1M3N18201	(Pages: 3)	Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2018

MT3C14 - FUNCTIONAL ANALYSIS

(2017 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

PART A

Answer all questions (Each question has Weightage 1.)

- 1. Show that $d_p(x, y) = \left(\sum_{j=1}^{\infty} |x(j) y(j)|^p\right)^{\frac{1}{p}}$ defines a metric on ℓ^p .
- 2. Prove that d is stronger than d' if and only if any subset of X which is open with respect to d' is also open with respect to d.
- 3. Give an example for an incomplete normed space.
- 4. If (x_n) and (y_n) are sequences in a metric space (X, d) converging to x and y respectively. Show that the sequence $(d(x_n, y_n)) \rightarrow d(x, y)$ in R with usual metric.
- 5. Justify: Completeness is not preserved under homeomorphisms.
- 6. Show that a normed space has no proper, open subspaces.
- 7. If X is a normed space over K and if $x_1, x_2 \in X$ with $x_1 \neq x_2$. Then show that there exists a $g \in X'$ such that $g(x_1) \neq g(x_2)$.
- 8. Give an example for a closed map which is not continuous.
- 9. If X is a normed space and if Z is a closed subspace of X, then show that the quotient map Q from X to X \ Z is continuous and open.
- 10. Prove that c_{00} is not a Banach space under any norm.
- 11. In an inner product space X, prove that for all $x, y \in X$,

$$||x+y||^2 + ||x-y||^2 = 2 (||x||^2 + ||y||^2).$$

- 12. Show that among all the *p*-norms, $\|.\|_p$ $1 \le p \le \infty$, on K^n $(n \ge 2)$, only the norm $\|.\|_2$ is induced by an inner product.
- 13. If $\{x_1, ..., x_n\}$ is an orthogonal set in an inner product space X, then show that $\|x_1 + x_2 + ... + x_n\|^2 = \|x_1\|^2 + \|x_2\|^2 + ... + \|x_n\|^2$.
- 14. Define an orthonormal basis for a Hilbert space.

1M3N18201	(Pages: 3)	Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2018

MT3C14 - FUNCTIONAL ANALYSIS

(2017 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

PART A

Answer all questions (Each question has Weightage 1.)

- 1. Show that $d_p(x, y) = \left(\sum_{j=1}^{\infty} |x(j) y(j)|^p\right)^{\frac{1}{p}}$ defines a metric on ℓ^p .
- 2. Prove that d is stronger than d' if and only if any subset of X which is open with respect to d' is also open with respect to d.
- 3. Give an example for an incomplete normed space.
- 4. If (x_n) and (y_n) are sequences in a metric space (X, d) converging to x and y respectively. Show that the sequence $(d(x_n, y_n)) \rightarrow d(x, y)$ in R with usual metric.
- 5. Justify: Completeness is not preserved under homeomorphisms.
- 6. Show that a normed space has no proper, open subspaces.
- 7. If X is a normed space over K and if $x_1, x_2 \in X$ with $x_1 \neq x_2$. Then show that there exists a $g \in X'$ such that $g(x_1) \neq g(x_2)$.
- 8. Give an example for a closed map which is not continuous.
- 9. If X is a normed space and if Z is a closed subspace of X, then show that the quotient map Q from X to X \ Z is continuous and open.
- 10. Prove that c_{00} is not a Banach space under any norm.
- 11. In an inner product space X, prove that for all $x, y \in X$,

$$||x+y||^2 + ||x-y||^2 = 2 (||x||^2 + ||y||^2).$$

- 12. Show that among all the *p*-norms, $\|.\|_p$ $1 \le p \le \infty$, on K^n $(n \ge 2)$, only the norm $\|.\|_2$ is induced by an inner product.
- 13. If $\{x_1, ..., x_n\}$ is an orthogonal set in an inner product space X, then show that $\|x_1 + x_2 + ... + x_n\|^2 = \|x_1\|^2 + \|x_2\|^2 + ... + \|x_n\|^2$.
- 14. Define an orthonormal basis for a Hilbert space.

PART B

Answer any seven questions (Each question has Weightage 2)

- 15. State and prove Minkowski's inequality for scalar sequences.
- 16. Show that for $1 \le p < \infty$, the space $L^p(E)$ is complete ,where E is a measurable subset of R.
- 17. If x is a continuous K valued function on $[-\pi, \pi]$ such that $x(\pi) = x(-\pi)$. Then prove that the sequence of arithmetic means of the partial sums of the Fourier series of x converges to x uniformly on $[-\pi, \pi]$.
- 18. State and prove Riesz Lemma.
- 19. Show that a normed space X is a Banach space if and only if every absolutely summable series of elements in X is summable in X.
- 20. If X is a normed space and Y is a closed subspace of X. Then show that X is a Banach space if and only if Y and and X/Y are Banach spaces in the induced norm and the quotient norm, respectively.
- 21. If a normed space X has a Schauder basis, then prove that X is separable.
- 22. State open mapping theorem. Give examples to show that completeness condition on X and Y cannot be dropped in open mapping theorem.
- 23. In an inner product space X, prove that for all $x, y \in X$,

$$4\langle x,y\rangle = \langle x+y,x+y\rangle - \langle x-y,x-y\rangle + i\langle x+iy,x+iy\rangle - i\langle x-iy,x-iy\rangle .$$

24. If X is a Hilbert space and if $\{u_1, u_2, \dots, J\}$ is a countable orthonormal set in X, and $k_1, k_2, \dots \in K$ such that $\sum_n |k_n|^2 < \infty$, then prove that $\sum_n k_n u_n$ converges in X.

 $(7 \times 2 = 14 \text{ Weightage})$

PART C

Answer any two questions (Each question has Weightage 4)

- 25. (a). If X is a complete metric space, then show that the intersection of a countable number of dense open subsets of X is dense in X.
 - (b). Give an example to show that, in a non-complete metric space, the intersections of a denumerable number of dense open subsets need not be dense.
- 26. For any normed space X, prove that: For every subspace Y of X and every g in Y' there is a unique Hahn-Banach extension of g to X if and only if X' is *strictly convex*, that is, for $f_1 \neq f_2$ in X' with $||f_1|| = 1 = ||f_2||$, we have $||f_1 + f_2|| < 2$
- 27. (a) State and prove uniform boundedness principle.
 - (b) Give an example to show that we cannot drop the completeness condition on $\, X \,$ in the uniform boundedness principle.
- 28. State and prove Bessel's inequality. Deduce Schwarz inequality from Bessel's inequality.

 $(2 \times 4 = 8 \text{ Weightage})$

PART B

Answer any seven questions (Each question has Weightage 2)

- 15. State and prove Minkowski's inequality for scalar sequences.
- 16. Show that for $1 \le p < \infty$, the space $L^p(E)$ is complete ,where E is a measurable subset of R.
- 17. If x is a continuous K valued function on $[-\pi, \pi]$ such that $x(\pi) = x(-\pi)$. Then prove that the sequence of arithmetic means of the partial sums of the Fourier series of x converges to x uniformly on $[-\pi, \pi]$.
- 18. State and prove Riesz Lemma.
- 19. Show that a normed space X is a Banach space if and only if every absolutely summable series of elements in X is summable in X.
- 20. If X is a normed space and Y is a closed subspace of X. Then show that X is a Banach space if and only if Y and and X/Y are Banach spaces in the induced norm and the quotient norm, respectively.
- 21. If a normed space X has a Schauder basis, then prove that X is separable.
- 22. State open mapping theorem. Give examples to show that completeness condition on X and Y cannot be dropped in open mapping theorem.
- 23. In an inner product space X, prove that for all $x, y \in X$,

$$4\langle x,y\rangle = \langle x+y,x+y\rangle - \langle x-y,x-y\rangle + i\langle x+iy,x+iy\rangle - i\langle x-iy,x-iy\rangle .$$

24. If X is a Hilbert space and if $\{u_1, u_2, \dots, J\}$ is a countable orthonormal set in X, and $k_1, k_2, \dots \in K$ such that $\sum_n |k_n|^2 < \infty$, then prove that $\sum_n k_n u_n$ converges in X.

 $(7 \times 2 = 14 \text{ Weightage})$

PART C

Answer any two questions (Each question has Weightage 4)

- 25. (a). If X is a complete metric space, then show that the intersection of a countable number of dense open subsets of X is dense in X.
 - (b). Give an example to show that, in a non-complete metric space, the intersections of a denumerable number of dense open subsets need not be dense.
- 26. For any normed space X, prove that: For every subspace Y of X and every g in Y' there is a unique Hahn-Banach extension of g to X if and only if X' is *strictly convex*, that is, for $f_1 \neq f_2$ in X' with $||f_1|| = 1 = ||f_2||$, we have $||f_1 + f_2|| < 2$
- 27. (a) State and prove uniform boundedness principle.
 - (b) Give an example to show that we cannot drop the completeness condition on $\, X \,$ in the uniform boundedness principle.
- 28. State and prove Bessel's inequality. Deduce Schwarz inequality from Bessel's inequality.

 $(2 \times 4 = 8 \text{ Weightage})$

Answer any seven questions. Each question carries 2 weights.

- 15. Let Ω be the set of all invertible linear operators on \mathbb{R}^n . Show that the mapping $A \to A^{-1}$ is continuous on Ω .
- 16. Let $f: E \to \mathbb{R}^m$, where E be an open subset of \mathbb{R}^n . Define the total derivative f'(x) of f at $x \in E$ and show that it is unique.
- 17. Let $f: E \to \mathbf{R}$, E open subset of \mathbf{R}^n and let $u \in \mathbf{R}^n$ be a unit vector. Show that $(D_u \ f)(x) = (\nabla f)(x)$. u.
- 18. If X is a complete metric space and if φ is a contraction of X into X, then show that φ has a unique fixed point.
- 19. Show that the total signed curvature of a closed plane curve is an integer multiple of 2π .
- 20. If $f: S_1 \to S_2$ is a diffeomorphism then show that $D_p f: T_p S_1 \to T_{f(p)} S_2$ is invertible.
- 21. Let $\sigma(u, v)$ be a surface patch with unit normal N(u, v). Show that N_u . $\sigma_u = -L$ and N_v . $\sigma_v = -N$.
- 22. For a unit speed curve r show that \ddot{r} is a linear combination of N and $N \times \dot{r}$.
- 23. Show that $\kappa^2 = \kappa_n^2 + \kappa_g^2$.
- 24. If κ_1 and κ_2 are the principal curvatures of a surface. Show that the Gaussian curvature $\kappa = \kappa_1 \kappa_2$.

 $(7 \times 2 = 14 \text{ weightage})$

Part C Answer any two. Each question carries 4 weights

25. State Implicit Function Theorem and show that the system of equations

$$3x + y - z + u^{2} = 0$$

 $x - y + 2z + u = 0$
 $2x + 2y - 3z + 2u = 0$

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x; but not for x, y, z in terms of u.

26. State Inverse Function Theorem and for the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

 $f(x, y) = (e^x \cos y, e^x \sin y)$ show that

- a) f is locally one to one on \mathbb{R}^2 but not one to one in \mathbb{R}^2
- b) for $a = (0, \pi/3)$, b = f(a), let g be the continuous inverse of f, defined in a neighborhood of b such that g(b) = a.
- 27. Let U and \widetilde{U} be open subsets of \mathbf{R}^2 and $\sigma \colon U \to \mathbf{R}^2$ be a regular surface patch.

Let $\varphi : \widetilde{U} \to U$ be a bijective smooth map with smooth inverse.

Show that $\tilde{\sigma} = \sigma_0 \varphi \colon \tilde{U} \to \mathbb{R}^3$ is a regular surface patch.

28. Let $\sigma: U \to \mathbb{R}^3$ be a patch of a surface S containing a point $p \in S$, and let (u, v) be coordinates in U. Show that the tangent space to S at p is spanned by σ_u , $\dot{\sigma}_v$.

Answer any seven questions. Each question carries 2 weights.

- 15. Let Ω be the set of all invertible linear operators on \mathbb{R}^n . Show that the mapping $A \to A^{-1}$ is continuous on Ω .
- 16. Let $f: E \to \mathbb{R}^m$, where E be an open subset of \mathbb{R}^n . Define the total derivative f'(x) of f at $x \in E$ and show that it is unique.
- 17. Let $f: E \to \mathbf{R}$, E open subset of \mathbf{R}^n and let $u \in \mathbf{R}^n$ be a unit vector. Show that $(D_u \ f)(x) = (\nabla f)(x)$. u.
- 18. If X is a complete metric space and if φ is a contraction of X into X, then show that φ has a unique fixed point.
- 19. Show that the total signed curvature of a closed plane curve is an integer multiple of 2π .
- 20. If $f: S_1 \to S_2$ is a diffeomorphism then show that $D_p f: T_p S_1 \to T_{f(p)} S_2$ is invertible.
- 21. Let $\sigma(u, v)$ be a surface patch with unit normal N(u, v). Show that N_u . $\sigma_u = -L$ and N_v . $\sigma_v = -N$.
- 22. For a unit speed curve r show that \ddot{r} is a linear combination of N and $N \times \dot{r}$.
- 23. Show that $\kappa^2 = \kappa_n^2 + \kappa_g^2$.
- 24. If κ_1 and κ_2 are the principal curvatures of a surface. Show that the Gaussian curvature $\kappa = \kappa_1 \kappa_2$.

 $(7 \times 2 = 14 \text{ weightage})$

Part C Answer any two. Each question carries 4 weights

25. State Implicit Function Theorem and show that the system of equations

$$3x + y - z + u^{2} = 0$$

 $x - y + 2z + u = 0$
 $2x + 2y - 3z + 2u = 0$

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x; but not for x, y, z in terms of u.

26. State Inverse Function Theorem and for the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by

 $f(x, y) = (e^x \cos y, e^x \sin y)$ show that

- a) f is locally one to one on \mathbb{R}^2 but not one to one in \mathbb{R}^2
- b) for $a = (0, \pi/3)$, b = f(a), let g be the continuous inverse of f, defined in a neighborhood of b such that g(b) = a.
- 27. Let U and \widetilde{U} be open subsets of \mathbf{R}^2 and $\sigma \colon U \to \mathbf{R}^2$ be a regular surface patch.

Let $\varphi : \widetilde{U} \to U$ be a bijective smooth map with smooth inverse.

Show that $\tilde{\sigma} = \sigma_0 \varphi \colon \tilde{U} \to \mathbb{R}^3$ is a regular surface patch.

28. Let $\sigma: U \to \mathbb{R}^3$ be a patch of a surface S containing a point $p \in S$, and let (u, v) be coordinates in U. Show that the tangent space to S at p is spanned by σ_u , $\dot{\sigma}_v$.

1M3N18203	(Pages : 2)	Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Degree Examination, November 2018 MT3C12 - Multivariable Calculus and Geometry

(2017 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

Part A

Answer all questions. Each question carries 1 weight.

- 1. Let $A \in L(\mathbb{R}^2)$, $B \in L(\mathbb{R}^2)$. Then AB need not be same as BA. True or False. Justify.
- 2. Let Ω be the set of all invertible linear operators on \mathbf{R}^n . If $A \in \Omega$, $B \in L(\mathbf{R}^n)$ and $\|B A\| \cdot \|A^{-1}\| < 1$ then show that $B \in \Omega$.
- 3. Let $U = \{(x, y) \in \mathbb{R}^2 / y > 0\}$. Give an example of a differentiable function $f: U \to \mathbb{R}^3$ and find f'(1,2).
- and find f'(1,2).

 4. Let $f: \mathbb{R}^2 \to \mathbb{R}$ be defined by $f(x,y) = \begin{cases} \frac{x^3 y^3}{x^2 + y^2} ; \text{ for } (x,y) \neq (0,0) \\ 0 & \text{at } (0,0) \end{cases}$

Find partial derivatives of f at (0,0).

- 5. Check whether $f: [-1,1] \rightarrow \mathbf{R}$ by $f(x) = x^2$ is a contraction or not.
- 6. A: $\mathbb{R}^4 \to \mathbb{R}^3$ defined by $A(x_1, y_1, y_2, y_3) = (x_1 + y_3, y_1 + y_3, y_2 + y_3)$. Write down the linear map A_y and check whether A_y is invertible or not.
- 7. Show that any reparametrization of a regular curve is regular.
- 8. Let r be a regular curve and let \tilde{r} be a unit speed reparametrization of r, \tilde{r} (u(t)) = r(t) for all t, where u is a smooth function of t. Show that $u = \pm s + c$ where s is the arc length of r starting at any point and c is a constant.
- 9. Define a surface in \mathbb{R}^3 and give an example.
- 10. Let $f: S_1 \to S_2$ be smooth between the surfaces. Define the derivative Dpf of f at $p \in S_1$.
- 11. Find the first fundamental form of $\sigma(u, v) = (\cosh u, \sinh u, v)$.
- 12. For a unit speed curve r on an oriented surface S show that the normal curvature is $\langle \dot{r}, \dot{r} \rangle$.
- 13. Show that a point p is an umbilic point of a surface S if and only if the Weingarten map is a scalar multiple of the identity map.
- 14. Compute the second fundamental form of the coordinate patch $\sigma(u, v) = a + up + vq$ where a is a point on the plane and p, q are two unit vectors that are parallel to the plane and perpendicular to each other.

 $(14 \times 1 = 14 \text{ weightage})$

Answer any seven questions. Each question carries 2 weights.

- 15. Let Ω be the set of all invertible linear operators on \mathbb{R}^n . Show that the mapping $A \to A^{-1}$ is continuous on Ω .
- 16. Let $f: E \to \mathbb{R}^m$, where E be an open subset of \mathbb{R}^n . Define the total derivative f'(x) of f at $x \in E$ and show that it is unique.
- 17. Let $f: E \to \mathbb{R}$, E open subset of \mathbb{R}^n and let $u \in \mathbb{R}^n$ be a unit vector. Show that $(D_u f)(x) = (\nabla f)(x)$. u.
- 18. If X is a complete metric space and if φ is a contraction of X into X, then show that φ has a unique fixed point.
- 19. Show that the total signed curvature of a closed plane curve is an integer multiple of 2π .
- 20. If $f: S_1 \to S_2$ is a diffeomorphism then show that $D_p f: T_p S_1 \to T_{f(p)} S_2$ is invertible.
- 21. Let $\sigma(u, v)$ be a surface patch with unit normal N(u, v). Show that N_u . σ_u = L and N_v . σ_v = N.
- 22. For a unit speed curve r show that \ddot{r} is a linear combination of N and $N \times \dot{r}$.
- 23. Show that $\kappa^2 = \kappa_n^2 + \kappa_g^2$.
- 24. If κ_1 and κ_2 are the principal curvatures of a surface. Show that the Gaussian curvature $\kappa = \kappa_1 \kappa_2$.

 $(7 \times 2 = 14 \text{ weightage})$

Part C Answer any two. Each question carries 4 weights

25. State Implicit Function Theorem and show that the system of equations

$$3x + y - z + u^{2} = 0$$

 $x - y + 2z + u = 0$
 $2x + 2y - 3z + 2u = 0$

can be solved for x, y, u in terms of z; for x, z, u in terms of y; for y, z, u in terms of x; but not for x, y, z in terms of u.

- 26. State Inverse Function Theorem and for the function $f: \mathbb{R}^2 \to \mathbb{R}^2$ defined by
 - $f(x, y) = (e^x \cos y, e^x \sin y)$ show that
 - a) f is locally one to one on \mathbb{R}^2 but not one to one in \mathbb{R}^2
 - b) for $a = (0, \pi/3)$, b = f(a), let g be the continuous inverse of f, defined in a neighborhood of b such that g(b) = a.
- 27. Let U and \widetilde{U} be open subsets of \mathbb{R}^2 and $\sigma: U \to \mathbb{R}^2$ be a regular surface patch.

Let $\phi:\widetilde{\mathcal{U}}\to U$ be a bijective smooth map with smooth inverse.

Show that $\tilde{\sigma} = \sigma_0 \varphi \colon \tilde{U} \to \mathbb{R}^3$ is a regular surface patch!

28. Let $\sigma: U \to \mathbb{R}^3$ be a patch of a surface S containing a point $p \in S$, and let (u, v) be coordinates in U. Show that the tangent space to S at p is spanned by σ_u , σ_v .

	-				
-	- 1	31	100	03	00
- 1	100	1		~ /	13 /

(Pages: 2)	Reg. No:
	Name:

FAROOK COLLEGE (AUTONOMOUS). KOZHIKODE

Third Semester M.Sc Degree Examination, November 2018 MT3C15- PDE and Integral Equations

(2017 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

Section A

Answer all questions. Each question carries 1 weightage.

- 1. Define a Curve. Give an example of a Curve and its parametric representation.
- 2. Show that the partial differential equation corresponding to the surface F(x-z,y-z)=0 is p+q=1
- 3. Find the complete integral of a partial differential equation $z px qy p^3 + q^3 = 0$
- 4. Find the general solution of the p.d.e px + qy = z
- 5. Define a Paffian differential equation. Give an example
- 6. Give a brief note on Monge Cone.
- 7. Find the characteristic strip of a non linear partial differential equation xp + yq pq = 0, through the initial curve $z = \frac{x}{2}$, y = 0.
- 8. What type of the the second order semi linear partial differential equation is $u_{xx} + 2u_{xy} + 17u_{yy} = 0$
- 9. What is meant by "Range of influence" in the case of one dimentional wave equations.
- 10. State any one of the boundary value problem.
- 11. State Harnack's Theorem.
- 12. Classify all the integral equations.
- 13. Transform $\frac{d^2y}{dx^2} + \lambda y = 0$ with the conditions y(0) = 1, y'(0) = 0 as an integral equation.
- 14. State any two properties of Greens function corresponding to $L_y = \frac{d}{dx}[p(x)\frac{d}{dx} + q(x)]y$ in the interval (a,b).

(14×1=14 Weightage)

Section B

Answer any SEVEN questions. Each question carries 2 Weightage.

15. Show that the singular integral is also a solution of the partial differential equation f(x, y, z, p, q) = 0

- 16. Find the complete integral of the partial differential equation $f = z^2 pqxy = 0$ by Charpit's method
- 17. Find the integral corresponding to a partial differential equation yzdx + 2xzdy 3xydz = 0.
- 18. Show that xp yq x = 0 and $x^2p + q xz = 0$ are compatible and find a one parameter family of common solutions
- 19. Reduce the equation $x^2u_{xx} y^2u_{yy} = 0$ into the canonical form.
- 20. Suppose that $\underline{u}(x,y)$ is harmonic in a bounded domain D and continuous in $\overline{D} = D \cup B$. Then show that u attains its maximum on the boundary B of D.
- 21. Show that the Riemann function for the equation $L[u] = u_{xy} + \frac{1}{4}u = 0$ is $v(x, y, \alpha, \beta) = J_0(\sqrt{(x-\alpha)(y-\beta)})$.
- 22. Show that the characteristic number of a Fredholm equation with a real symmetric kernal are real.
- 23. Find d' Alembert's solution which describes the vibrations of finite string.
- 24. Find the resolvant kernal, where the kernal of the integral equation is $K(x,\xi)=1-3x\xi$ in the interval (0,1)

 $(7 \times 2 = 14 \text{ Weightage})$

Section C

Answer any TWO questions. Each question carries 4 Weightage.

- 25. a, Find the general solution of $x^2p+y^2q=(x+y)z$. b, Find a complete integral of $p^2+q^2=x+y$
- 26. Find integral surface of the quasi linear equation $zz_x + z_y = 0$ containing the initial data curve $x_0 = s, y_0 = 0, z_0 = f(s)$ where f(s) = 1, if $s \le 0$, 1 s if $0 \le s \le 1$ and is 0 if $s \ge 1$.
- 27. a, The solution of the following problem if it exist, then show that it is unique. $u_{tt}-c^2u_{xx}=F(x,t),\ 0< x< l,\ t>0;$ u(0,t)=u(l,t)=0, if $t\geq 0;$ $u(x,0)=f(x),\ 0\leq x\leq l;$ $u_t(x,0)=g(x),\ 0\leq x\leq l.$ b, What is the solution of the above equation if F(x,t)=0
- 28. a, Show that $\frac{d^n I_n}{dx^n} = (n-1)! f(x)$, where $I_n(x) = \int_a^x ((x-\xi)^{n-1} f(\xi) d\xi)$ b, Show that $\int_a^x \int_a^{x_n} \int_a^{x_{n-1}} \cdots \int_a^{x_3} \int_a^{x_2} f(x_1) dx_1 dx_2 \cdots dx_n = \frac{1}{(n-1)!} \int_a^x ((x-\xi)^{n-1} f(\xi) d\xi) d\xi$

(2×4=8 Weightage)