2M3N21342	

(Pages: 2)	Reg. No:		
	Name:		

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2021 MST3C12 – Stochastic Process

(2019 Admission onwards)

Time: 3 hours

PART A Answer any four (2weightage each)

- Define a Markov chain and its transition probability matrix. Show that the n-step t.p.m. is the nth power of the one-step t.p.m.
- 2. Distinguish between transient and persistent states in a Markov chain.
- 3. Define a Poisson process and check whether it is stationary.
- 4. Explain a continuous time branching process with general variable lifetime.
- 5. Can a process with independent increments be stationary? justify your answer with an example.
- 6. Customers arrive at a service station according to a homogeneous Poisson process at the rate of 2 per minute. What is the probability that no customer arrives betwhen 8.00 a.m. and 8.05 a.m.? What is the mean number of customers arrived during 8.00 am and 12.00 noon
- 7. What is a queue? Explain the basic elements of queues.

 $(4 \times 2 = 8 \text{weightage})$

Max. weightage: 30

Part B Answer any four (3 weightage each)

- 8. Distinguish between weak and strict stationary stochastic processes. Give an example for each case.
- 9. Let $\{Xn, n\geq 0\}$ be a Markov chain with the state-space $\{0, 1, 2, 3\}$ and t.p.m.

$$\begin{bmatrix} 1/2 & 1/2 & 0 & 0 \\ 0 & 1/3 & 2/3 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 2/3 & 1/3 \end{bmatrix}$$

Classify all the states. Find the period of state 2 and of state 3.

- 10. Find the probability of ultlmate ruin of the Gambler, Gambler's ruin problem.
- 11. Show that $\{N(t), t \ge 0\}$ is a Poisson process if, and only if, the successive inter-arrival times form a sequence of i.i.d. exponential random variables.
- 12. Explain Birth and Death process. Obtain the limiting probabilities of the process, stating the condition for its existence.
- 13. If π is the probability of ultimate extinction of a Branching Process $\{X_n, n \ge 0\}$, with X(0) = 1 and m is the mean of the offspring distribution then show that $\pi = 1$ if and only if $m \le 1$.
- 14. Show that in a queueing system, if interarrival times are exponentially distributed, the number of arrivals in a period of time is a Poisson process.

(4x3=12weightage)

PART C Answer any two (5 weightage each)

- 15. Establish the chapman-Kolmogorov equation for a Markov chain with stationary transition probabilities, when the time domain is discrete. Also state the analogous version of identity in the continuous domain.
- 16. If $\{X_n, n \geq 0\}$ is a Galton-Watson Branching Process , P(s) is the probability generating function of the offspring distribution and $P_n(s)$ is that of X_n , show that $P_n(s) = P_{n-1}\left(P(s)\right) = P(P_{n-1}\left(s\right)), \text{ and hence find the mean and variance of } X_n.$
- 17. What is a renewal process? State and prove the elementary renewal theorem.
- 18. Describe M/M/l queueing system. Obtain the steady state distribution. Also obtain the expected number of customers in the system.

(2x5=10 weightage)

2M3N21341	(Pages: 2)	Reg. No:
		Name:
FARO	OK COLLEGE (AUTONOMOUS	
751 1 1 0		

Third Semester M.Sc Degree Examination, November 2021

MST3C11 - Applied Regression Analysis

(2019 Admission onwards)

Time: 3 hours

Max. weightage: 30

PART A Answer any four (2 weightage each)

- 1. Prove that least squares estimate of β in multiple linear regression model is an unbiased estimate of β .
- 2. What are Bonferroni t intervals?
- 3. Explain the generalized least squares procedure
- 4. Explain the role of hat matrix in the detection of influential observations.
- 5. Explain the test procedure for testing overall significance of a regression model.
- 6. Explain the term odds ratio.
- 7. Explain multicollinearity. How do we detect it?

 $(4 \times 2 = 8 \text{ weightage})$

PART B Answer any four (3 weightage each)

- 8. State and prove Gauss Markov Theorem.
- 9. Describe the weighted least squares with known and unknown weights for a straight line model.
- Explain the concept of orthogonal polynomials. Discuss the advantages of orthogonal polynomials in curve fitting.
- 11. What is autocorrelation? How do we detect it?
- 12. Let $Y_i = \beta_0 + \beta_1 X_{i1} + \epsilon_i$, i = 1, 2, ..., n, where $\epsilon_i \sim N(0, \sigma^2)$. Obtain the confidence intervals of β_0, β_1 .
- 13. Explain the bias due to under fitting and its effect in the estimates of regression coefficients.
- 14. Describe Poisson regression model.

 $(4\times3 = 12 \text{ weightage})$

PART C Answer any two (5 weightage each)

- 15. a) Explain the various probability plots to examine the normality assumption in regression analysis.
 - b) State the assumptions in the multiple linear regression models. How are the departures from underlying assumptions identified using residual analysis.
- 16. a)Describe the situation where you come across estimation with linear restriction. Obtain the least squares estimate of β in the multiple linear model, when there is a linear restriction $A\beta = C$ where A is a known qxq matrix of rank q and C is a known qxl vector.
 - b) Explain the likelihood ratio test procedure in multiple linear regression model. Find out the likelihood ratio test statistic.
- 17. a)Explain the problem of ill conditioning in polynomial regression. Describe how orthogonal polynomials can be used to overcome the ill conditioning.
 - b) Describe Non linear Regression model. Explain the parameter estimation procedure.
- 18. a)Describe the consequences of presence of autocorrelation in ordinary least square estimation? What are the remedial procedures to overcome these problems.
 - b) Discuss about the outliers present in regression analysis. How to detect and dealing with outliers.

 $(2 \times 5 = 10 \text{ weightage})$

21	13	N	71	3	1	1
TTA	L	7.4	41	J	-	٠

(Pages: 2)	Reg. No:		
	Name:		

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2021 MST3E05 – Lifetime Data Analysis

(2019 Admission onwards)

Time: 3 hours

Max. weightage: 30

Part A Short Answer Type questions (Answer any four questions. Weightage 2 for each question)

- 1. Define type II censoring.
- Define cumulative hazard function. Express survivor function in terms of cumulative hazard function
- 3. Briefly describe discrete mixture models
- 4. What is the Nelson- Aalen estimate of cumulative hazard function?
- 5. What do you mean by truncation? Explain.
- 6. Give the density function, hazard rate and survivor function of Weibull distribution.
- 7. What do you mean by log-location scale models?

 $(4 \times 2 = 8 \text{ weightage})$

Part B Short Essay Type/ problem solving type questions (Answer any four questions. Weightage 3 for each question)

- 8. Discuss Kaplan Meier method for obtaining estimate of the survival function.
- 9. Explain the role of log-normal distribution in survival analysis. Obtain survivor function, hazard rate and discuss about monotone behaviors of log-normal distribution.
- 10. Explain the inference procedures for right censored data where the underlying model is exponential.
- 11. Discuss estimation of μ and σ^2 of lognormal distribution for samples without censored observation.
- 12. What is meant by residual function? Obtain its relationship with hazard rate. Also show that the mean residual life function uniquely determines the distribution.
- 13. Distinguish between accelerated failure time models and proportional hazards regression models.
- 14. Explain log-rank test.

Part C Long Essay Type questions (Answer any two questions. Weightage 5 for each question)

- 15. Describe the general formulation of right censoring and also derive the likelihood function.
- 16. Discuss likelihood ratio test for comparing two survival distributions which follow exponential model with parameters λ_1 and λ_2 respectively.
- 17. Explain the inference procedure for censored data when the underlying distribution is gamma.
- 18. Explain inference procedures for accelerated failure time models.

(2 x 5= 10 weightage)

2M3N21343	(Pages: 2)	Reg. No:	
		Name:	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2021

MST3E02 - Time Series Analysis

(2019 Admission onwards)

Time: 3 hours Max. weightage: 30

Part A (Answer any Four the questions. Weightage 2 for each question)

- 1. Define time series as a special case of stochastic process with example.
- 2. Define auto covariance function and derive auto covariance function of AR(1) process.
- 3. Obtain the autocorrelation function of moving average model of order 1.
- 4. Discuss the invertibility conditions of AR(1) and MA(1) models.
- 5. Describe any of the diagnostic checking methods in time series modelling.
- 6. Define the terms homoscedasticity and heteroscedasticity in the context of time series analysis.
- 7. Define the spectral density function.

 $(4 \times 2=8 \text{ weightage})$

Part B (Answer any Four questions. Weightage 3 for each question)

- 8. Distinguish between moving average smoothing and exponential smoothing.
- 9. Explain the steps involved in Box-Jenkins methodology of time series modelling.
- 10. Explain the duality between AR and MA time series models.
- 11. Show that the AR(1) model with deterministic linear trend becomes equal to random walk with drift model in case autocorrelation coefficient $\varphi_1 = 1$.
- 12. Describe a method of parameter estimation of an AR(1) model.
- 13. For the MA(1) model $Z_t = a_t 0.6a_{t-1}$, explain how its forecast for lead time l = 1 will be determined.
- 14. Find the spectral density function of an AR(1) process.

 $(4 \times 3=12 \text{ weightage})$

Part C (Answer any TWO questions. Weightage 5 for each question)

- 15. Explain how will you test for trend and seasonality in a time series data.
- 16. Define ACF and PACF. How to identify time series models and its order using ACF and PACF?
- 17. A time series model is specified by $Z_t = 2aZ_{t-1} a^2Z_{t-2} + \varepsilon_t$, where ε_t is a white noise process with variance σ^2 .
 - i) Determine the value of 'a' for which the process is stationary.
 - ii) Derive the autocovariances v_k for $k \ge 2$.
- 18. Define an ARCH(p) model and obtain the ACF of squared ARCH(1) process.

(2 x 5=10 weightage)