

1M3N20229	(Pages: 2)	Reg. No:						
	AND THE PERSON OF THE PERSON	Name:						

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2020 MST3C11 – Applied Regression Analysis

(2019 Admission onwards)

Time: 3 hours Max. weightage: 30

PART A Answer any four (2 weightage each)

- 1. State the important properties of least square estimates in estimation of linear regression models.
- 2. Explain the effect of outliers in the linear regression model.
- 3. Define residuals and describe the role of residuals in detecting normality
- 4. Distinguish between coefficient of determination R^2 and adjusted R^2 .
- 5. Describe the concept of orthogonal polynomials.
- 6. Explain the term odds ratio.
- 7. In a Gauss-Markov model show that BLUE of a linear parametric function is unique.

 $(4 \times 2 = 8 \text{ weightage})$

PART B Answer any four (3 weightage each)

- 8. What is multicollinearity? Explain the consequences of presence of multicollinearity.
- 9. Let $Y = X\beta + \mathcal{E}$, be a general linear model with $\mathcal{E}(0, \sigma^2)$ and X be a matrix of full rank. Obtain the maximum likelihood estimate of β .
- 10 Show that the least square estimator $\hat{\beta}$ is independent of the error variance σ^2
- 11. What is autocorrelation? How do we detect it?
- 12. Distinguish between generalized least squares estimate and ordinary least squares estimate.
- 13. Find out the maximum likelihood estimates of β and σ^2 in general linear regression model.
- 14. Describe Logistic regression model.

 $(4 \times 3 = 12 \text{ weightage})$

PART C Answer any two (5 weightage each)

- 15. a)Define a multiple linear regression model. Derive the least square estimator of the regression coefficient vector and show that it is BLUE.
 - b) Find out the Crammer-Rao lower bound for the variance of unbiased estimators of β and σ^2 in general linear regression model.
- 16. a)State the assumptions in the multiple linear regression models. How do we detect the departures from underlying assumptions using residual analysis?
 - b) What are the methods for identifying non-constant variance? Explain the remedies.
- 17. a)Define stepwise regression and Mallow's C_p statistic and state its importance in regression analysis.
 - b) Describe nonparametric Regression.
- 18. a) Explain the non linear regression model. Explain the parameter estimation procedure.
 - b) Describe the Poisson regression model. Explain how to estimate the parameters of this model.

 $(2 \times 5 = 10 \text{ weightage})$

1M3N20230

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2020

MST3C12 - Stochastic Processes

(2019 Admission onwards)

Time: 3 hours

Max. weightage: 30

PART A

Answer any four (2 weightages each)

- 1. Prove that Markov chain is completely determined by the one-step TPM and the initial distribution.
- 2. Show that state i is recurrent if $\sum_{n=1}^{\infty} p_{ii}^{(n)} = \infty$ and is transient if $\sum_{n=1}^{\infty} p_{ii}^{(n)} < \infty$.
- 3. Explain Inspection Paradox in the context of a renewal process.
- 4. Bring out the relation between Poisson process and Binomial distribution.
- 5. Derive the Chapman-Kolmogorov equation.
- 6. Explain Stationary distribution with the help of an example.
- 7. Derive Poisson Process.

(4x2=8 weightages)

PART B

Answer any four (3 weightages each)

- 8. (a) Prove that the random process $X(t) = A \cos(wt + \theta)$ is wide sense stationary if it is assumed that A and w are constants and θ is uniformly distributed variable on the interval $(0,2\pi)$.
 - (b) Show that inter arrival times are exponentially distributed.
- 9. (a) Define renewal reward process.
 - (b) Show that the number of renewals by time t is greater than or equal to n if and only if the nth renewal occurs on or before time t.
- 10. (a) Stochastic process having independent increment is a Markov process. Is the converse true, justify?
 - (b)Explain Brownian motion process?
- 11. (a)Explain Stopping Time
 - (b)Distinguish between open and closed systems.

- 12. (a)Define linear death process.
 - (b)Derive the steady state probabilities of M/M/1 model.
- 13. (a) Show that the renewal function $m(t) = \sum_{n=1}^{\infty} F_n(t), \forall t$, where $F_n(t) = P(S_n \le t), n \ge 1, \forall t$.
 - (b) Write down the steady state equations of Erlang's Loss system.
- 14. (a) Let $\{X_n, n = 1, 2, ...\}$ be a four step Markov chain with one step TPM

$$\begin{bmatrix} 0.5 & 0 & 0.5 & 0 \\ 0 & 0.5 & 0 & 0.5 \\ 0.5 & 0 & 0.5 & 0 \\ 0 & 0.5 & 0 & 0.5 \end{bmatrix}$$
. Find the periodicities of the states.

[0 0.5 0 0.5]

(b) What do you mean by queue? Briefly explain Kendall's Notation

(4x3=12 weightages)

PART C Answer any two (5 weightages each)

- 15. (a) Derive Pollock-Kinchins formulae.
 - (b) Show that the renewal function satisfies renewal equation.
- 16. (a) State and prove elementary renewal theorem.
 - (b) Define Stochastic processes and its various states with the help of examples.
- 17. (a) Establish the relation between probability generating functions of off spring random variable and nth generation size in Galton –Watson branching Process.
 - (b) Derive its mean and variance.
- 18. (a) Explain the transient behaviour of M/M/S model.
 - (b) Derive the limiting probabilities of a Birth-Death process.

 $(2 \times 5 = 10 \text{ weightages})$

at

1	M	12	N	7	N	7	2	1
	TV	J	TA	4	U	4	J	J

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2020

MST3E02 - Time Series Analysis

(2019 Admission onwards)

Time: 3 hours

Max. weightage: 30

Part A

(Answer any Four the questions. Weightage 2 for each question)

- 1. Explain the relationship between a time series and a stochastic process.
- 2. State different components of a time series.
- 3. Define Autoregressive process of order one.
- 4. Describe the stationary and invertibility conditions of a MA(1) model.
- 5. What is the importance of diagnostic checking in time series modelling?
- 6. Derive the expression for 2-step ahead forecast equation of an AR(1) model.
- 7. Give any two examples for non-linear models in time series analysis.

 $(4 \times 2=8 \text{ weightage})$

Part B (Answer any Four questions. Weightage 3 for each question)

- 8. Distinguish between weak stationarity and strict stationarity of a time series.
- 9. Explain how will you estimate seasonality in given time series. How will you test for seasonality?
- 10. Show that the unconditional mean of a time series y_t that can be described by the AR(1) model $y_t \mu = \varphi_1(y_{t-1} \mu) + \varepsilon_t$ is equal to μ when $|\varphi_1| < 1$.
- 11. Derive the stationarity conditions for an AR(2) process.
- 12. Explain forecasting of time series using minimum mean square error method.
- 13. State TRUE or FALSE with reason for the following statements:
 - i) If $\{X_i\}$ is a weakly stationary time series, then X_5 and X_7 are identically distributed.
 - ii) If $\{W_i\}$ is a white noise, then W_i and W_j are always independently distributed for $i \neq j$.
- 14. Define GARCH(1,1) model and describe any two properties of GARCH(1,1) model.

 $(4 \times 3=12 \text{ weightage})$

Part C. (Answer any TWO questions. Weightage 5 for each question)

- 15. Discuss the following: (i) Moving Average Smoothing (ii) Holt-Winter Smoothing
- 16. Explain the steps involved in ARIMA(p,d,q) model identification procedure.
- 17. Discuss the maximum likelihood estimation procedure for ARMA(1,1) model.
- 18. Briefly explain: (i) Herglotz Theorem (ii) Periodogram analysis (iii) correlogram analysis.

(2 x 5=10 weightage)

28

1M.	3N2	0232

Annual Control of the	
(Pages	7)
(rages	4)

Reg.	No:												
Nam	e:							2					

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2020

MST3E05 - Lifetime Data Analysis

(2019 Admission onwards)

Time: 3 hours

Max. weightage: 30

Part A

Short Answer Type questions (Answer any four questions. Weightage 2 for each question)

- 1. Define hazard rate. Show that the hazard rate determines the distribution uniquely.
- 2. Discuss type I censoring
- 3. What is the significance of p-p plots in Survival Analysis?
- 4. What is the Nelson-Aalen estimate of cumulative hazard function
- 5. What are threshold parameters? Explain.
- 6. Give the density function, hazard rate and survivor function of log-logistic distribution.
- 7. Justify Cox likelihood as a partial likelihood.

 $(4 \times 2 = 8 \text{ weightage})$

Part B

Short Essay Type/ problem solving type questions (Answer any four questions. Weightage 3 for each question)

- 8. What is mean residual life function? Obtain its relationship with hazard rate. Also show that the mean residual life function uniquely determines the distribution.
- 9. Discuss Kaplan Meier method for obtaining estimate of the survival function.
- 10. Explain the standard life table methods.
- 11. Discuss estimation of two parameter Weibull distribution, when some of the observations are censored.
- 12. Discuss estimation of μ and σ^2 of lognormal distribution for samples without censored observation
- 13. Explain how regression models can be used for comparing or testing the equality of two distributions.
- 14. Explain Gehan's generalized Wilcoxon test

 $(4 \times 3 = 12 \text{ weightage})$

Part C Long Essay Type questions (Answer any two questions. Weightage 5 for each question)

- 15. Describe the general formulation of right censoring and also derive the likelihood function.
- 16. Discuss likelihood ratio test for comparing two survival distributions which follow exponential model with parameters λ_1 and λ_2 respectively
- 17. Explain exponential regression model and Weibull regression model. Show that it is a special case proportional hazards model.
- 18. Explain the linear rank tests for comparing different distributions.

 $(2 \times 5 = 10 \text{ weightage})$