1	TA.	/I	7	A	1	1	R	0	1	8
	13	· R	Las	17	8		U	v	J.	O

Pages: 2)	Reg. No:	
		int of the second
	Name:	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Chemistry Degree Examination, March 2018 MCHE2B05 – Applications of Quantum Mechanics & Group Theory

(2017 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

Section A (Answer all questions; each question carries 1 weight)

- 1. Why separation of variables is not possible with Schrodinger equation of He atom?
- 2. The ground state energy of He atom according to perturbation method is -74.8 eV. Calculate the first ionisation potential of He atom. (\dot{E}_{H} = -13.6eV)
- 3. What is the difference between a primitive Gaussian and contracted Gaussian?
- 4. What is the difference between STO and AO
- 5. Which is more stable: NO or NO⁺? Why?
- 6. What is non-crossing rule?
- 7. Write the sp hybrid wave functions of carbon atom and show that the linear geometry of sp hybrid orbitals is justified by them.
- 8. What is meant by free valence
- 9. What are normal modes? Represent normal modes of H₂O.
- 10. Show that 1 -1 i -i forms a mathematical group. Find the inverse of each element
- 11. Write a short note on group orbitals
- 12. Write the symmetry elements and determine the point groups of cis- and tras- dichloro ethylene.

(12x1=12 weightage)

Section B (Answer any eight questions; each question carries 2 weights)

- 13. Apply perturbation method to He atom
- 14. Find the ground state energy for particle in 1D box using the trial function $e^{-\alpha r^2}$.

Given:
$$\widehat{H} = -\frac{1}{2r^2} \frac{d}{dr} r^2 \frac{d}{dr} \left(-\frac{1}{r} \right)$$
 and $\int_0^\infty x^n e^{-ax^2} dx = \frac{n-1}{n^2 a} \left(\frac{\pi}{a} \right)^{1/2}$

- 15. Write the STO of Fe atom
- 16. What are Slater determinants? Use them to prove that an AO can accommodate only two electrons; that too with opposite spin.
- 17. Write the Huckel determinant of butadiene molecule. Obtain HMO coefficients and calculate π bond order.

- 18. Draw the MO diagram of CO and name the MO's.
- 19. Obtain the normalised functions of sp^2 hybridisation.
- 20. Write a short note on Frost Huckel circle mnemonic device for cyclic polyenes

21.
$$A = \begin{bmatrix} 5 & 8 \\ 1 & 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 0 & 1 \\ 1 & -2 & 0 \\ 3 & 1 & -4 \end{bmatrix}$. Show that $\chi(AB) = \chi(BA) = \chi(A)\chi(B)$

22.
$$D_{3h} \to 2C_3 + 3C_2 + \sigma_h + 2S_3 + 3\sigma_v$$

Show that
$$\Gamma = A_2' + E''$$

- 23. Predict the Raman and IR active vibrations in BF₃. Use D_{3h} character table.
- 24. Apply GOT to H₂O molecule and obtain the irreducible representations.

(8x2=16 weightage)

Section C (Answer any two questions; each question carries 4 weights)

- 25. Explain the Hatree Fock self consistent field method for the treatment of many electron systems
- 26. Compare the MO & VB methods of chemical bonding based on H2 molecule.
- 27. a) List the important features of HMO treatment.
 - b) Write a note on transition moment integral and its relation to spectroscopic selection rules
- 28. Find the conjugated π MO's of $C_3^+H_3$ by SALC and projection operator method.

D ₃ h	E	2C ₃	3C ₂	σ_h	$2S_3$	$3\sigma_v$		
$\overline{A_1}$	1	1	1	1	1	1		X^2+Y^2 , Z^2
A_2	1	i	-1	1	1	-1	R _Z	
E'	2	-1	0	2	-1 ·	0	(X,Y)	(X^2-Y^2, XY)
A ₁ "	1	1	1	-1	-1	-1		
A2"	1	1	-1	-1	-1	1	Z	
Е"	2	-1	0	-2	1	0		

W 4	OA	10
/	80	19

(Pages : 2) ·	Reg. No:
	Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Chemistry Degree Examination, March 2018 MCHE2B06 – Coordination Chemistry

(2017 Admission onwards)

Time: 3 hours

Max. Weightage: 36

Section A Answer all questions. Each carries one Weightage

Write Marcus equation and explain the terms?

Illustrate template effect with an example?

Bring out the significance of nephelauxetic series.

[Hg(Cl)₄]²⁻ is thermodynamically stable and kinetically labile. What does this mean?

 $[Cu(H_2O)_6]^{2+}$ and $[Cu(NH_3)_4]^{2+}$ both appear blue in solution, but $[Cu(H_2O)_6]^{2+}$ is less intense than $[Cu(NH_3)_4]^{2+}$. Why?

Show the possible stereoisomers of octahedral $[Mn(H_2O)_2(ox)_2]^{2}$.

How the donor atom in metal-thiourea is established using IR spectroscopy?

Explain the Jahn-Teller distortion in [Cu(H₂O)₆] ²⁺

What are metal complex sensitizers. Give one example.

Why the magnetic moment of [Co(H₂O)₆]Cl₂ is higher than the spin only value?

Identify the following complexes as chiral and achiral complexes.

(a) $[Cr(ox)_3]^{3-}$; (b) $cis-[RhCl_2(NH_3)_4]^+$; (c) $[Ru(bipy)_3]^{4+}$; (d) $[Co(edta)]^-$.

Electronic spectra of transition metal complexes are broader than that of f-block elements. Why?

 $(12 \times 1 = 12 \text{ weightage})$

Section B Answer any eight questions. Each carries two Weightage

Write a short note on photochemical reactions of metal complexes.

How ESR Spectroscopy can be used to distinguish between Cu(I) and Cu(II) in complexes? Explain.

Explain SN¹CB mechanism and its evidences.

Briefly explain the outer sphere electron transfer mechanism in metal complexes with examples.

- 17. Discuss the mechanism and synthetic applications of trans effect?
- 18. Draw the molecular orbital diagrams of octahedral and tetrahedral complexes?
- 19. Write the Irving-Williams order of stability of transition metal ions and mention the factors affecting stability of complexes?
- 20. What are the important merits and limitations of valence band theory?
- 21. How IR spectra is valuable in the study of metal carbonyls and bridged ligands?
- 22. Describe the kinetics of ligand substitution based on Adamson's rule?
- 23. Mention isomeric shift in Mossbauer spectroscopy and illustrate the Mossbauer spectra of octahedral aqua complexes of Fe²⁺ and Fe³⁺?
- 24. State whether there is orbital magnetic moment contributions in the following complexes.
 - i) $[Co(H_2O)_6]^{2+}$ ii) $[Co(Cl)_4]^{2-}$. Justify your answer.

 $(8 \times 2 = 16 \text{ weighta})$

Section C Answer any 2 questions. Each carries 4 weightage

25. (i) The spectrum of octahedral aqua complex of chromium gives three peaks at 17000 cr 24000 cm^{-1} and 37000 cm^{-1} . Calculate the crystal field splitting energy (Δ_0) and Nephelaux ratio(β).

Given the Racah parameter (B) for free metal ion is 1310 cm⁻¹?

- (ii) Discuss the analytical applications of charge transfer spectra?
- 26. Explain the ligand substitution reactions in octahedral complexes.
- 27. Write short notes on:
 - (i) Factors affecting the magnitude of crystal field splitting
 - (ii) Spin-orbit coupling
 - (iii) Hyperfine interactions in Mossbauer spectroscopy
 - (iv) Fuoss-Eigen equation
- 28. Explain the determination of binary formation constants by pH-metric and spectrophotomet methods?

 $(2 \times 4 = 8 \text{ weight})$

1M2N	AT 1	90	20
VIZ	VIII	αu	411

(Pages: 3)	Reg. No:
	Namas

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Chemistry Degree Examination, March 2018 MCHE2B07 – Organic Reaction Mechanism

(2017 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

Section A Answer all questions. Each question carries Iweightage

1. Complete the following reaction

2. What are the products obtained in the following reactions

COOCH₃

$$Br_2/FeBr_3$$
(ii)
$$Br_2/CH_3COOH$$

- 3. Rate of S_N² reactions will be faster in polar aprotic solvents than in polar protic solvents. Explain why?
- 4. Complete the following reaction. Explain the mechanism

- 5. Methyl magnesium bromide reacts with C₄H₈O in anhydrous ether medium to form an addition product which on hydrolysis gave 3-methyl-2-butanol. Deduce the structure of C₄H₈O.
- 6. Explain Cope rearrangement with an example.
- 7. Give an example for Norrish type I cleavage.
- 8. Discuss the mechanism of B_{AC}^2 mechanism for the saponification.

- 9. What is Herzig Mayer method? What is its use?
- 10. Explain the mechanism of the following conversion.

- 11. State and illustrate the Bredt's rule with an example.
- 12. What is the major product formed in the following reaction and explain the mechanism.

 $(12 \times 1 = 12 \text{ weightage})$

Section B Answer any 8 questions. Each question carries 2 weightage

- 13. Discuss the conversion of cholesterol into testosterone.
- 14. Explain the mechanism of $di-\pi$ -methane rearrangement.
- 15. Explain the Woodward Hofmann selection rules for electrocyclic and cycloaddition reactions.
- 16. Suggest how the following conversion can be done.

- 17. Write a note on generation and stability of carbocations.
- 18. What are the major products in the following reactions and explain the mechanism of their formation

- 19. Explain Reformatsky reaction. Discuss the mechanism and synthetic applications.
- 20. Discuss the stereochemistry of Diels Alder reaction. What are the products in the following reactions and predict their optical activity.

(i)
$$+$$
 $COOH$ Δ (ii) $+$ $+$ $COOH$ Δ

- 21. Explain the Jablonski diagram.
- 22. What are flavones and isoflavones? Outline any one method of synthesis of flavones.
- 23. (a) What are singlet and triplet carbenes?
 - (b) What are the factors that stabilises carbanions?
- 24. Discuss the stereochemistry of S_N^1 and S_N^2 reactions with specific examples.

 $(8 \times 2 = 16 \text{ weightage})$

Section C Answer any 2 questions. Each question carries 4 weightage

- 25. Explain the total synthesis of cephalosporin.
- 26. Discuss the mechanism and applications of Knoevenegal condensation, Wittig reaction Dieckmann condensation and Barton's reaction.
- 27. (i) Discuss the addition elimination mechanism of aromatic nucleophilic substitution reactions given by haloarenes.
 - (ii) Discuss the mechanism of photo-Fries rearrangement.
- 28. (i) Explain the mechanism of esterification of mesitoic acid.
 - (ii)Discuss the chemical classification of alkaloids based on the ring structure.
 - (iii)Discuss the general methods of isolation of terpenoids.
 - (iv) Illustrate Oppenauer oxidation and MPV reduction with suitable examples.

 $(2 \times 4 = 8 \text{ weightage})$

1M2M18021

(Pages: 2)	Reg. No:
	Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Chemistry Degree Examination, March 2018

MCHE2B08 – Electrochemistry, Solid State Chemistry & Statistical Thermodynamics
(2017 Admission onwards)

Max. Time: 3 hours

Max. Weightage: 36

Section A Answer all questions. Each carries 1 weightage

- 1. What is Partition function?.
- 2. Explain 'Ensemble'
- 3. Define Fermi Energy.
- 4. Give limitations of Einsein theory of heat capacity of solids
- 5. Explain potential of an electrode
- 6. What is distinguishing feature of a fuel cell?
- 7. Describe the phenomenon of polarization in cells.
- 8. Describe Tafel Equation.
- 9. Define centre of inversion.
- 10. What is Bravais Lattice?
- 11. What is Meissner Effect?
- 12. What do you know about paramagnetism?

 $(12 \times 1 = 12 \text{ weightage})$

Section B Answer any 8 questions. Each question carries 2 weightage

- 13. Write a note on 'overpotential'
- Describe Nerst Equation and explain the terms.
- 15. Explain Half Wave Potential.
- 16. Briefly describe decomposition potential.
- 17. What are a)Glide Plane and b)Screw Axis in crystals?
- 18. Draw stereographic projection of a crystal with C₃,σ_h and S₆
- 19. Write a brief note on 'colour centre'
- 20. Distinguish between fluorescence and phosphorescence.
- 21. What are the distinct features of Bose-Einsein Statistics?
- 22. Calculate the rotational partition function of hydrogen gas at 30°C.
- 23. Write down the Sackur-Tetrode Equation and explain the terms.
- 24. Bring out the relationship between partition function and Gibbs Free energy.

 $(8 \times 2 = 16 \text{ weighta})$

Section C Answer any 2 questions. Each question carries 4 weightage

- 25. Explain superconductivity and its applications.
- a)How would you classify solids on the basis of electrical properties .b)Write a short note on polarography.
- 27 .Discuss Bose –Einstein condensation.
- 28 Briefly explain electrochemical series and its applications.

 $(2 \times 4 = 8 \text{ weighta})$