1M4M21531

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March/April 2021

MMT4C15 - Advanced Functional Analysis

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Answer all questions. Each carries 1 weightage

- 1. If $A_n \to A$ and $B_n \to B$ in BL(X) then prove that $A_n B_n \to AB$ in BL(X).
- 2. Give an example of an operator whose eigen spectrum and approximate eigen spectrum are not equal.
- 3. Give an example to show that $x_n \xrightarrow{w} x$ in X does not imply that $x_n \longrightarrow x$ in X.
- 4. Define reflexive normed spaces. Show that if X is reflexive and separable, then X' is separable.
- 5. Is every continuous linear map compact? Justify your answer.
- 6. Let X be an inner product space and $E \subset X$. If $F = \overline{\text{span } E}$, prove that $F^{\perp} = E^{\perp}$.
- 7. Show that every orthogonal projection is a positive operator.
- 8. Show that if $A \in BL(H)$ is a Hilbert-Schmidt operator, so is A^* .

 $(8 \times 1 = 8 \text{ weightage})$

Part B Answer any *two* questions from each unit. Each carries 2 weightage

Unit 1

- 9. If $A \in BL(X)$ is of finite rank, prove that $\sigma_e(A) = \sigma_a(A) = \sigma(A)$.
- 10. Show that the dual space of c_0 with $\|\cdot\|_{\infty}$ is linearly isometric to ℓ^1 .
- 11. If X,Y and Z are normed spaces, and if $F \in BL(X,Y)$ and $G \in BL(Y,Z)$, then show that (GF)' = F'G'. Also prove that ||F|| = ||F'|| = ||F''|| and $F''J_X = J_YF$.

Unit 2

- 12. If A is a compact operator, prove that every non zero spectral value of A is a value of A.
- 13. State projection theorem. Give an example to show that projection theorem n hold for an incomplete inner product space.
- 14. Show that every Hilbert space is reflexive.

Unit 3

- 15. If $A \in BL(H)$ is self-adjoint, then prove that $||A|| = \sup \{|\langle A(x), x \rangle| : x \in H, ||x|| \}$
- 16. If $A \in BL(H)$, prove that $\sigma_e(A) \subset \sigma_a(A)$ and $\sigma(A) = \sigma_a(A) \cup \left\{k : \overline{k} \in \sigma_e(A^*)\right\}$
- 17. If $A \in BL(H)$ is compact, show that A * is also compact.

 $(6 \times 2 = 12 \text{ wei})$

Part C Answer any two questions. Each carries 5 weightage

- 18. (a) If X is a nonzero Banach space over C and if $A \in BL(X)$, then show that non empty.
 - (b) State and prove spectral radius formula.
- 19. (a) Let X and Y be normed spaces and $F \in BL(X,Y)$. If $F \in CL(X,Y)$, then show that the converse holds if Y is a Banach space.
 - (b) State and prove Riesz representation theorem.
- 20. (a) If A is a compact operator on a normed space X, prove that the eigen spect the spectrum of A are countable sets and have 0 as the only possible limit point
 - (b) Let H be a Hilbert space, G be a subspace of H and g be a continuou functional on G. Prove that there is a unique continuous linear functional f such that $f|_G = g$ and ||f|| = ||g||.
- 21. (a) State and prove generalized Schwarz inequality.
 - (b)Define numerical range. If $A \in BL(H)$ prove that $\sigma_e(A) \subset \omega(A)$ and contained in the closure of $\omega(A)$.

M4M21532	(Pages ; 2) Reg. No:
en Tivi4ivi2135	Name:
	FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE
t	Fourth Semester M.Sc Degree Examination, March/April 2021
	MMT4E06 -Algebraic Number Theory
	(2019 Admission onwards)
Time: 3 h	ours Max. Weightage: 30
100	Part A
	Answer all the questions. Each question carries 1 weightage.
	1. Define symmetric polynomials and elementary symmetric polynomials. Give an example for each polynomials
	2. Define an algebraic number and algebraic integer. Which of the following numbers are algebric integers? a, $\frac{355}{113}$, b, $\sqrt{17} + \sqrt{19}$
	3. Find the norm and trace of $1-\zeta$ in $K=Q(\zeta)$, where $\zeta=e^{\frac{2\pi i}{5}}$
	4. Show that the group of units U of the integers in $Q(\sqrt{-1})$ is $U = \{1, -1, i, -i\}.$
	5. Let R be a ring and a an ideal of R. Then show that a is maximal if and only if R/a is a field.
8 24	6. Define the $n-$ dimensional torus T^n . If L is an $n-$ dimensional lattice in \mathbb{R}^n then show that \mathbb{R}^n/L is isomorphic to T^n
*	7. Define class number and class group.
	8. Define the norm of an element in L^{st}
	(8×1=8 Weightage)
16 - 5 11	PART B
	Answer any two from each unit. Each question carries 2 weightage
	Unit I
100	9. Let G be a free abelian group of rank r , and H a subgroup of G . Then show that G/H is finite if and only if the ranks of G and H are equal. If this is the case, and if G and H have Z -bases
ighth	x_1, x_2, x_r and $y_1, y_2,, y_r$ with $y_i = \sum a_{ij}x_j$, then prove that $ G/H = det(a_{ij}) $.
	10. Let $K = Q(\theta)$ be a number field of degree n over Q . Show that there are exactly n distinct monomorphisms $\sigma_i : K \to C$ and the elements of $\sigma_i(\theta) = \theta_i$ are the distinct zeros in C of the minimum polinomial θ over Q .
s ×	Company of the first of the property of the first of the

itage)

11. If $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ is any Q-basis of K, then show that $\Delta[\alpha_1, \alpha_2, ..., \alpha_n] = \det(T(\alpha_i, \alpha_j))$.

Unit II

- 12. Show that factorization into irreducibles is not unique in the ring of integers of $Q(\sqrt{10})$.
- 13. In $Z[\sqrt{-6}]$, obtain the prime factorization of <6>
- 14. In $Z[\sqrt{-17}]$, prove that the elements 2, 3 are irreducible but not prime.

Unit III

- 15. Define lattice. Sketch the lattice in \mathbb{R}^2 generated by $\{(1,2),(2,-1)\}$
- 16. Factorize the following principal ideals < 2 >, < 5 > in the ring of integers of $Q(\sqrt{5})$.
- 17. Find all the solutions of the equation $x^2 + y^2 = z^2$ (6×2=12 Weightage)

PART C

Answer any two questions. Each question carries 5 weightage

18. a, Find the order of the group G/H where G is free abelian with Z-basis x.y.z and H is generated by: 41x + 32y - 999z, 16y + 3z, 2y + 111z

b, Express $Q(\sqrt{2}, \sqrt[3]{5})$ in the form $Q(\theta)$.

- c, Compute an integral bases and discriminent for $Q(\sqrt{2},\sqrt{3})$
- 19. Show that the ring of integers of $Q(\zeta)$ is $Z[\zeta]$
- 20. a, Show that every Euclidean domain is a unique factorization domain.
 - b, Define a noetherian ring. Find a ring which is not noetherian.
- 21. a, Show that an additive subgroup of \mathbb{R}^n is a discrete if it is a lattice.
 - b, State and prove Minkowski's theorem

 $(2 \times 5 = 10 \text{ Weightage})$

1M4M21:	533
---------	-----

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March/April 2021

MMT4E09 - Differential Geometry

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PARTA

Answer ALL questions. Each question has I weightage.

- 1. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is the level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$
- 2. Find and sketch the gradient field of the function $f(x_1, x_2) = x_1 + x_2$.
- 3. Show that the set Sof all unit vectors at all points of R2 forms a 3-surface in R4
- 4. Prove that the straight line segment $\alpha(t) = p + tv$ is a geodesic S.
- 5. Compute $\nabla_v f$ where $f(x_1, x_2) = x_1^2 x_2^2, v = (1, 1, \cos \theta \sin \theta)$.
- 6. Find the length of the parametrized curve $\alpha: I \to R^4$ where $I = [0,2\pi]$ and $\alpha(t) = (\cos t, \sin t, \cos t, \sin t)$
- 7. Find the Gaussian curvature at a point p of a surface Swhose principal cuvatures are $k_1(p) = 1$ and $k_2(p) = \frac{1}{2}$.
- 8. Let $\phi: U_1 \to U_2$ and $\varphi: U_2 \to R^k$ be smooth, where $U_1 \subset R^n$ and $U_2 \subset R^m$. Verify the chain rule $d(\varphi \circ \phi) = d\varphi \circ d\phi$.

 $(8 \times 1 = 8 weightage)$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

Unit I

- 9. Find the integral curve through p(a, b) of the vector field Xon R^2 given b X(p) = (p, X(p)) where $X(x_1, x_2) = (-x_2, -x_1)$.
- 10. Show by an example that the set of vectors tangent at a point of a level set need not be in general be a vector subspace of R_n^{n+1} .
- 11. Describe the spherical image of the sphere $x_1^2 + x_2^2 + \cdots + x_{n+1}^2 = 1$, chosing the orientation as $N = \frac{\nabla f}{||\nabla f||}$.

Unit II

- 12. Let X and Y be smooth vector fields along the parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$. Verify that (X,Y)' = X',Y + X,Y'.
- 13. Show that the Weingarten map at each point p of an oriented n-surface in R^{n+1} is self adjoint.
- 14. Prove that the local parametrization of a plane curve is unique upto reparametriztion.

- 15. Show that the normal curvature of the sphere $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = r^2 (N = 1)$ any point in any direction is the constant $\frac{1}{r}$...
- 16. Describe a parametrized torus in R^4 .
- 17. Let S be an n-surface in R^{n+1} and let $p \in S$. Prove that there exists an oper about p in R^{n+1} and a parametrized n-surface $\varphi: U \to R^{n+1}$ such that φ is a one open map from U onto $V \cap S$.

 $(6 \times 2 = 12 weight)$

PART C Answer any Two questions. Each question carries 5weightage.

- 18. a) Let S be an n-surface in R^{n+1} , $S = f^{-1}(c)$ where $f: U \to R$ is such that $\nabla f(c)$ for all $q \in S$. Suppose $g: U \to R$ is a smooth function and $p \in S$ is an extreme p on S, then prove that there exists a real number p such that p such that p such that p such that the maximum and minimum values of the function $p(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ where p such that p suc
- 19. a) Let $S \subset R^{n+1}$ be a connected n-surface in R^{n+1} . Prove that there exist on S two smooth unit normal vector fields N_1 and N_2 , and that $N_2(p) = -N_2(p)$ for $p \in S$.
 - b) Let S be a compact, connected oriented n-surface in R^{n+1} . Prove that th map maps S onto the unit n-sphere S^n .
- 20. Let S be an n-surface in R^{n+1} , let $\alpha: I \to S$ be a parametrized curve in S, let t_0 let $v \in S_{\alpha(t_0)}$. Then prove that there exist a unique vector field \mathbf{V} tangent to S alwhich is parallel and has $\mathbf{V}(t_0) = v$
 - b)Prove that in the n-plane $a_1x_1 + a_2x_2 + \cdots + a_{n+1}x_{n+1} = b$ in R^{n+1} , the partransport is path independent.
- 21. a) Let S be an n-surface in R^{n+1} and let $f: S \to R^k$. Then prove that f is smooth only if $f \circ \varphi: U \to R^k$ is smooth for each local parametrization $\varphi: U \to R^k$.
 - b) State and prove the inverse function theorem for n-surfaces.

 $(2 \times 5 = 10 weig)$

$\frac{f}{f }$)at	M4M21534
- jai	30000-00-0

et V

ige)

 $\neq 0$

int of

= 1

cactly

Jauss

I, and

ıgα,

el

(Pages: 2)

Reg. No:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March/April 2021 MMT4E14 - Computer Oriented Numerical Analysis

(2019 Admission onwards)

one Time: 1½ hours

Max. Weightage: 15

Section A

Answer ALL questions. Each question carries I weight.

- 1. Wrie the output of the statement "print 5/2" in Python.
- Is the output same as the actually calculated value?

If our answer is "NO", write a suitable Python Program so as to get the output to be the actual value 2.5.

- 2. Write a Python program, which while executed will ask for your height in metres and will print it as output.
- 3. Write a Python program to get the print out of multilication table of 7 upto $10 \times 7 = 70$ using a "WHILE" loop.
- 4. What is a conditional execution in Python? Explain using a suitable example.

 $4 \times 1 = 4$ Weights.

Section B

Answer any THREE questions. Each question carries 2 weights.

- 5. Write a Python program to do the following. Asking the input of a natural number "n" and the first "n" Fibonacci numbers.
- 6. Explain the problem and power method to find the largest eigen value of a given square matrix.

age)

if and

- 7. Distinguish between 'Local' and 'Global' definitions (of variables/functions) in Python Explain with a suitable example (or sample program).
- 8. Write a note on the use and precautions in the use of 'functions' in Python. Write a Python program to find the average of five numbers which you input by defining a suitable function.
- 9. What is the use of modules in Python? What is the Pickle Module? Explain with a suitable example. $3\times 2 = 6$ Weights

Section C

Answer any ONE question. Each question carries 5 weights.

- 10. a) Write a Python Program to find the Greatest Common Divisor of two positive integers you input.
 - b) Explain the problem, the method, the algorithm and a Python program for th Lagrange's Interpolation.
- 11. Explain the problem, the method, the algorithm and a Python program for the Rung Kutta Mehod (order 4).

 $1 \times 5 = 5$ Weights