18

2B2	MI	90	92
404	TIT	10	2.00

(Pages: 3)

Reg.	N	0:		 									٠		+		0
Nam	e:			 													

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Physics Degree Examination, March /April 2019 BPHY2B02 - Properties of matter, Waves and Acoustics

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 80

ODO	TI	ON	
SEC	11	(1)	A
~~~		-	

(Answer in a word or phrase)
Answer all questions; each question carries 1 mark

1.	Limiting values of F	oisson's ratio i	n elasticity are					
2.	SI unit of shearing stress is							
3.	What is the frequen	cy of second ov	ertone, if the f	undamental frequency of vibration for a				
	transverse wave is	n'						
4.	Velocity of longitud	dinal wave in a	gas depends up	oon elasticity and of the				
	medium							
5.	Sound waves are							
	a)Transverse		b)Electro m	agnetic				
	c)Longitudinal		d)none of th	ne above				
6.	The velocity of tran	nsverse waves in	n a stretched st	ring is given by				
7.	The Intensity of wa	ive attenuates b	y 10% while p	assing through a block. If it pass through				
	two blocks, the inte	ensity of the wa	ve will be atter	nuated to				
	a)80%	b) 89%	c) 81%	d)78%				
8.	For an undamped of	scillator, the qu	uality factor is					
9.	What fraction of to	tal energy is kin	netic when the	displacement is half of the amplitude				
	a)1/2	b) 1/8	c)1/4	d)3/4				
10.	. When the amplitud	le of a particle e	executing SHM	I increases, the time period				

 $(10 \times 1 = 10 \text{ Marks})$ 

#### SECTION B

### (Answer in Two or Three sentences) Answer all questions; each question carries 2 marks

- 11. What is the advantage of I form of Girders?
- 12. State the law connecting stress and strain.
- 13. Define anharmonic oscillator. Give one example.
- 14. Distinguish between group velocity and wave velocity.
- 15. State Fourier theorem.
- 16. What are the factors governing loudness of sound.
- 17. What is piezoelectric effect?

 $(7 \times 2 = 14 \text{ Ma})$ 

#### SECTION C

### (Answer in a paragraph of about half a page to one page) Answer any five questions; each question carries 4 marks

- 18. Derive an expression for work done in twisting a cylindrical wire
- 19. What is quality factor? Discuss its importance.
- 20. Explain the Lissajous figures and give its applications
- 21. Derive the expression for the kinetic energy and potential energy of a simple harmonic oscillator.
- 22. Discuss the mode of transverse vibrations in strings.
- 23. Write a brief note on acoustics of buildings.
- 24. Explain the production of ultrasonic wave by piezoelectric crystal method.

 $(5 \times 4 = 20 \text{ Mar})$ 

#### SECTION D

## (Problems – formula and important steps) Answer any four questions; each question carries 4 marks

- 25. A metal disc of 10 cm radius and 1 kg is suspended in a horizontal plane by a vertical wi attached to its centre. If the diameter of wire is 1 mm, its length 1 metre and period of oscillation is 4 seconds, find the rigidity of the wire.
- 26. A bar of length 75 cm, breadth 2 cm, and thickness 8 mm is fixed horizontally. When a load of 500 gm is suspended at the other end, it is depressed through 5 mm. Find the Young's modulus of the material of rod.

- 27. A simple harmonic motion is represented by  $y = 10 \sin(10 t \pi/6)$ , where y in metres, t in seconds and phase angle in radians. Calculate the frequency, time period, and maximum velocity.
- 28. Calculate the percentage change in intensity when the intensity level is changed by 1 dB.
- 29. A source of sound has a frequency of 512 Hz and amplitude of 0.25 cm. What is the flow of energy across a cm²/s, if the velocity of sound in air is 340 m/s and the density of air is 0.00129 gm/cm³
- 30. Calculate the average energy stored in a 20 gm mass attached to a spring and vibrating with amplitude 1 cm in resonances with a periodic force whose frequency is 20 Hz. If the Q-factor of oscillator be 160, how much energy being dissipated per second?
- 31. A body having a mass of 4 gm executes SHM. The force acting on the body, when the displacement is 8 cm. is 24 gm. wt. Find the time period

 $(4 \times 4 = 16 \text{ Marks})$ 

#### SECTION E

## (Essays - Answer in about two pages) Answer any two questions; each question carries 10 marks

- 32. Describe an experiment with necessary theory to determine the modulus of elasticity of a given material using a cantilever.
- 33. Write the equation of motion of the forced harmonic oscillator. Derive an expression for the amplitude of forced oscillator and discuss the resonance.
- 34. Ste up the differential equation for a damped oscillator and discuss the over damping, critical damping and under damping.
- 35. What is meant by plane progressive waves? Show that the energy density is constituted by equal amounts of kinetic energy and potential energy.

 $(2 \times 10 = 20 \text{ Marks})$ 

30	M	10	nn	2
6 /	VI	19	117	2
A 160	7.4		-	6560

(Pages: 2)

Reg.	No:	 ٠		,			•	•							
Mam	0.														

#### FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

### Second Semester B.Sc Degree Examination, March /April 2019 BPHY2C02 – Mechanic, Relativity, Waves and Oscillations

(2018 Admission onwards)

ime: 3 hours

16.

Max. Marks: 64

 $(7 \times 2 = 14 \text{ marks})$ 

Part A  Answer all questions(Each question carries one mark)
The fictitious force experienced by a particle which is moving with respect to a rotating
frame is called
If the linear momentum of a body is increased by 50% its kinetic energy will increase
by
Rockets and jet planes are working on the principle of
For a conservative force F
a)grad $F = 0$ b)Curl $F = 0$ c)div $F = 0$ d)grad(div $F$ ) = 0
Wave function has no direct
At what velocity along its path will a rod contract by 25%
The unit of energy current is
The variable in sound waves is
The allowed values of energies of a particular system are called
Resolving power of a Scanning Tunneling Microscope is of the order of
(10 x1 = 10 Marks)
Part B
Answer all questions(Each question carries two marks) Explain coriolis force.
Explain the significance of mass – energy relation.
Why do we go for multi stage rockets? Explain.
Explain time dilation in relativity.
Explain Fourier theorem. Mention any one application.
Distinguish between energy density and energy current.
What are the admissibility conditions of wave function.

## Part C Answer any three questions(Each question carries four marks)

- Draw and explain potential energy curve.
- 19. Prove that a moving clock always runs slower than a clock at rest.
- 20 Derive classical wave equation
- 21. Explain ether hypothesis.
- 22. Define central force. Show that angular momentum of a particle moving under central force is conserved.

 $(3 \times 4 = 12 \text{ Ma})$ 

# Part D Answer any three questions(Each question carries four marks)

- 23. Find the horizontal component of coriolis force acting on a body of mass 0.1 Kg mornorthward with a horizontal velocity of 100m/s at 30° N latitude on the earth.
- 24. A clock gives correct time. With what speed should it be moved relative to an observ that it may seem to lose five minutes in 24 hours.
- 25. A body at rest explodes, breaking into three pieces, two pieces having equal masses f off perpendicular to one another with same speed of 30 m/s. The third piece has three times mass of each other pieces. Find out velocity of third piece.
- 26. Plane harmonic waves of frequency 500Hz are produced in air with displacement amplitude 1 x 10⁻⁵m. Calculate pressure amplitude, energy density, and energy flux in wave
- 27. A particle of mass 0.1 Kg experiences only a damping force proportional to its velocit If its velocity is reduced from 1m/s to 0.1m/s in 23 seconds, calculate relaxation time and the damping force when its velocity is 0.5m/s.

 $(3 \times 4 = 12 \text{ Mar})$ 

#### Part E

Answer any two questions(Each question carries eight marks)

- 28. Arrive at the Lorentz transformation equations in accordance with the special theory o relativity.
- Explain damped harmonic oscillator. Discuss in detail the cases of under damped and over damped oscillations.
- 30. Derive an expression for pressure variation, when a plane progressive longitudinal way passes through a gaseous medium.
- Derive the time dependent Schrodinger equation of matter waves. Give the physical interpretation of wave function.

(2 x 8=16 Mark