1M4M20224 (Pages : 3) Reg. N

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, March/April 2020 MSTA4B14 – Multivariate Analysis - II

(2018 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Part A

Answer all questions Each question carries one weight

- 1. Explain how you would test the hypothesis $H_0: \mu = \mu_0$ when the population dispersion matrix Σ is known.
- 2. What are the objectives of principal component analysis?
- 3. Explain the classification problem with a suitable example.
- 4. What is an orthogonal rotation of factor loadings and what is its purpose?
- 5. Discuss briefly Bayes classification problem.
- 6. "A major purpose of principal components or factor analysis is to develop a set of new variables to be used in subsequent analyses." Please comment on this statement.
- 7. Describe Lachenbruch procedure.
- 8. Explain union intersection principle.
- 9. Define ECM and TPM and give expression for ECM and TPM.
- 10. Mention the relationship between principal components of *X* and eigen values of dispersion matrix of *X*.
- 11. What is profile analysis?
- 12. Define R-type factor analysis.

 $(12 \times 1 = 12 \text{weightage})$

Answer Eight questions Each question carries 2 weight

- 13. Let $x_1, ..., x_N$ be a sample from $N_p(\mu, V)$. What is the likelihood ratio criterion for tes the hypothesis $\mu = k\mu_0$, $V = k^2V_0$, where μ_0 and V_0 are specified and k is unspecified
- 14. Test the independence of subvectors $X^{(1)}$ and $X^{(2)}$ where $X = (X^{(1)}, X^{(2)})$ is distribute $N_p(\mu, \Sigma)$.
- 15. Prove that the probabilities of misclassification of $x_1, ..., x_N$ (all assumed to be from eigor π_2) decrease as N increases.
- 16. Explain how do you classify an observation to one of two multivariate normal population when the parameters are known.
- 17. Define probability of misclassification. Explain the classification rule with two multiva normal populations with unequal variance covariance matrix.
- 18. Distinguish between linear and quadratic discriminant function.
- 19. Show that principal components cover the total variation of the data.
- 20. Find OER when the populations are multivariate normal populations with misclassification probabilities and prior probabilities.
- 21. Explain a method of extracting orthogonal factors in factor analysis.
- 22. Explain the iterative procedure to calculate sample principal components.
- 23. Describe the test for equality of dispersion matrices of several normal populations.
- 24. Cluster the five items using the single linkage hierarchical procedure. Where $D = [d_r 5x5]$ matrix of distances and is given below

	1	2	3	4	5
1	0				
2	9	0			
3	3	7	. 0-		
4	6	5	9	0	
5	11	10	2	8	0

Part C

Answer any two questions Each question carries 4 weights

- 25. Show that the following V can represent a covariance matrix and compute the principal component where $V = \begin{bmatrix} 2 & 0 & 1 \\ 0 & 2 & 1 \\ 1 & 1 & 2 \end{bmatrix}$.
- 26. Six observations on two variables are available, as shown in the following table:

Observations	X1	X2
a	3	2
b	4	1
c	2	5
d	5	2
e	1	6
f	4	2

- (i) Apply the furthest neighbor method and the squared Euclidean distance as a measure of dissimilarity.
- (ii). Same as (i), except apply the average linkage method.
- (iii). Apply the k-means method, assuming that the observations belong to two groups and that one of these groups consists of a and e.
- 27. Define Fisher's linear discriminant function. Describe how you will use this function for discriminating between two multivariate normal populations.
- 28. Explain the test for independence of a set variates of a p- variate random vector $X \sim N_p(\mu, \Sigma)$ distribution.

 $(2 \times 4 = 8 \text{ weightage})$

M4M20226

(Pages : 2) Reg. No:.....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester MSc Degree Examination, March/April 2020 MSTA4E3(06) - Time Series Analysis

(2018 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Part A

(Answer ALL the questions. Weightage 1 for each question)

- 1. Establish the relationship between a stochastic process and a time series giving an example.
- 2. Define autocorrelation function.
- 3. Define a simple exponential smoothing model.
- 4. State the conditions for weak stationarity of time series processes.
- 5. Obtain the auto covariance function of the linear process $Z_t = a_t 0.4 a_{t-1}$.
- 6. Define autoregressive model of order 2.
- 7. Obtain the autocorrelation function of moving average model of order 1.
- 8. Discuss the invertibility conditions of AR(1) and MA(1) models.
- 9. Describe any of the diagnostic checking methods in time series modelling.
- 10. Define hetero scedasticity in time series context.
- 11. List the steps involved in Box-Jenkins methodology of time series modelling.
- 12. State applications of ARCH model.

 $(12 \times 1=12 \text{ weightage})$

Part B

(Answer any EIGHT questions. Weightage 2 for each question)

- 13. Explain what is meant by exploratory time series analysis?
- 14. Discuss additive and multiplicative time series models with examples.
- 15. Explain the method of moving average smoothing.
- 16. What is Adaptive smoothing?

- 17. Explain the duality between AR and MA time series models.
- 18. Show that for an AR(3) process the partial autocorrelation function, Φ_{kk} , is zero for
- 19. Explain the role of ACF and PACF in time series model identification.
- 20. Obtain the PACF of MA(1) process.
- 21. Describe the Yule-Walker method of estimation of AR(2) model.
- 22. Explain forecasting of time series using minimum mean square error method.
- 23. Define GARCH (1,1) model and state any two properties of the model.
- 24. Find the spectral density function of a AR(2) process.

 $(8 \times 2 = 16 \text{ weigh})$

Part C

(Answer any TWO questions. Weightage 4 for each question)

- 25. Explain how you will test for trend and seasonality in a time series data.
- 26. Define an AR(p) model. Examine whether it is covariance stationary or not.
- 27. Describe the least square estimation of parameters of the AR(2) model, $X_t = \alpha_1 X_{t-1} + \alpha_2 X_{t-2} + \varepsilon_t \text{, where } \{\varepsilon_t\} \text{ is a white noise process with mean zero and variance } \sigma_\varepsilon^2.$
- 28. Briefly explain:
 - (i) Herglotz Theorem
- (ii) Periodogram analysis
- (iii) Correlogram analysis

(2 x 4=8 weight

113/12	0225
40 17 1.6	Can and ~

(Pages:2)

Reg.	No:	 	 	 				 	
Nam									

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester MSc Degree Examination, March/April 2020 MSTA4E2(01) – Operations Research

(2018 Admission onwards)

me: 3 hours

Max. Weightage: 36

PART-A

Answer all questions. Each question carries weightage 1.

- 1. Define an LPP. Discuss the role of convex set in an LPP.
- 2. Differentiate between feasible and basic feasible solution to a linear programming problem in an LPP.
- 3. Explain the notion of degeneracy and cycling.
- 4. What you mean by a loop in a transportation table.
- 5. Define an assignment problem.
- 6. Define a two person zero sum game.
- 7. Explain the concept of sensitivity analysis in a linear programming problem.
- 8. What is the need of integer programming? Name any two method of solving it.
- 9. How the problem degeneracy is handled in a transportation problem.
- 10. Explain the terms setup cost and holding cost.
- 11. Differentiate between PERT and CPM.
- 12. What you mean by a price break.

PART-B

Answer any eight questions. Each question carries weightage 2.

- 13. If optimum solution to a linear programming problem exists, show that it will be attained at one of the extreme point of the region of feasible solutions.
- 14. Explain net evaluations associated with a linear programming problem. If one of the net evaluations is negative associated with a basic feasible solution, show that there exist an improved basic feasible solution.
- 15. Differentiate between Big-M method and two phase simplex method.
- 16. Explain revised simplex method.
- 17. Describe the branch and bound method of solving an integer programming problem.
- 18. Discuss vogel's approximation method of finding an initial basic feasible solution to a transportation problem.
- 19. Outline steps involved in solving an assignment problem.
- 20. Describe the solution of a 2x2 game.
- 21. What you mean by ABC analysis of inventory management.
- 22. Explain Bellman principle of solving a dynamic programming problem through a simple example.
- 23. Discuss any one EOQ model of inventory and derive its solution.

24. Derive Kuhn-Tucker condition for solving a nonlinear programming problem.

PART-C

Answer any two questions. Each question carries four weightage

- 25. Given a basic feasible solution discuss iteration procedure of simplex method. How multiple optimum solution and unbounded solution can be detected?
- 26. State and prove fundamental theorem of duality. Also explain a dual simplex method.
- 27. A. Explain steps involved in solving a transportation problem.
 - B. Solve the assignment problem

on steel	1	2	3	4
Α	11	20	34	18
В	32	40	23	19
С	40	38	25	31
D	44	45	28	36

28. What are pure and mixed strategies associated with a game. Explain how an mxn game can be converted in to a linear programming problem, hence establish fundamental theorem of game.