(Pages: 2)

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Degree Examination, March/April 2021

MMT2C06 - Algebra II

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Answer all questions. Each question carries 1 weightage

- 1. Find all $c \in \mathbb{Z}_3$ such that $\mathbb{Z}_3[x]/\langle x^2 + c \rangle$ is a Field.
- 2. Find $irr(\alpha, \mathbb{Q})$ and $deg(\alpha, \mathbb{Q})$ where $\alpha = \sqrt{2} + i$.
- 3. Find a basis for $\mathbb{Q}\left(2^{\frac{1}{2}}, 2^{\frac{1}{3}}\right)$ over \mathbb{Q} .
- 4. Show that a finite extension E of a finite field F is a simple extension of F.
- 5. Describe all extension of the identity map over \mathbb{Q} to an isomorphism mapping $\mathbb{Q}(\sqrt[3]{2})$ onto a subfield of Q.
- 6. Find the order of $G\left(\mathbb{Q}(\sqrt[3]{2}, i\sqrt{3})/\mathbb{Q}\right)$
- 7. Show that $x^3 1$ is solvable by radicals over \mathbb{Q} .
- 8. Is regular 20-gon is constructible? Justify your answer.

 $(8 \times 1 = 8 weightage)$

Part B

Answer any two questions from each unit. Each question carries 2 weightage. Unit I

- 9. Let F be a field and f(x), $g(x) \in F[x]$. Show that f(x) devides g(x) if and only if $g(x) \in \langle f(x) \rangle$.
- 10. Let E be a simple extension $F(\alpha)$ of a field F and let α be algebraic over F. Let the degree of $irr(\alpha, F)$ be $n \ge 1$. Then show that every element β of $E = F(\alpha)$ can be unequally express in the form $\beta = b_0 + b_1 \alpha + \dots + b_{n-1} \alpha^{n-1}$ where b_j are in F.
- 11. Show that trisecting the angle is impossible. That is there exist an angle that cannot be trisect with a straightedge and a compass.

Unit II

- 12. If F is any finite field, then show that for every positive integer n there is an irreducible polynomial in F[x] of degree n.
- 13. If E is a splitting field of finite degree over F then show that $\{E:F\} = |G(E/F)|$.
- 14. Show that every finite field is perfect.

- 15. Find $\emptyset_{12}(x)$ in $\mathbb{Q}[x]$.
- 16. Prove that let $s_1 \dots s_n$ be the elementary symmetric functions in the indeterminates $y_1 \dots y_n$. Then every symmetric function of $y_1 \dots y_n$ over F is a rational function of the elementary functions. Also $(y_1 \dots y_n)$ is a finite normal extension of degree n! of $F(s_1 \dots s_n)$ and the Galois group of this extension is isomorphic to S_n .
- 17. Let K be the splitting field of $(x^2 2)(x^2 + 2)$ over \mathbb{Q} . Describe the Galois group G(K)

 $(6 \times 2 = 12 weig)$

Part C Answer any two questions. Each question carries 5 weightage.

18.

- a. Let R be a commutative ring with unity and let $N \neq R$ be an ideal in R then show R/N is an integral Domain if and only if N is a prime ideal.
- b. Let R be a finite commutative ring with unity, show that every prime ideal in R i maximal ideal.

19.

- a. If E is a finite extension field of a field F and K is a finite extension of E, then sh K is a finite extension of F and [K:F] = [K:E][E:F].
- b. If E is an extension field of F, $\alpha \in E$ is algebraic over F and $\beta \in F(\alpha)$ then show $deg(\beta, F)$ divides $deg(\alpha, F)$.

20.

- a. State and prove conjugation isomorphism theorem.
- b. Show that complex zeros of polynomials with real coefficients occur in conjugat

21.

- a. Let F be a field of Characteristic 0 and let $a \in F$ if K is the splitting field of x^n F. Then prove that G(K/F) is a solvable group.
- b. Let F be a field of Characteristic 0 and let $F \le E \le K \le \overline{F}$ where E is a normal extension of F and K is an extension of F by radicals. Then prove that G(E/F) is solvable group.

 $(2 \times 5 = 10 \text{ we})$

43

2M2M21414

William Co.	Carried Co.
Dana	2)
(Pages	71
(a common	- 5

Reg.	No																			**				
neg.	140		*	*	•	٠	*		*	*	*	*	•	•	•	*	*	٠	•			٠	٠	
											9													

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester MSc Degree Examination, March/April 2021

MMT2C07 - Real Analysis II

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part- A

Answer all questions. Each question has one weightage.

- 1. Define σ algebras. Give one example.
- 2. If $m^*E = 0$, then prove that E is measurable.
- 3. Show that any real-valued continuous function with a measurable domain is measurable.
- 4. Prove that any bounded measurable function f defined on a set E of finite measure is integrable over E.
- 5. If f is a measurable function on E, then show that f^+ and f^- are integrable on E if and only if |f| is integrable over E.
- 6. If $f_n \to f$ in measure on E, then show that there is a subsequence f_{n_k} that converges pointwise a.e. on E to f.
- Show that a function of bounded variation can have at most a countable number of discontinuities.
- 8. Define absolute continuity. What is the relation between absolute continuity and continuity?

 $(8 \times 1 = 8 \text{ Weightage})$

Part- B

Answer any two from each unit. Each question has two weightage

Unit - I

- 9. Show that Lebesgue outer measure is countably subadditive.
- 10. Show that the Cantor set C is a closed, uncountable set of measure zero.
- 11. Define measurable functions. Show that a real valued function f defined on a measurable set E is measurable if and only if for each open set O, $f^{-1}(O)$ (the inverse image of O under f) is measurable.

Unit-II

- 12. If $\{f_n\}$ is a sequence of bounded measurable functions on a set E of finite measure, and if $\{f_n\} \to f$ uniformly on E, then show that $\lim_{n \to \infty} \int_E f_n = \int_E f$.
- 13. State and prove Monotone Convergence Theorem. Give an example to show that Monotone Convergence Theorem may not hold for decreasing sequence of functions.
- 14. If E is of finite measure and if the sequence of functions $\{f_n\}$ is uniformly integrable over E and if $\{f_n\} \to f$ point wise a.e. on E, then prove that f is integrable over E and $\lim_{n \to \infty} \int_E f_n = \int_E f$.

Unit - III

- 15. Define $f(x) = \sin x$, on $[0, 2\pi]$. Find two increasing functions h and g for which f = h g on $[0, 2\pi]$.
- 16. If f is absolutely continuous on the closed, bounded interval [a,b] then show that f is differentiable almost everywhere (a,b) and $\int_{a}^{b} f' = f(b) f(a)$.
- 17. Show that, $||f||_p = \left[\int_E |f|^p\right]^{1/p}$ for $1 , and <math>f \in L^p(E)$, defines a norm on $L^p(E)$.

Part- C

Answer any two from the following four questions. Each question has Five weightage.

- 8. (a) Define measurable sets. Show that the collection of all measurable sets is a σ algebra that contains the σ algebra of Borel sets.
 - (b) Show that any subset of R with positive outer measure contains a non-measurable subset.
- 9. (a) If g is a measurable real valued function defined on a measurable set E and f is a continuous real valued function defined on $(-\infty, \infty)$, then show that $f \circ g$ is measurable.
 - (b) If f is a real valued measurable function defined on a measurable set E, then show that for each $\varepsilon > 0$ there is a continuous function g on $(-\infty, \infty)$ and a closed set F contained in E for which f = g on F and $m(E F) < \varepsilon$.
- 0. Show that any bounded function f defined on the closed, bounded interval [a,b] is Riemann integrable over [a,b] if and only if the set of points in [a,b] at which f fails to be continuous has measure zero.
- 1. (a) State and prove Jordan's theorem.
 - (b) If the function f is continuous on the closed, bounded interval [a,b], then show that f is absolutely continuous on [a,b] if and only if the family of divided difference functions $\{\text{Diff}_h f\}_{0 < h \le 1}$ is uniformly integrable over [a,b].

 $(2 \times 5 = 10 \text{ Weightage})$

44

2M2	M	21	41	5

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Degree Examination, March/April 2021

MMT2C08 - Topology

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part-A Answer all questions. Each question carries 1 weightage.

- 1. Describe the convergence of sequences in a discrete topological space.
- 2. Find the derived set of integers in the real line \mathbb{R} with usual topology.
- 3. Let $X = \{a, b, c\}$ with the topology $\{X, \emptyset, \{a\}, \{a, b\}\}$. Write down the closed sets in X.
- 4. Define strong topology determined by a family of functions.
- 5. What do you mean by divisible Property? Give an example.
- 6. Define embedding of a topological space into another.
- 7. Give an example of a topological space that is T_1 but not T_2 .
- 8. State Urysohn's lemma.

 $(8 \times 1 = 8 \text{ weightage})$

Part-B

Answer any two questions from each Unit. Each question carries 2weightages.

Unit - I

- 9. Prove that if a space is second countable then every open cover of it has a countable subcover.
- 10. Prove that second countability is a hereditary property.
- 11. Prove that a subset A of a space X is dense in X iff for every nonempty open subset B of $X, A \cap B \neq \emptyset$.

Unit - II

- 12. Prove that the product topology is the weak topology determined by the projection function.
- 13. Prove that every separable space satisfies the countable chain condition.
- 14. Prove that every path connected space is connected.

- 15. Prove that every regular, Lindel öf space is normal.
- 16. Prove that all metric spaces are T_4 .
- 17. Let X be a completely regular space. Suppose F is a compact subset of X, C is a closubset of X and $F \cap C = \emptyset$. Prove that there exists a continuous function from X is the unit interval [0,1] which takes the value 0 at all points of F and the value 1 at a points of F.

 $(6 \times 2 = 12 \text{ weightag})$

Part-C Answer any two question. Each question carries 5 weightages.

- 18. (a) Let X be a set, \mathcal{T} a topology on X. Then prove that \mathcal{S} is a sub base for \mathcal{T} if and if \mathcal{S} generates \mathcal{T} .
 - (b) For a subset A of a space X, prove that

 $\bar{A} = \{ y \in X : \text{every neighbourhood of y meets A non } - \text{vacuously} \}$

- 19. (a)Prove that a subset of \mathbb{R} is connected iff it is an interval.
 - (b) Every continuous real valued function on a compact space is bounded and attain its extrema.
- 20. (a) State and prove Lebesgue covering lemma
 (b) Suppose (X, T) and (Y, U) be topological spaces and f: X → Y be a function. T prove that f is continuous if and only if f⁻¹(V) is open in X for every open subset in Y.
- 21. (a) Suppose a topological space X has the property that for every closed subset A of X, every continuous real valued function on A has a continuous extension to X. The show that X is normal.
 - (b) Let A be a closed subset of a normal space X and suppose f: A → [-1,1] is a continuous function. Then prove that there exists a continuous function F: X → [-1,1] such that F(x) = f(x) for all x ∈ A.

 $(2 \times 5 = 10 \text{ weighta})$

45

2M2M21416

(Pages:'3)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester MSc Degree Examination, March/April 2021 MMT2C09 – ODE and Calculus of Variations

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

Answer all the questions. Each question has weightage 1.

- 1. Find a power series solution of the differential equation y' = 2xy.
- 2. Locate and classify the singular points on the X axis of the differential equation (3x+1)xy'' (1+x)y' + 2y = 0.
- 3. Find the first three terms of the Legendre series of $f(x) = e^x$.
- 4. Describe the phase portrait of the following system.

$$\begin{cases} \frac{dx}{dt} = x \\ \frac{dy}{dt} = 0 \end{cases}$$

- 5. Find the critical points of the system $\begin{cases} \frac{dx}{dt} = y^2 5x + 6 \\ \frac{dy}{dt} = x y \end{cases}$
- 6. Starting with $y_0(x) = 0$, apply Picard's method to calculate $y_1(x), y_2(x)$ and $y_3(x)$ of the initial value problem $y' = 2x(1+y), \quad y(0) = 0$.
- 7. Find the point on the plane ax + by + cz = d that is nearest to the origin.
- 8. State Sturm Seperation theorem.

 $(8 \times 1 = 8 weightage)$

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

Unit I

- 9. Prove that the equation $x^2y'' 3xy' + (4x + 4)y = 0$ has only one Frobenious series solution and find it.
- 10. Show that the Gauss hypergeometric equation has regular singular points $0.1 \& \infty$ with corresponding exponents 0 & 1 c, 0 & c a b and a & b.
- 11. Find the general solution of the equation $(x^2 x 6)y'' + (5 + 3x)y' + y = 0$ near its singular point x = 3.

Unit II

12. Solve the system
$$\begin{cases} \frac{dx}{dt} = 3x - 4y \\ \frac{dy}{dt} = x - y \end{cases}$$

13. Determine the nature and stability properties of the critical point of the system

$$\begin{cases} \frac{dx}{dt} = -4x - y\\ \frac{dy}{dt} = x - 2y \end{cases}$$

14. Determine whether the function $f(x,y) = -x^2 - 4xy - 5y^2$ is positive definite, negative definite or neither.

Unit III

15. Prove that the eigen functions of the boundary value problem

$$\frac{d}{dx} \left[p(x) \frac{dy}{dx} \right] + \lambda q(x) y = 0, \qquad y(a) = y(b) = 0 \text{ satisfy the relation}$$

$$\int_{a}^{b} q y_{m} y_{n} dx = 0 \text{ if } m \neq n.$$

- 16. Obtain Eulers differential equation $\frac{d}{dx} \left(\frac{\partial f}{\partial y'} \right) \frac{\partial f}{\partial y} = 0$
- 17. Let y(x) and z(x) be non-trivial solutions of y'' + q(x)y = 0 and z'' + r(x)z = 0 where q(x) and r(x) are positive functions such that q(x) > r(x). Show that y(x) vanishes at least once between any two successive zeros of z(x).

 $(6 \times 2 = 12 weightag)$

Part C

Answer any two questions. Each question carries weightage 5.

18. (a) Show that if $P_n(x)$ is the Legendre polynomial of degree n, then

$$\int_{-1}^{1} P_m(x) P_n(x) dx = \begin{cases} 0 & \text{if } m \neq n \\ \frac{2}{2n+1} & \text{if } m = n \end{cases}$$

- (b). Show that $P_{2n+1}(0) = 0$ and $P_{2n}(0) = \frac{(-1)^n 1.3...(2n-1)}{2^n n!}$.
- 19. (a). Obtain $J_p(x)$ as a solution of Bessel's equation $x^2y'' + xy' + (x^2 p^2)y = 0$ where p is a non negative constant.
 - (b). Show that $\frac{2p}{x}J_p(x) = J_{p-1}(x) + J_{p+1}(x)$.

20. (a). State and prove Liapunov's stability theorem for an isolated critical point of the

autonomous system
$$\begin{cases} \frac{dx}{dt} = F(x, y) \\ \frac{dy}{dt} = G(x, y) \end{cases}$$

- (b). Show that (0,0) is a stablecritical point of the system $\begin{cases} \frac{dx}{dt} = -2xy \\ \frac{dy}{dt} = x^2 y^3 \end{cases}$
- 21. (a). Let f(x, y) be a continuous function that satisfies the Lipchitz condition $|f(x, y_1) f(x, y_2)| \le k|y_1 y_2|$ on a strip defined by $a \le x \le b$ and $-\infty < y < \infty$.

Prove that if (x_0, y_0) is any point of the strip, then the IVP

$$y' = f(x, y), \quad y(x_0) = y_0$$

has one and only one solution y = y(x) on $a \le x \le b$.

(b). Solve the initial value problem by Picard's method

$$\begin{cases} \frac{dy}{dx} = z & y(0) = 1\\ \frac{dz}{dx} = -y & z(0) = 0 \end{cases}$$

 $(2 \times 5 = 10 weightage)$

			41	-
2M2	M	1	41	1
LIVE	737	-	7,000	

(Pages: 2)

Reg. No:

Name: ...

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Degree Examination, March/April 2021 MMT2C10 - Operations Research

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Short Answer question (1-8) Answer all questions. Each question has 1 weightage.

- 1. Prove that the sum of two convex function is again a convex function.
- 2. Why do we introduce new variables in linear programming problem?
- 3. Write the dual of the linear programming problem: Maximise $x_1 + 6x_2 + 4x_3 + 6x_4$ subject to

$$2x_1 + 3x_2 + 17 x_3 + 80x_4 \le 48$$
, $8x_1 + 4x_2 + 4x_3 + 4x_4 = 2$, $x_1, x_2 \ge 0$ and x_3 and x_4 are unrestricted in sign.

- 4. What are simplex multipliers in a linear programming problem.
- 5. Define transportation matrix. Write an example for transportation matrix.
- 6. What is Caterer Problem in Operation Research.
- Explain the terms mixed strategy, pure strategy, and optimal strategy with reference to any matrix game.
- 8. Describe minimum path problem in network analysis.

 $(8 \times 1 = 8 \text{ weightage})$

Part B Answer any two questions from each units (9-17) Each question has weightage 2.

UNIT I

- 9. State and prove necessary and sufficient conditions for a differentiable function f(x) defined in a convex domain to be a convex function.
- 10. Prove that a vertex of the convex set of feasible solution is a basic feasible solution.
- 11. Solve graphically the linear programming problem: Minimize $z=x_1+3x_2$ subject to $x_1+x_2 \ge 3$, $-x_1+x_2 \le 2$, $x_1-2x_2 \le 2$, $x_1,x_2 \ge 0$

UNIT II

- 12. If the primal problem is feasible, then prove that it has an unbounded optimum iff the dual has no feasible solution and vice versa.
- 13. State and prove complimentary slackness conditions.
- 14. Prove that the transpotation array has a triangular basis.

- 15. Let f(X,Y) be such that both $\max_X \min_Y f(X,Y)$ and $\min_Y \max_X f(X,Y)$ exist. Then pronecessary and sufficient condition for the existence of a saddle point (X_0, Y_0) of f(X,Y) $f(X_0, Y_0) = \max_X \min_Y f(X,Y) = \min_Y \max_X f(X,Y)$.
- 16. Describe the generalised problem of maximum flow.
- 17. Describe cutting plane method to solve an integer linear programming problem.

 $(6 \times 2 = 12 \text{ weightag})$

PART C

Answer any two questions from the following four questions (18-21)

Each question has weightage 5.

- 18. a) What is mean by canonical form of equations.
 - b) Maximize $f(x) = 5x_1 + 3x_2 + x_3$ subject to constrains $2x_1 + x_2 + x_3 = 3$; $-x_1 + 2x_3 = x_1, x_2, x_3 \ge 0$.
- 19. a) Solve the transportation problem for minimum cost with cost coefficients demands and su as in the following table.

	D_1	D_2	D_3	D_4	LE SE
01	3	2	5	4	25
02	4	1	7	6	35
03	7	8	3	5	30
	10	18	20	42	

- b) What is mean by an unbalanced transportation problem. How can we solve it?
- 20. (a) Describe the branch and bounded method in integer linear programming problem. Illustran example..
 - (b) What is mean by Mixed integer linear programming problem.
- 21. (a) Solve graphically the game whose pay-off matrix is $\begin{bmatrix} 1 & -1 & 2 \\ 2 & 3 & 1 \end{bmatrix}$
 - (b) Describe rectangular game as a linear programming problem .

 $(2 \times 5 = 10 \text{ weightage})$