120080

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester BSc Degree Examination, March/April 2020 BMT2C02 - Mathematics - 2

(2019 Admission onwards)

2: 2 hours

Max. Marks: 60

Section A

A maximum of 20 markscan be earned from this section. Each question carries 2 marks.

Find the Cartesian equation of $=\frac{4}{2\cos\theta-\sin\theta}$.

Evaluate $\int \frac{4dx}{(e^x + e^{-x})^2}$.

Prove that $\operatorname{sech}^{-1} x = \cosh^{-1} \frac{1}{x}$.

Show that $\sum_{i=1}^{\infty} \frac{i+1}{i}$ diverges.

If $f(x) = \frac{1}{1-x}$, |x| < 1, find series for f'(x).

Define absolute convergence and conditional convergence of a series.

Test the convergence of the series $\sum_{n=1}^{\infty} \frac{2^n}{n^2}$.

. Define vector space.

Show that the determinant of every orthogonal matrix is ± 1 .

0. Define eigen value and eigen vector of a matrix.

1. Find the inverse of $A = \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix}$ with the help of Cayley Hamilton theorem.

2. Define Linear span of a nonempty subset S of a vector space V.

Section B

A maximum of 30 marks can be earned from this section. Each question carries 5 marks.

- 3. Graph the curve $r^2 = \sin 2\theta$.
- 4. Find the length of the graph of the function $f(x) = \frac{x^4}{8} + \frac{1}{4x^2}$ on [1, 3].
- 5. Show that $\int_a^\infty \frac{1}{x^p} dx$ (p is a constant and a > 0) converges if p > 1 and diverges if $p \le 1$.
- 6. Use Newton's method to find a solution of $x^3 8x^2 + 2x + 1 = 0$.
- 7. Check whether the set $\{1, 1 + x, (1 + x)^2, x^2\}$, a subset of P_2 , is linearly independent or not.
- 8. Show that $\{(0,1,1), (1,1,0), (1,0,1)\}$ is a basis of \mathbb{R}^3 .
- 9. Solve the system of equations 2x y + z = 7; 3x + y 5z = 13; x + y + z = 5 using Gaussian elimination Method.

Section C

Answer any One question. Each question carries 10 marks

20. Diagonalize the matrix $\begin{bmatrix} 3 & 2 \\ 2 & 3 \end{bmatrix}$.

21..

- a. Find the length of the curve $r = 1 \cos\theta$, $0 \le \theta \le 2\pi$.
- b. Find the area shared by the circles $r = a\sqrt{2}$ and $r = 2a \cos\theta$.

2MI20079

(Pages: 2)	Reg. No:
	Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester BSc Degree Examination, March/April 2020 BMT2B02 - Calculus - 2

(2019 Admission onwards)

me: 2 1/2 hours

Max. Marks: 80

SectionA (Short Answer type)
Ceiling (Maximum marks)—25Marks
Each question carries 2 marks

- 1. Find the area of the region between the graph of $y = x^2 + 2$ and y = x 1 and the vertical lines x = -1 and x = 2
- 2. Draw the graph of the natural logarithmic function $y = \ln x$.
- 3. Find the derivative of $ln(2x^2 + 1)$.
- 4. Solve $e^{2-3x} = 6$.
- 5. Find $\int \frac{\sqrt{\ln x}}{x} dx$.
- 6. Evaluate $\int_0^3 2^x dx$.
- 7. Find the derivative of $y = cos^{-1}3x$.
- 8. Evaluate $\sin(\sin^{-1} 0.7)$.
- 9. Prove the identity $\cosh^2 x \sinh^2 x = 1$
- 10. Define Improper Integrals.
- 11. State Monotone Convergence Theorem for Sequences.
- 12. Define the term partial sum and when a series $\sum_{n=1}^{\infty} a_n$ is said to be convergent.
- 13. Find the radius of convergence and interval of convergence of $\sum_{n=0}^{\infty} n! \ x^n$.
- 14. Find the Maclaurin series of $f(x) = \sin x$.
- 15. What is a Taylor series?

(Ceiling =25Marks)

Section B (Paragraph type) Ceiling (Maximum marks) – 35Marks Each question carries 5 marks

- 16: Find the length of the graph $f(x) = \frac{1}{3}x^3 + \frac{1}{4x}$ on the interval [1, 3].
- 17. Find the volume of the solid obtained by revolving the region bounded by the graphs of $y = x^3$, y = 8, and x = 0 about the y axis.
- 18. Using l'Hopital rule, evaluate $\lim_{x\to 0} \frac{x^3}{x-\tan x}$.
- 19. Find $\int \frac{1}{x\sqrt{x^4-16}} dx$.

- 20. Find the values of p for which $\int_{1}^{\infty} \frac{1}{x^{p}} dx$ is convergent.
- 21. a) State the integral Test for the convergence or divergence of the series $\sum_{n=1}^{\infty} a_n$.
 - b) Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{n^2+1}$ converge or diverge.
- 22. Prove that every absolutely convergent series is convergent.
- 23. Determine whether the series $\sum_{n=1}^{\infty} \frac{n!}{n^n}$ is convergent or divergent.

(Ceiling =35Marks)

Section C (Essay type)

Answer any two questions

Each question carries 10 marks

24.

- a) Find the area of the surface obtained by revolving the graph of the function $f(x) = \sqrt{x}$ on the interval [0, 2] about the x-axis.
- b) Show that $sinh^{-1}x = ln(x + \sqrt{x^2 + 1})$.
- 25. Using l'Hopital rule
 - a) Evaluate $\lim_{x\to 0^+} (\frac{1}{x})^{\sin x}$.
 - b) Evaluate $\lim_{x\to 0^+} \left(\frac{1}{x} \frac{1}{e^{x}-1}\right)$.

26.

- a) State the limit Comparison Test.
- b) Determine whether the series $\sum_{n=1}^{\infty} \frac{2n^2 + n}{\sqrt{4n^7 + 3}}$ converges or diverges.

27.

- a) State and prove the alternating series Test.
- b) Show that the alternating harmonic series $\sum_{n=1}^{\infty} \frac{(-1)^{n-1}}{n} = 1 \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \dots$ is convergent.

 $(2 \times 10 = 20 \text{ Marks})$