46

1	M	1	N	1	90	13	6
	TAN		+ 4	* .	, 0	-	

(Pages: 1)

Reg.	No													
. T	987													

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Computer Science Degree Examination, November 2019 MCS1C05 - Computer Organization and Architecture

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A

Questions 1 to 7. Answer any four. Each question carries two weightage.

- 1. Draw and explain JK flip flop.
- 2. Differentiate MUX and DMUX.
- 3. Write a note on branch instruction.
- 4. What is hardwired control?
- 5. Depict IEEE 754 representation for single precision FP number. Why do we use biased notation?
- 6. How DMA operations are performed?(Specify signals involved)
- 7. Explain SP and AX registers in 8086.

 $(4 \times 2 = 8 \text{ weightage})$

PART B

Questions 8 to 14. Answer any four. Each question carries three weightage

- 8. Explain full adder with diagram.
- 9. Explain parallel-in serial-out shifter.
- 10. Explain a memory read cycle in single cycle organization.
- 11. Differentiate indexed and based addressing mode in 8086 microprocessor.
- 12. Explain restoring and non-restoring division algorithms.
- 13. What is vectored interrupt? Mention a few significant interrupts.
- 14. Draw the software architecture of 8086.

 $(4 \times 3 = 12 \text{ weightage})$

PART C

Questions 15 to 18. Answer any two. Each question carries five weightage

- 15. Explain universal shifter.
- 16. Explain micro programmed control unit in detail.
- 17. Prove that Booth's algorithm performs 2's complement multiplication.
- 18. Explain instruction set in 8085 microprocessor.

47

1M1N19035

(Pages: 1)	
	í
1 4200 . 1)	l

Reg. No:	 								
Name:									

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Computer Science Degree Examination, November 2019 MCS1C04 – The Arts of Programming Methodology

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A Answer any 4 questions. Each question carries 2 weightage

- 1. What are the trigraph character? How are they useful?
- 2. What is a translator? Differentiate interpreter and compiler.
- 3. Briefly explain program development cycle
- 4. Describe general structure of C program.
- 5. Define an algorithm, list the characteristics of a good algorithm.
- 6. Differentiate continue and break statement in C with program code.
- 7. What you mean by type casting.

 $(4 \times 2 = 8 \text{ weightage})$

Section B Answer any 4 questions. Each question carries 3 weightage

- 8. Compare entry control loop and exit control loop with suitable program
- 9. What you mean by recursive function. How it help programmers. Illustrate with suitable example
- 10. Differentiate between function definition and function prototype
- 11. Distinguish between actual parameter and formal parameter.
- 12. Explain switch statement with suitable program code.
- 13. Draw flow chart to reserve a number and fine find sum of the digit.
- 14. Write a note on different storage classes available in C

 $(4 \times 3 = 12 \text{ weightage})$

Section C

Answer any 2 questions. Each question carries 5 weightage

- 15. Using function write c program for matrix multiplication.
- 16. Explain scope and life time of variable with suitable program statement.
- 17. Write any five string manipulation commands in C and explain
- 18. Explain for loop statement and additional features of for loop statement with suitable program code.

11/11	N1	90	34	

(Pages: 1)

Reg.	No:	 						٠	*		*			***	*		

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Computer Science Degree Examination, November 2019

MCS1C03 - Theory of Computation

(2019 Admission onwards)

Time: 3 hours.

Max. Weightage: 30

PART A (Answer any four. Each question carries Two weightage.)

- 1. What is inductive proof?
- 2. Define Alphabet, string and Languages.
- 3. Give applications of Finite Automata with examples.
- 4. Distinguish between DFA and NFA with the help of examples.
- 5. Explain regular expression with examples.
- 6. Whether the languages accepted by a DPDA and NPDA are same? Justify your answer.
- 7. What do you mean by 'closure property of a language'?

 $(4 \times 2 = 8 \text{ weightage})$

PART B (Answer any four. Each question carries Three weightage.)

- 8. Give DFA for the language. $L = \{all \text{ strings with not more than three 'b' s; } \Sigma = \{a, b\} \}.$
- 9. State and prove the equivalence of DFA and NFA.
- 10. Explain the pumping lemma for context free language.
- 11. What is an ambiguous grammar? Give an example.
- 12. Describe CNF and the steps involved to convert a grammar to CNF using suitable example.
- 13. Briefly explain the PCP problem.
- 14. Explain multi head Turing machines.

 $(4 \times 3 = 12 \text{ weightage})$

PART C(Answer any two. Each question carries Five weightage)

- 15. What is a regular expression? Draw the NFA with epsilon moves for the regular expression ab*(a+ab)*.
- 16. Construct a PDA for the language $L = \{0^n1^n \mid n \ge 1\}$.
- 17. Explain Turing machine. Design a TM to accept the language $L = \{ a^n b^n c^n | n \ge 1 \}$.
- 18. Explain the Halting problem. Show that it is undecidable.

1M1N19033	(1

Reg. No:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Computer Science Degree Examination, November 2019 MCS1C02 – Advanced Data Structures

(2019 Admission onwards)

Time: 3 hours Max. Weightage: 30

PART A (Answer any four. Each question carries Two weightage.)

- 1. Explain what is meant by time complexity of an algorithm.
- 2. What do you mean by frequency count in the context of an algorithm? What is its relevance?
- 3. Define stack. Give two applications of stack.
- 4. Differentiate circular queue and linear queue.
- 5. Compare and contrast array and linked list.
- 6. Explain Binomial Tree.
- 7. Distinguish linear search and binary search? Compare their complexities.

 $(4 \times 2 = 8 \text{ weightage})$

PART B(Answer any four. Each question carries Three weightage.)

- 8. Write a note on bubble sort.
- 9. What is meant by Binary Search Tree? Give an example.
- 10. What is Threaded Binary Tree?
- 11. What do you understand by sparse matrix? Show that product of two sparse matrix need not necessarily be sparse.
- 12. Explain representation of Graphs.
- 13. What is hashing? How it is useful in indexing?
- 14. Explain Fibonacci Search.

 $(4 \times 3 = 12 \text{ weightage})$

PART C(Answer any two. Each question carries Five weightage)

- 15. Perform heap sort on the given data and show each step 5, 80, 20, 60, 10, 77, 19, 11, 70. Discuss its complexcity.
- 16. Define an AVL tree. Why it is called so? Explain insertion and deletion operations in AVL tree with suitable examples.
- 17. What is RB Tree? What are its properties? Explain various cases of balancing in RB Tree.
- 18. Explain Hashing and various methods for hashing. Also explain how collisions can be handled?

1M1N19032

	- 1
(Parec	7)
(Pages	41

Reg. No:	
0	

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Computer Science Degree Examination, November 2019

MCS1C01 - Discrete Mathematics Structures

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A

Questions 1 to 7. Answer any four. Each question carries two weightage.

- 1. Explain different connectives using in propositional logic.
- 2. Define a) Surjective function
- b) Symmetric relation
- 3. Let X={1,2,3} and f, g, h, and s be functions from X to X given by

 f={(1,2), (2,3),(3,1)} g={(1,2),(2,1),(3,3)} h={(1,1),(2,2),(3,1)} s={(1,2),(2,2),(3,3)} find a) f.g; b) g.f; c) s.g; d) s.s
- 4. Discuss Homomorphism and Isomorphism.
- 5. Differentiate a path and circuit with examples.
- 6. Define Rings and Fields.
- 7. Define Boolean Algebra.

 $(4 \times 2 = 8 \text{ weightage})$

PART B

Questions 8 to 14. Answer any four. Each question carries three weightage

- 8. Show that $P \land (Q \land R) \lor (Q \land R) \lor (P \land R) <==> R$
- 9. a) Discuss on composition of functions.
 - b) Let $f: R \to R$ be given by $f(x) = -x^2$ and $g: R_+ \to R_+$ be given by $g(x) = \sqrt{x}$ where R_+ is the set of nonnegative real numbers and R is the set of real numbers.

Find $f \circ g$. Is $g \circ f$ defined?

- 10. Let A be the set of factors of a particular positive integer m and let \leq be the relation divides, ie.,
 - $\leq = \{(x,y) \text{ such that } x \in A \land y \in A \land (x \text{ divides } y)\}$

Draw Hasse diagrams for a) m = 2; b) m = 6; c) m = 30 d) m = 120 e) m = 12 f) m = 45

- 11. Discuss on Lagrange's theorem
- 12. Discuss on Lattices, Distributive lattices, Complemented Lattices
- 13. Discuss the steps of Dijikstra's shortest path algorithm.
- 14. Show that Every chain is a distributive lattice.

 $(4 \times 3 = 12 \text{ weightage})$

PART C

Questions 15 to 18. Answer any two. Each question carries five weightage

15. Derive the principal disconjuctive normal form of

$$P \rightarrow ((P \rightarrow Q) \land 1(1Q \lor 1P))$$

- 16. What is minimum spanning tree? Explain Prim's algorithm with an example.
- 17. Show that the following Boolean expressions are equivalent to one another .
 - a) $(x \oplus y) * (x' \oplus z) * (y \oplus z)$
 - b) $(x * z) \oplus (x' * y) \oplus (y * z)$
 - c) $(x \oplus y) * (x' \oplus z)$
 - d) $(x * z) \oplus (x' * y)$
- 18. Prove that if G is a finite group of order n with H a subgroup of order m, then m divides n