteristics of enzyme action.

[Ceiling of marks: 30]

Section C (Essay) (Answer any one. Each question carries 10 marks)

- 20. Illustrate the different structural levels of protein.
- 21. Discuss the optical isomerism in tartaric acid.

 $[1 \times 10 = 10 \text{ Marks}]$

2B3N	121	31	1

CT	ages		0
11	2900	*	
14	ムニしつ		det.
	_		

Reg.	No:	 	

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2021

BMT3C03 - Mathematics - 3

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A All questions can be attended. Each question carries 2 marks.

- 1. Find the vector function that describes the curve C of intersection of the plane y = 2x and the paraboloid $z = 9 x^2 y^2$.
- 2. Define Tangential and Normal Components of Acceleration.
- 3. If $z = u^2 v^3 w^4$ and $u = t^2$, v = 5t 8, $w = t^3 t$. Find dz/dt.
- 4. Find the directional derivative of $f(x,y) = 2x^2y^3 + 6xy$ at (1, 1) in the direction of a unit vectorwhose angle with the positive x-axis is $\pi/6$.
- 5. State Stoke's theorem.
- 6. Compute all the roots of $8^{\frac{1}{3}}$ and sketch these roots on an appropriate circle centered at origin.
- 7. Find the circulation and net flux for the flow f(z) = 2z where C is the circle |z| = 1.
- 8. Show that the function $f(z) = 4z 6\bar{z} + 3$ is not analytic at any point.
- 9. Find the first partial derivatives of $z = \frac{4\sqrt{x}}{3y^2+1}$.
- 10. Compute $\nabla f(x, y)$ for $f(x, y) = 5y x^3y^2$.
- 11. Find the directional derivative of the function $f(x,y) = 5x^3y^6$ at the point (1,1) in the direction $\theta = \frac{\pi}{6}$.
- 12. Find the level curve of $f(x, y) = -x^2 + y^2$ passing through (2, 3). Graph the gradient at the point.

(Ceiling 20 Marks)

Section B All questions can be attended. Each question carries 5 marks

- 13. A projectile is launched from ground level with an initial speed $V_0 = 768$ ft/s at an angle of elevation $\theta = 30^{\circ}$. Find
 - (a) the vector function and parametric equations of the projectile's trajectory,
 - (b) the maximum altitude attained,
 - (c) the range of the projectile, and
 - (d) the impact speed.
- 14. Verify that the given function $u = \cos at \cdot \sin x$ satisfies Wave equation, $a^2 \frac{\partial^2 u}{\partial x^2} = \frac{\partial^2 u}{\partial t^2}$.
- 15. Define length of a space curve. Find the length of the space curve traced by the vector function r(t) = a cost i + a sint j + atk, $0 \le t \le 2\pi$.
- 16. Determine whether the vector field $F(x,y) = (x^2 2y^3)\mathbf{i} + (x + 5y)\mathbf{j}$ is conservative.
- 17. State and prove Cauchy's inequality.
- 18. Show that $\cos\left(\frac{\pi}{2} + i \ln 2\right) = -\frac{3}{4}$
- 19. Show that $f(z) = e^{\bar{z}}$ is nowhere analytic.

(Ceiling 30 Marks)

Section C Answer any One question. Each question carries 10 marks

20. (a) Find parametric equations for the normal line to the surface .

$$z = \frac{1}{2}x^2 + \frac{1}{2}y^2 - z + 4$$
 at the point $(1, -1, 5)$.

- (b) Find the points on the surface $x^2 + y^2 + z^2 = 7$ at which the gradient is parallel to the plane 2x + 4y + 6z = 1.
- 21. (a) Show that the line integral $\int_C (y + yz)dx + (x + 3z^3 + xz)dy + (9yz^2 + xy 1)dz$ is independent of the path C between (1, 1, 1) to (2, 1, 4).
 - (b) Evaluate $\int_{(1,1,2)}^{(2,1,4)} F. dr$

2	B3	N	7	1	3	7	3
det.	DU	13	Jai.	A.	J	4	J

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2021

BPH3B03 - Electrodynamics - I

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A

Answer all questions. Answer in two or three sentences. Each correct answer carries a maximum of two marks.

- 1. State and explain the law of triangle of vector addition
- 2. State Helmholtz's theorem
- 3. State and explain divergence theorem
- 4. Field lines never cross each other. Why?
- 5. Derive an expression for the force experienced by a dielectric in an electric field
- 6. State Flemings right hand rule
- 7. State and prove Ampere's circuital theorem
- 8. Find the magnetic field inside a torroid using Ampere's law
- 9. What are ferromagnetic substances. Give three properties
- 10. Discuss B-H curve
- 11. What is Curie's temperature?
- 12. Show that force on a current loop in a non-uniform magnetic field is $\bar{F} = (\bar{m}. \nabla) \bar{B}$

(Ceiling: 20 Marks)

Section B (Paragraph/Problem) (Answer all questions in a paragraph of about half a page to one page. Each correct answer carries a maximum five marks)

- 13. Compute the divergence of the function, $\bar{A} = r\cos\theta \hat{r} + r\sin\theta \hat{\theta} + r\sin\theta\cos\phi \hat{\phi}$
- 14. A hollow spherical shell carries charge density $\rho = \frac{k}{r^2}$ in the region $a \le r \le b$. Find the electric field in the three regions.
- 15. A dielectric slab is partially inserted between the plates of a parallel plate capacitor.

 Calculate the force on the slab.
- 16. Find the magnetic field inside a solenoid.
- 17. If $\bar{B} = \frac{\hat{r}}{r^2}$, find the vector potential.
- 18. Derive the expression for vector potential in terms of bound currents.
- 19. Find the capacitance per unit length of two coaxial metal cylindrical tube of radii a and b.

(Ceiling:30Marks)

Section C (Essay) Answer anyone in about two pages .Each question carries ten marks)

- 20. Derive an expression for energy of a continuous charge distribution and hence find the energy of a uniformly charged spherical shell of total charge q and radius R.
- 21. Discuss the trajectory of the charged particle moving in transverse electric and magnetic field.

(1x10=10 Marks)