-	20
Dagge	11
(Pages	41
1-	- A

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc. Chemistry Degree Examination, November 2019 MCHE3B09 - Molecular Spectroscopy

(2018 Admission onwards)

Time: 3 hours

Max. Weightage: 36

PART A

(Answer all questions. Each question carries 1 weightage)

- 1. Write a note on the use of Karplus equation in determination of vicinal coupling constant.
- 2. Explain the relevance of Heisenberg's uncertainty principle in predicting the line width of spectrum.
- 3. Explain cotton effect.
- 4. What do you mean by 'Doppler broadening'?
- 5. On the basis of Woodward-Fieser rules, calculate the expected position of absorption maximum for the following compounds:

- 6. Derive an expression for J_{max} for the rigid rotor.
- 7. What is the use of DEPT ¹³C NMR spectra in structure determination of molecules?
- 8. Describe the effect of hydrogen bonding on vibration frequency with a suitable example.
- 9. State and explain Frank Condon principle?
- 10. What is meant by metastable ion peak in mass spectra?
- 11. Explain the term g-factor in ESR.
- 12. How will you confirm the conversion of benzene to cyclohexane with ¹H NMR and ¹³C NMR spectroscopy?

 $(12 \times 1 = 12 \text{ weightage})$

PART B

(Answer any 8 questions. Each question carries 2 weightage)

- 13. (a) The position of absorption of acetone varies in different solvents: 279 nm (hexane), 272 nm (Ethanol) and 264.5 nm (water). Explain.
 - (b) By taking suitable example explain how *cis* and *trans* isomers can be distinguished by UV spectroscopy.

- 14. Explain the factors contributing to chemical shift in NMR spectroscopy.
- 15. Write a critical note on Nuclear Overhauser Effect in NMR spectroscopy.
- 16. Give a brief account of the zero-field splitting in EPR spectrometry with proper example.
- 17. Outline the principle of Mossbauer spectroscopy. Explain the application of this technique in the characterization of compounds.
- 18. Discuss any two methods used for simplification of second order NMR spectra.
- 19. Discuss the basic principles of CD and ORD spectrometry.
- 20. How will you monitor the following reaction sequence by IR spectroscopy.

- 21. Give an account of different relaxation methods in NMR spectroscopic technique.
- 22. Explain the importance of isotope peaks in MS for structural elucidation.
- 23. Explain the effect of degeneracy on intensity of lines in rotational spectrum.
- 24. Briefly discuss the rotation spectrum of symmetric top molecule.

 $(8 \times 2 = 16 \text{ weightage})$

PART C

(Answer any 2 questions. Each question carries 4 weightage)

- 25. (a) Explain McLafferty rearrangement in mass spectrometry. (2 wt)
 - (b) The mass spectrum of 4-methyl-1-hexene shows intense peak at m/z 57 and m/z 41. What fragmentation reaction account for these peaks? (2 wt)
- 26. Explain how 2D correlated spectroscopy is helpful in structural determination of molecules.
- 27. (i) Discuss the Quantum theory of Raman effect. Explain the criterion for the molecule to be Raman active.(2wt)
 - (ii) What are normal modes of vibration of polyatomic molecule? Explain fundamental, overtone and combination bands.(2wt)
- 28. A compound exhibits the following spectral properties. Suggest the structure of the compound and explain the spectral data.

MF: C₇H₁₂O₃; IR (cm⁻¹): 1734, 1720.

¹HNMR (δ, ppm): 4.2 (2H, q); 2.8 (2H, t); 2.6 (2H, t); 2.2 (3H, s); 1.2 (3H, t).

¹³C NMR (δ, ppm): 205.3, 172.5, 60.8, 38.02, 28.2, 26.4, 12.1.

 $(2 \times 4 = 8 \text{ weightage})$

1M3N19136

(Pages: 2)

Reg. No:....

Name: .

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc. Chemistry Degree Examination, November 2019 MCHE3B10 – Organometallic & Bioinorganic Chemistry

(2018 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Section A (Answer all questions. Each question has 1 weightage)

- 1. Determine metal-metal bond order using 18 electron rule? A) $Mn_2(CO)_5$ B) $[(\Pi^5 - Cp)Fe(CO)_2]_2$ C) $[Pt(CO)_3]_2^{2+}$
- 2. Even through [W(CO)₃ (PCy₃)₂] is a 16 VE species but it is stable. Account for the stability?
- 3. Specify the hapticities of the cyclopentadienyl ligand in Cp₂W(CO)₂
- 4. Identify which molecular orbitals of a butadiene moiety engage in π -interaction with a suitable d orbital of a metal in a η 4-metal allyl complex?
- 5. Predict the product of the reaction

- 6. Comment on the number of π -electrons present in the cyclobutadiene moiety of a metal cyclobutadiene complex.
- 7. Draw the structure of Fe₂(CO)₉ and Mn₂(CO)₁₀
- 8. What are Zintl ions? Give examples?
- 9. What is the function of SOD?
- 10. Indicate the oxidation state of the copper ions and of the O2 ligand in oxyhemocyanin.
- 11. What single method: mass spec, UV-vis, NMR, microwave, or IR/Raman spectroscopy, would be best suited to verify the oxidation state of the O₂ ligand in oxyhemocyanin?
- 12. Write short notes on anticancer drugs?

(12x1=12Weightage)

Section B (Answer any 8 questions. Each question carries 2 Weightage)

- 13. Predict which of the complexes [V(CO)₆], [Cr(CO)₆], and [Mn(CO)₆]⁺ has the shortest C-O bond? Explain?
- 14. Briefly explain Collman's reagent?
- 15. Sketch the pi molecular orbitals for the following. a)CO b) cyclobutadiene
- 16. The ¹H NMR spectrum of $(C_5H_5)_2Fe(CO)_2$ shows two peaks of equal area at room temperature but has four resonances of relative intensity 5:2:2:1 at low temperaturs. Explain.
- 17. Explain Ziegler-Natta polymerizations
- 18. Explain Fischer-Tropsch process and water gas shift reaction.
- 19. Write short notes on Wade-Mingos-Lauher rules
- 20. What are the functions of Cytochrome P-450, catalase and peroxidase
- 21. Explain the term cooperativity in oxygen binding by haemoglobin.
- 22. Explain O₂ binding in hemerythrin.
- 23. Graphically compare the O2 affinity of haemoglobin and myoglobin.
- 24. Explain the iron binding by transferrin.

(8x2=16Weightage)

Section C (Answer any 2 questions. Each question carries 4 weightage)

- 25. Explain synthesis, structure ad bonding in ferrocene.
- 26. Explain the bonding in [Re₂Cl₈]²-
- 27. Explain the mechanism of Wacker process, Monsanto acetic acid process.
- 28. A) Explain Lewis acid role of Zn(II) and Mn(II)containing enzymes
 B) Write short notes on Carboxypeptidase

(2 x 4=8 Weightage)

1M3N19137

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc. Chemistry Degree Examination, November 2019 MCHE3B11 - Organic Transformation & Reagents

(2018 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Section A Answer all questions Each question carries a Weightage of 1.

- 1. What is Dess Martin Oxidation?
- 2. Give an example for Riley oxidation reaction.
- 3. Explain MPV reduction.
- 4. Illustrate the reduction reaction of carbonyl compounds with hydrazine using an example.
- 5. What is Gilmans reagent.
- 6. What is the product obtained for following reaction

R—CH—COOH
$$\xrightarrow{\text{NBS}}$$
 ?

- 7. How is 2-Acetylpyrrole obtained from pyrrole?
- 8. Predict the product Quinoline Fuming H₂SO₄
- 9. What are the advantages of Microwave reactions?
- 10. What are the different tools used for Green synthesis?
- 11. Give the structure and numbering of Cholesterol.
- 12. Suggest an example for a sesquiterpene and a diterpene.

(12x1=12 Weightage)

SECTION B

Answer any eight questions Each question carries a Weightage of 2.

13. What are A and B?

- 14. Explain Swern oxidation with mechanism.
- 15. Suggest reagent and mechanism for the conversion of benzophenone to diphenylmethane
- 16. Write a short note on Bouvealt-Blanc reduction.
- 17. Write one synthetic application of Crown ether and Baker's Yeast.
- 18. Indicate the difference in reactivity given by LiAlH4 and NaBH4.
- 19. Explain Fischer Indole synthesis with mechanism.
- 20. Suggest a synthetic approach for the preparation of Guanine.
- 21. Outline any one synthetic method for the preparation of Oxirane and Oxazole.
- 22. Suggest Green and Classical synthetic methods for Grignard reactions.
- 23. How are Steroids classified?
- 24. Write a short note on Flavonoids.

(8x2=16 Weightage)

SECTION C

Answer any two questions Each question carries a Weightage of 4.

- 25. Write a note on the following
 - a) Oxidative cleavage of alkene.
 - b) Baeyer-Villiger oxidation.
- 26. Explain McMurry coupling and Shapiro reaction.
- 27. Compare Aldol condensation and Cannizaro reactions with respect to Green and Classical reactions.
- 28. What is Mitsunobu reaction? Explain its mechanism.

(2x4=8 Weightage)

Reg. No:.... Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc. Chemistry Degree Examination, November 2019

MCHE3E01 - Synthetic Organic Chemistry

(2018 Admission onwards) Time: 3 hours

Max. Weightage: 36

Section A (Answer all questions. Each question carries 1 Weightage)

- 1. Write down any two synthetic applications of Gilmann's reagent.
- 2. Write the product of the following reactions

(B) CH₃-(CH₂)₇-CH=CH(CH₂)₇-COOH
$$\frac{RuO_4}{NaoCl}$$
 \longrightarrow

3. What are the major products formed in the following reaction conditions?

- How linear synthesis differ from convergent synthesis in retro synthetic chemistry? 4.
- Give the method of synthesis of 1-Phenylbutan-1-one from bromopropane.
- Draw the product of the reaction with the enamine prepared from cyclopentanone and 5. pyrrolidine, and the following molecules

- 7. What is the disadvantage of using THP group for the protection of hydroxyl group?
- 8. Write the reagents for the following conversions

- 9. Explain the term 'chemo selectivity' with an example
- 10. Write two important reactions where palladium catalyst can be used for C-N bond formation
- 11. Phosphonium ylids give alkenes while sulfonium ylids give epoxides, during their reaction with cyclic ketones. Comment.
- 12. Write down the product of the following reaction

OH
$$N_2H_4$$
, H_2O_2
 CH_3CO_2H , 4 h, rt (12x1=12Weightage)

Section B (Answer any 8 questions. Each question carries 2 Weightage)

- 13. What is alkene metathesis? Write the mechanism of alkene metathesis.
- 14. Propose retrosynthetic analysis of the following two compounds. Your answer should include both the synthons and the reagents that would be employed in the actual synthesis.

- 15. Explain Robinson's annulation with suitable mechanism.
- 16. Discuss the synthesis and reactions of Oxadiazole.
- 17. Write any four synthetic uses of tri n-butyl tin hydride.
- 18. Explain the use of 1,3 Dithiane as an acyl equivalent.
- 19. What are the synthetic applications of Phase transfer catalyst ?

 Propose suitable catalyst, oxidising agent and proper mechanism for the following conversions

(A)
$$CH_3$$
 H_3C H_3C OH OH OH

21. Write down the suitable catalyst and co catalyst in the following reaction and propose mechanism for the same

- 22. Write down in detail about the one group C-X disconnections.
- 23. Explain the steps involved in the synthesis of vitamin D from D-Glucose.
- 24. Discuss the advantages of NaBH₄ over LAH in synthetic organic chemistry

(8x2=16Weightage)

Section C (Answer any 2 questions. Each question carries 4 weightage)

- 25. Discuss the Negishi, Heck, Stille and Suzuki palladium catalysed C-C bond forming reactions along with their mechanisms by giving at least one example for each reactions.
- 26. Explain the following reactions with suitable mechanisms
 - (a)Oppenauer oxidation

(b)Mannich reaction

(c) Swern oxidation

(d) Birch reduction

- 27. What are Protecting groups? Discuss briefly on protection and deprotection of amino and carboxyl group
- 28. Write down the synthetic uses of the following reagents

(a) Benzene Tricarbonyl Chromium

(b)Pd/CaCO3 poisoned with Sulphur

(c) periodic acid

(d) lead tetra acetate

(2x4=8Weightage)