(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2020

MMT3C11 - Multivariable Calculus & Geometry

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PARTA

Answer ALL questions. Each question carries 1 weightage.

- 1. Let $A \in L(\mathbb{R}^n, \mathbb{R}^m)$. Then prove that A is a uniformly continuous mapping of \mathbb{R}^n to \mathbb{R}^m .
- 2. Let $f: \mathbb{R}^2 \to \mathbb{R}^3$ be given by $f(x, y, z) = x^2 + y^2 + z^2$. Find the directional derivative of f at (1,1,1) in the direction of the vector $\left(\frac{4}{5},0,\frac{3}{5}\right)$.
- 3. State the Inverse Function Theorem.
- 4. Find the parametrised equation of the level curve $y^2 x^2 = 1$.
- 5. Compute the curvature of the curve $\gamma(t) = \left(\frac{4}{5}cost, 1 sint, -\frac{3}{5}cost\right)$.
- 6. Check whether $\sigma(u, v) = (u, v, uv) u, v \in R$ is a regular surface patch.
- 7. Show that first fundamental form for the plane $\sigma(u, v) = a + u\mathbf{p} + v\mathbf{q}$ in R^3 is $du^2 + dv^2$.
- 8. Define Weingarten map.

 $(8 \times 1 = 8 \text{ weightage})$

PART B

Answer any two questions from each unit. Each question carries 2 weightage.

Unit I

- 9. Prove that a linear operator A on a finite dimensional space X is one to one if and only if the range of A is all of X.
- 10. Prove that $L(R^n, R^m)$ is a metric space.
- 11. Prove that if [A] and [B] are $n \times n$ matrices, then det[B][A]) = det[B]det[A].

Unit II

- 12. Prove that the total signed curvature of a closed plane curve is an integer multiple of 2π .
- 13. Let γ be a unit speed curve in R^3 with constant curvature and zero torsion. Then, prove that γ is a parametrization of (part) of a circle.
- 14. If $f: S \to \tilde{S}$ is a smooth map between surfaces and $p \in S$, then prove that the derivative Map $D_P f: T_P S \to T_P \tilde{S}$ is a linear map.

Unit III

- 15. Compute the second fundamental form of the elliptic paraboloid $\sigma(u, v) = (u, v, u^2 + v^2)$.
- 16. Calculate the Gauss map of the paraboloid S with equation $z = x^2 + y^2$.
- 17. Let $\sigma(u, v)$ be a surface patch with first and second fundamental forms $Edu^2 + 2Fdudv + Gdv^2$ and $Edu^2 + 2Fdudv + Fdu^2$ and $Edu^2 + 2Fdudv + Fdu^2$ and $Edu^2 + 2Fdudv + Fdu^2$. Prove that the mean curvature is $\frac{LG 2MF + NE}{2(EG F^2)}$.

 $(6 \times 2 = 12 weightage)$

PART C

Answer any Two questions. Each question carries 5weightage.

- 18. a) Suppose f maps an open set $E \subset R^n$ into $R^{m.}$, and f is differentiable at a point $x \in E$. Then prove that the partial derivatives $D_j f_i(x) (1 \le j \le n, 1 \le i \le m)$ exist at all points of E.
 - b) If f(0,0) = 0 and $f(x,y) = \frac{xy}{x^2 + y^2}$ if $(x,y) \neq (0,0)$, then prove that the function f is not differentiable in R^2 even though all the partial derivatives of f exist at all point of R^2 .
- 19. a) State and prove the Contraction principle.
 - b) Give an example of a contraction on (0,1) having no fixed point. Does this contradict the contraction principle?
- 20. a)Prove that any reparametrisation of a regular curve is regular.
 - b) Prove that a parametrized curve has a unit speed reparametrization if and only if it regular.
- 21 a)Let $\sigma: U \to R^3$ be a surface patch. Let $(u_0, v_0) \in U$, and let $\delta > 0$ be such that the closed disc $R_\delta = \{(u, v) \in R^2/(u u_0)^2 + (v v_0)^2 \le \delta^2\}$ withcentre (u_0, v_0) and radius δ is contained in U.Then prove that $\lim_{\delta \to 0} \frac{A_N(R_\delta)}{A_{\sigma}(R_\delta)} = |K|$, where K is the Gaussian curvature of σ at $\sigma(u_0, v_0)$.

b)Prove that a point \mathbf{p} of a surface \mathbf{S} is an umbilic if and only if the Weingarten map $W_{\mathbf{p},\mathbf{S}}$ is a scalar multiple of the identity map.

 $(2 \times 5 = 10 weightage)$

1M3N20201

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2020

MMT3C12 - Complex Analysis

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

Answer all questions

Each question carries 1 weightage

- 1. Find the fixed points of the linear transformation $w = \frac{2z}{3z-1}$.
- 2. Find the point at which the function tan z is not analytic.
- 3. State the symmetry principle.
- 4. If z = x + iy, prove that $|e^z| = e^x$.
- 5. Let n be a positive integer. Prove that $\int_{\gamma} (z-a)^n dz = 0$ for any closed curve γ .
- 6. Determine the nature of singularity of the function $\frac{\sin z}{z}$ at z=0. Justify your answer.
- 7. Find the residue of the function $f(z) = \frac{z^2-2}{(z-2)^2}$ at z=2.
- 8. Define: Simply connected region. Give an example of a simply connected region.

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer any two questions from each unit Each question carries 2 weightage

UNIT I

- 9. Let f and g be analytic on G and Ω respectively and suppose $f(G) \subset \Omega$ then $g \circ f$ is analytic on $G(g \circ f)'(z) = g'(f(z)) f'(z)$ for all z in G.
- 10. Prove that if γ is piecewise smooth and $f:[a,b] \to \mathbb{C}$ is continuous then $\int_a^b f \, d\gamma = \int_a^b f(t) \gamma'(t) dt.$
- 11. Prove that the cross ratio (z_1, z_2, z_3, z_4) is real if and only if the four points lie on a circle or a straight line.

UNIT II

- 12. Prove that if p(z) is a non-constant polynomial then there is a complex number a with p(a) = 0.
- 13. State and prove Morera's theorem.
- 14. Let G be a region and suppose that f is a non constant analytic function on G. then prove that for any open set U in Gf(U) is open.

UNIT III

- 15. Prove that an analytic function comes arbitrarily close to any complex value in every neighbourhood of an essential singularity.
- 16. State and prove Residue theorem.
- 17. Show that $\int_{-\infty}^{\infty} \frac{x^2}{1+x^4} dx = \frac{\pi}{\sqrt{2}}$

 $(6 \times 2 = 12 \text{ weightage})$

Part C Answer any two questions Each question carries 5 weightage

- 18. Let $f(z) = \sum_{n=0}^{\infty} a_n (z-a)^n$ have radius or convergence R > 0 then prove that For each $k \ge 1, \sum_{n=k}^{\infty} n(n-1) \dots (n-k+1) a_n (z-a)^{n-k}$ the series has radius of convergence R and f is infinitely differentiable on B(a;R).
- 19. State and prove Goursat's theorem
- 20. State and prove Cauchy's integral formula and evaluate $\int_{|z|=2}^{\infty} \frac{dz}{z^2+1}$
- 21. (a) Discuss the evaluation of integrals of the type $\int_{-\infty}^{\infty} R(x) e^{ix} dx$ using the residues.
 - (b) Show that $\int_0^\infty \frac{\sin x}{x} dx = \frac{\pi}{2}$

 $(2 \times 5 = 10 \text{ weightage})$

1	N/E	2	N2	03	03
1	IV.	•	IN Z	11/	11 Z

(Pages	:	3)
1, 0000		- 1

Reg.	No:					
------	-----	--	--	--	--	--

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2020

MMT3C13 - Functional Analysis

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A

Answer all questions. Each question carries a weightage 1.

- 1. Prove or disprove: 'Every essentially bounded function is bounded'.
- 2. Prove that every norm on K is a positive scalar multiple of the absolute value norm.
- 3. Let X be normed space and f be a nonzero linear functional on X. If f be a discontinuous linear functional on X then prove that the zero space Z(f) of f is dense in X.
- 4. Let X be a normed space over \mathbb{K} , $f \in X'$ and $f \neq 0$. Let $a \in X$ with f(a) = 1 and r > 0. If $U(a,r) \cap Z(f) = \emptyset$ then prove that $\|f\| \leq \frac{1}{r}$.
- 5. Prove that the subspace C([a,b]) of $L^p([a,b])$ consisting of all scalar valued continuous functions is not a Banach space.
- 6. What is the geometric interpretation of the Uniform boundedness principle.
- 7. Let X and Y be normed spaces and $F: X \to Y$ be a continuous map. Prove that F is a closed map.
- 8. Let x_1 and x_2 be two orthogonal elements in an inner product space X. Prove that $||x_1 + x_2||^2 = ||x_1||^2 + ||x_2||^2$.

(8×1=8 Weightage)

PARTB

Answer any two questions from each unit Each question carries a weightage 2.

UNIT I

- 9. If $1 \le p < \infty$, prove that the set of all simple measurable functions on a measurable set *E* which are zero outside subsets of finite measure is dense in $L^p(E)$.
- 10. Let Y be a closed subspace of a normed space X. For x+Y in the quotient space X/Y, let $||x+Y|| = \inf\{||x+y|| : y \in Y\}$. Then prove that $||\cdot||$ is norm on the quotient space X/Y.
- 11. Show by an example that not all linear functionals on a normed space X are continuous.

 $(2 \times 2 = 4 \text{ Weightage})$

UNIT II

- 12. Let Y be a subspace of a normed space X and $a \in X$ but $a \notin \overline{Y}$. Then prove that there is an $f \in X'$ such that f(y) = 0 for every $y \in Y$, $f(a) = dist(a, \overline{Y})$ and ||f|| = 1.
- 13. If every absolutely summable series is summable in a normed space *X* then prove that *X* is a Banach space.
- 14. Let X be a normed space and E be a subset of X. Prove that E is bounded in X if f(E) is bounded in \mathbb{K} for every $f \in X'$.

 $(2 \times 2 = 4 \text{ Weightage})$

UNIT III

- 15. Let X be a normed space and $P: X \to X$ be a projection. Suppose R(P) and Z(P) are closed in X then prove that P is closed.
- 16. State and prove the parallelogram law for inner product spaces.
- 17. Let $\{u_1,u_2,...\}$ be a countable orthonormal set in an inner product space X with the inner product $\langle \ , \ \rangle$ and $x \in X$. Then prove that $\sum_{i=1}^n |\langle x,u_i\rangle|^2 \leq ||x||^2$.

 $(2\times2 = 4 \text{ Weightage})$

Part C Answer any two question. Each question carries a weightage 5

- 18. (a) Prove that every closed and bonded subset of a finite dimensional normed space *X* is compact.
 - (b) Let X and Y be normed spaces and $F: X \to Y$ be linear then prove that F is continuous if and only if for every Cauchy sequence $\{x_n\}$ in X the sequence $\{F(x_n)\}$ is Cauchy in Y.
 - (c) let $X = \mathbb{K}^2$ with the norm $\|.\|_{\infty}$. Let $Y = \{(x(1), x(2)) : x(2) = 0\}$ and $g \in X$ be such that g(x(1), x(2)) = x(1). Find the Hahn Banach extension of g.
- 19. (a)Prove that every nonzero linear functional on a normed space X is open. (b)Let X be a normed space, Y be a Banach space and $F_n \in BL(X,Y)$ be such that $||F_n|| \le \alpha$ for all n and for some $\alpha > 0$. Let E be a subset of X whose span is dense in X. Suppose that $(F_n(x))$ converges in Y for every x in E. Then prove that there is a unique $F \in BL(X,Y)$ such that $F_n(x) \to F(x)$ for every $x \in X$. (c)State and prove the bounded inverse theorem.
- 20. (a)Let X be a normed space and Y be a closed proper subspace of X. Let r be a real number such that 0 < r < 1. Then prove that there exists an $x_r \in X$ such that $||x_r|| = 1$ and $r \le dist(x_r, Y) \le 1$ (b)Let X and Y be Banach spaces and $F: X \to Y$ be a closed linear map. Then prove that F is continuous.
- (a)State and prove the Open Mapping Theorem..
 (b)Let ⟨ , ⟩ be an inner product on a linear space X and T : X → X be a linear one to one map. Let ⟨ x , y ⟩_T = ⟨Tx , Ty ⟩, x,y ∈ X . Then prove that ⟨ , ⟩ is an inner product on X.

 $(2 \times 5 = 10 \text{ Weightage})$

1M3N20203	(Pages: 3)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2020

MMT3C14 - PDE & Integral Equations

(2019 Admission onwards)

Time: 3 hours Max. Weightage: 30

Part A Answer all questions. Each question carries 1 weightage

- 1. For the initial value problem $u_x + u_y = 1$, u(x, 0) = f(x), what are the projections of the characteristic curves on the (x, y) plane?
- 2. Consider the equation $xu_{xx} yu_{yy} + \frac{1}{2}(u_x u_y) = 0$. Find the domain where the equation is elliptic, and the domain where it is hyperbolic.
- 3. If u(x,t) is the solution of the Cauchy problem

$$u_{tt} - u_{xx} = 0$$
; $0 < x < \infty, t > 0$,
 $u(0,t) = t^2$; $t > 0$,
 $u(x,0) = x^2$; $0 \le x < \infty$,
 $u_t(x,0) = 6x$; $0 \le x < \infty$,

evaluate u(4,1).

- 4. Explain Separated and Periodic boundary conditions in heat conduction problems.
- 5. Let u(x,y) be a harmonic function in a domain D, show that $u \in C^{\infty}(D)$.
- 6. Reduce the Volterra integral equation $y(x) = x \cos x + \int_0^x (x \xi)y(\xi) d\xi$ to equivalent initial value problem.
- 7. Define separable kernel. Is $e^{x\xi}$ separable? Justify your answer.
- 8. Determine the resolvent kernel associated with the kernel $K(x, \xi) = x\xi$ in the interval (0,1) in the form of a power series in λ .

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each question carries 2 weightage

Unit I

9. Find a compatibility condition for the Cauchy problem

$$u_x^2 + u_y^2 = 1$$
, $u(\cos s, \sin s) = 0$, $0 \le s \le 2\pi$

Also solve the problem.

- 10. If the equation $au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$, where a, b, \ldots, f, g are given functions of x and y, is hyperbolic in a domain D, then show that there exists a coordinate system (ξ, η) in which the equation has the canonical form $w_{\xi\eta} + l_1[w] = G(\xi, \eta)$, where $w(\xi, \eta) = u(x(\xi, \eta), y(\xi, \eta))$, l_1 is a first-order linear differential operator, and G is a function which depends on the given PDE.
- 11. Show that the Cauchy problem

$$u_{tt} - c^2 u_{xx} = F(x, t); -\infty < x < \infty, t > 0$$

 $u(x, 0) = f(x), \qquad u_t(x, 0) = g(x); -\infty < x < \infty,$

admits at most one solution.

Unit II

12. Solve the problem

$$u_t - u_{xx} = 0; \quad 0 < x < \pi, \quad t > 0,$$

$$u(0,t) = u(\pi,t) = 0; \quad t \ge 0$$

$$u(x,0) = \begin{cases} x & ; & 0 \le x \le \pi/2 \\ \pi - x & ; & \pi/2 \le x \le \pi \end{cases}$$

- 13. Solve the Laplace equation $\Delta u = 0$ in the square $0 < x, y < \pi$, subject to the boundary condition $u(x, 0) = u(x, \pi) = 1$, $u(0, y) = u(\pi, y) = 0$.
- 14. Outline the energy method. Demonstrate the energy method for the Neumann problem for the vibrating string.

Unit III

- 15. For the homogeneous Fredholm integral equation $y(x) = \lambda \int_a^b K(x, \xi) y(\xi) d\xi$, with symmetric kernel $K(x, \xi)$, show that the characteristic functions corresponding to distinct characteristic numbers are orthogonal over (a, b).
- 16. Determine the characteristic values and characteristic functions for the equation

$$y(x) = F(x) + \lambda \int_0^{2\pi} \cos(x+\xi) \ y(\xi) \ d\xi$$

17. Write a note on Neumann series.

 $(6 \times 2 = 12 \text{ weightage})$

Part C Answer any two questions. Each question carries 5 weightage

- 18. (a) State and prove the existence and uniqueness theorem for the Cauchy problem of first order Quasilinear equations.
 - (b) Convert the equation $u_{xx} + 4u_{xy} + u_x = 0$ into a canonical form and hence find its general solution.
- 19. (a) Use the method of separation of variables to solve linear homogeneous initial boundary value problem for the wave equation.
 - (b) State and prove The weak maximum principle and The strong maximum principle.
- 20. (a) Discuss the method of solving boundary value problems using the Green's function, for the equation $p(x)y'' + p'(x)y' + q(x)y + \Phi(x) = 0$ with homogeneous boundary conditions $\alpha y + \beta y' = 0$ at the end points of the interval $\alpha \le x \le b$.
 - (b) Transform the boundary value problem y'' + xy = 1; y(0) = y(1) = 0 to the corresponding Integral equation.
- 21. (a) Analyze the problem $xuu_x + yuu_y = x^2 + y^2$; x > 0, y > 0, $u(x, 1) = \sqrt{x^2 + 1}$. using Lagrange method. Determine whether there exists a unique solution, infinitely many solutions or no solution at all. If there is a unique solution, find it; if there are infinitely many solutions, find at least two of them.
 - (b) Derive the formula $\underbrace{\int_a^x \dots \int_a^x}_{n \text{ times}} f(x) dx \dots dx = \frac{1}{(n-1)!} \int_a^x (x-\xi)^{n-1} f(\xi) d\xi$

 $(2 \times 5 = 10 \text{ weightage})$

1 7	12A	TOO	25	14
TI	M3N	120	41	14

(Pages: 3)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2020

MMT3E03 - Measure & Integration

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A

Answer ALL questions. Each question carries I weight.

- 1. Does there exist an infinite σ -algebra which has only countably many members ?
- 2. Let μ be a positive measure on a σ -algebra \mathfrak{M} and $A_1 \subseteq A_2 \subseteq A_3 \subseteq \cdots$ be sets in \mathfrak{M} . If $A = A_1 \cup A_2 \cup A_3 \cup \cdots$, then prove that $\mu(A_n) \longrightarrow \mu(A)$ as $n \longrightarrow \infty$.
- 3. Define Lebesgue integral of a measurable function over a set in a σ -algebra. If $A \subseteq B$ and $f \ge 0$, then prove that $\int_A f d\mu \le \int_B g d\mu$.
- 4. Let μ be the counting measure on the set of integers and let $E = \{1, 2, \dots, N\}$. If f(x) = x is defined on E, find $\int_E f d\mu$.
- 5. Define a complex measure μ and its total variation measure $|\mu|$. Prove that $|\mu(E)| \leq |\mu|(E)$.
- 6. Define absolute continuity of measures.

Let λ_1 and λ_2 be measures and μ be a positive measure.

If $\lambda_1 << \mu$ and $\lambda_2 << \mu$, then prove that $(\lambda_1 + \lambda_2) << \mu$.

- 7. Explain the Radon-Nykodym derivative with all necessary details.
- 8. Define "Monotone Class" and give one example.

 $8 \times 1 = 8$ Weights.

Section B

Answer any TWO questions from each unit. Each question carries 2 weights.

UNIT I

9. Define a measurable function. Let X be the set of all integers and M = {X, E, F, Φ} where E is the set of positive integers and F is the set of all integers ≤ 0. Let f : X → R be defined as f(x) = cos πx. Verify whether f is measurable or not.

- 10. State and prove Lebesgue's Monotone Convergence Theorem.
- 11. Explain the concept of "a property almost everywhere" with respect to a measure. Let (X, \mathfrak{M}, μ) be a measure space. If f = g a.e. on X, prove that $\int f d\mu = \int g d\mu$.

UNIT II

- 12. Let X be a locally compact, σ -compact Hausdorff space. Let \mathfrak{M} be a σ -algebra containing all Borel subsets of X. Let μ be a regular Borel measure on \mathfrak{M} . If $E \in \mathfrak{M}$, prove that there is an F- σ set A and a G- δ set B such that $A \subset E \subset B$ and $\mu(B-A)=0$.
- 13. For eah $n = 1, 2, 3, \cdots$ consider P_n as the set of all $x \in R^k$ whose co-ordinates are integral multiples of 2^{-n} and Ω_n as the collection of all 2^{-n} boxes with corners at points of P_n . Prove that every non-empty open set in R^k is a countable union of disjoint boxes belonging to $\Omega_1 \cup \Omega_2 \cup \Omega_3 \cup \cdots$.
- 14. Prove that the total variation measure of a complex measure is a positive measure.

UNIT III

- 15. Let (X, \mathscr{S}, μ) and $(Y, \mathscr{T}, \lambda)$ be measure spaces and f be an $\mathscr{S} \times \mathscr{T}$ -measurable function on $X \times Y$. Prove that for each $x \in X$ the function f_x defined as $f_x(y) = f(x,y)$ is a \mathscr{T} -measurable on Y.
- 16. State Fubini's theorem.
 Do the existence of both the iterated integrals guarantee the conclusion of Fubini's theorem?
 Give reason.
- 17. Let m_k denote the Lebesgue measure on R^k . If k=r+s, $r\geq 1$, $s\geq 1$. Then prove that m_k is the completion of the product measure $m_r\times m_s$.

 6×2 = 12 Weights.

Section C

Answer any TWO questions. Each question carries 5 weights.

18. a) Let f be a measurable simple function on a set X, \mathfrak{M} a σ -algebra on X, $E \in \mathfrak{M}$ and μ a measure on \mathfrak{M} . Prove that $\phi(E) = \int_E f \, d\mu$ is a measure on \mathfrak{M} .

- b) State and prove Fatou's Lemma.
- c) Give one example to show that strict inequality can hold in Fatou's Lemma.

State and prove Vitali-Carathéodory theorem.

. State and prove the Hahn decomposition theorem.

. Let (X, \mathcal{S}) and (Y, \mathcal{T}) be measurable spaces.

- a) Define the terms measurable rectangle, elementary sets, monotone class, x-section and y-section.
- b) If $E \in \mathcal{S} \times \mathcal{T}$, then prove that $E_x \in \mathcal{T}$ and $E^y \in \mathcal{S}$.
- c) Prove that $\mathscr{S} \times \mathscr{T}$ is the smallest monotone class which contains all elementary sets.

 $2 \times 5 = 10$ Weights.