	Name:		
	FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE		
	Third Semester BSc Degree Examination, November 2016		
	MAT3B03 - Calculus and Analytic Geometry		
2	(2015 Admission onwards) Max. Time: 3 hours Max. Marks: 80		
- 5	Max. Time: 3 hours Part - A Max. Marks: 80		
	Answer all the twelve questions, Each question carries 1 mark.		
Ĺ.	Give a simpler expression for $e^{\ln(x^2+y^2)}$		
2.	What is the domain of the Natural Logarithms, In (X)?		
3.	What is the derivative of a ^x		
1.	What is the n^{th} term test for the divergence of a series?		
5.	Find $\lim_{x \to \frac{\pi}{2}} \left(\frac{\sec x}{1 + \tan x} \right)$		
ó.	State whether the Series $1 - \frac{1}{4} + \frac{1}{9} - \frac{1}{16} + \frac{1}{25} - \dots$ is Conditionally Convergent or absolutely Convergent?		
	Convergent?		
7.	What is the eccentricity of the conic $2x^2 + y^2 = 4$		
3.	Identify the Conic $3x^2 - 7xy + \sqrt{17}y^2 = 1$		
).	What is the Formula to find the area of the surface generated by revolving the		
	Curve $x = f(t)$, $y = g(t)$, $a \le t \le b$ about $x - axis$		
10	What is the Cartesian equivalent of the polar equation $r \sin(\theta) = 0$		
i 1.	Write the Taylor – Series of $F(x) = e^x at x = 0$		
12	What is the eccentricity of parabola?		
	$(12 \times 1 = 12 \text{marks})$		
	Part – B		
	Answer any nine questions Each question carries 2 marks		
13	Each question carries 2 marks Express In √13.5 interms of In2 and In3		
14	Find $\frac{dy}{dx}$ if In $y = e^y Sin x$		
15	$x \to 0$ $x \to 0$ x^3		
16.	State Sandwich theorem for sequences and use it to show that the sequence $\left\{\frac{\cos n}{n}\right\} \to 0$		
17	Find the sum of the series $\frac{1}{8} + \frac{1}{16} + \frac{1}{32} + \dots$		
18	Find the sum of the telescoping series $\sum_{n=1}^{\infty} \frac{4}{(4n-3).(4n+1)}$		
19	Find $\frac{d^2y}{dx^2}$ if $x = a \ sect$, $y = b \ tant$		
	The parabola $y^2 = 8x$ is shifted down 2 units and right 1 unit, without changing		
	the direction of axes. Find the equation, Foci and vertices of the new parabola. 1. Identify the Particle's path by finding a Cartesian equation and graph if for the parametrized		
7,51	curve $x = \sin(2\pi(1-t))$, $Y = \cos(2\pi(1-t))$), $0 \le t \le 1$		
22.	Show that the Series $\sum_{n=1}^{\infty} \frac{n+1}{n}$ diverges		
23	Check the convergence of the series $\sum_{n=1}^{\infty} \frac{n^{10}}{10^n}$		
24.	Find the Taylor series of $f(x) = \cos x$ at $x=0$.		

(Pages:2)

1B3N16204

Part – C
Answer any six questions
Each question carries 5 marks

Drop a ball from 'a' meters above a flat surface. Each time the ball hits the surface after falling a distance h, it rebounds a distance rh, where r is positive but less than 1. Find the total distance the ravels up and down.

Find
$$\lim_{x \to 0} \left(\frac{1}{\sin x} - \frac{1}{x} \right)$$

Find $\frac{dy}{dx}$ if $y = \sqrt{\frac{(x+1)^{10}}{(2x+1)^5}}$

Check the convergence of the series $\sum_{n=1}^{\infty} \frac{(n+3)!}{3!n! \ 3^n}$

Show that the Maclaurin series for $\sin x$ converges to $\sin x$ for all x.

The ellipse $\frac{x^2}{25} + \frac{y^2}{16} = 1$ is shifted 4 units to the left and 1 units down .Find the new equation, foci, centre, vertices and eccentricity.

Find the Centre, Foci, vertices and axis of the conic $2x^2 - y^2 + 6y = 3$

Show that $\frac{d^2y}{dx^2} = \frac{-1}{4a}\cos^4(t/2)$ for the cycloid $x = a(t - \sin t)$, $y = a(1 - \cos t)$

Find the Cartesian equation Corresponding to the Polar equation

$$r \sin\left(\theta + \frac{\pi}{4}\right) = \sqrt{2}$$

(6x5 = 30 marks)

Part D Answer any two questions Each question carries 10 marks

a) Show that $\lim_{x \to 0^{+}} (1 + x)^{1/x} = e$

- b) Find the area of the surface swept out by revolving the circle $x = \cos t$, $y = 1 + \sin t$, $0 \le t \le$ about the x-axis. Also find $\frac{dy}{dx}$ and $\frac{d^2y}{dn^2}$
- a) Investigate the convergence of $\sum_{n=1}^{\infty} \frac{4^n \cdot n! \cdot n!}{(2n)!}$
- b) Show that the P-series $\sum_{n=1}^{\infty} \frac{1}{n^p}$ converges if p > 1 and diverges if $p \le 1$
- (a) Find $\lim_{x \to \infty} x^{1/x}$

 $(9 \times 2 = 18 \text{ marks})$

- (b) Solve For x : $3^{\log_3(x^2)} = 5$. $e^{\ln x} 3$. $10^{\log_{10}(2)}$
- A) Find the Cartesian equation for the hyperbola centered at the origin that has focus at (4,0) and line x=2 as the corresponding directrix
- b) Find the polar equation corresponding to the Cartesian equation $x^2+4x+y^2+2y=0$

(2x10 = 20 mar)

1B3N16205	(Pages :2) Reg. No:
	FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE
	Third Semester BSc Degree Examination, November 2016 MAT3C03 - Mathematics (2015 Admission onwards)
Max. Time: 3	
	Don't A (Objective Three Organicae)
	Part A (Objective Type Questions) Answer all questions
1. Orde	r and degree of the differential equation $y'' + 2(y')^2 + 3 = 0$ isand
	tion of the differential equation $y' = x/y$.
	e the general form of Bernoulli's differential equation. t is the rank of 3×3 unit matrix?
	system of equations AX = B is consistent if
6. Give	an eigen value of the matrix A ^T , given 3 is an eigen value of the matrix A.
7. Find	the eigen values of the matrix $\begin{bmatrix} 1 & 0 \\ 0 & 3 \end{bmatrix}$.
	a unit vector in the direction of the vector $\mathbf{i} + 3\mathbf{j} + 2\mathbf{k}$.
	e the parametric equation of $(x-1)^2 + y^2 = 9$ cor V is solinoidal if
11, Find	gradF where $F(x,y,z) = x^2 + y^2 + z^2$
12. Wha	t you mean by singular solution of a differential equation. (12× 1 = 12 marks)
	$(12 \times 1 - 12 \text{ marks})$
	Part B(Short Answer Type Questions) Answer any nine Questions
13. Solv	e the differential equation $y' = (1+x)(1+y^2)$.
14. Show	w that the differential equation $(3x^2y + e^y) dx + (x^3 + x e^y - 2y) dy$ is exact and hence e it.
15. Solv	$y' + y \tan x = \cos^3 x$.
16. Find	the orthogonal trajectories of the family of parabolas y =kx².
17. Find	the eigen values of the matrix $\begin{bmatrix} 3 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & -1 \end{bmatrix}$.
	[2 4 1]

19. Test for the consistency of the system of equations x+y=3, x+2y=4, x+4y=6.

20. Prove that eigen values of a diagonal matrix is the diagonal elements.

18. Find the rank of matrix 3 2 1

- 21. Find the angle between the planes x+y+z=1, x+2y+3z=6.
- 22. Find the legth of the semi cubical parabola $\mathbf{r}(t) = t \mathbf{i} + t^{3//2} \mathbf{j}$ t=0 to t=1.
- 23. Find the directional derivative of $f(x,y,z) = 2xy + z^2$ in the direction of i + 2j + 2k at the point (1, -1, 3).
- 24. Find div f, where $f(x,y,z) = (3x^2y-y^3z^2) i 3z k$ at the point (1,1,2) $(9 \times 2 = 18 \text{ marks})$

Part C (Short Essay Questions)

Answer any six questions

25. Solve $(xy^3 + y)dx + 2(x^2y^2 + x + y^4)dy = 0$. 26. Solve $y' + x\sin x = x^3 \cos^2 y$.

- 27. Rduce to the normal form and hence find the rank of the matrix $\begin{pmatrix} 1 & 6 & -18 \\ -4 & 0 & 5 \\ -3 & 6 & -13 \end{pmatrix}$
- 28. Find the condition that the system of equations 3x+4y+5z=a, 4x+5z+6z=b, 5x + 6y + 7z = c is consistent.
- 29. Find the eigen vector corresponding to the least eigen value of the matrix

$$\begin{pmatrix} 8 & -6 & 2 \\ -6 & 7 & -4 \\ 2 & -4 & 3 \end{pmatrix}$$

- 30. Use Cayley Hamilton theorem to find A^3 and A^{-1} if $A = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$.
- 31. If a is a constant vector and $\mathbf{r} = \mathbf{x} \mathbf{i} + \mathbf{y} \mathbf{j} + \mathbf{z} \mathbf{k}$. Show that curl $(\mathbf{a} \times \mathbf{r}) = 2\mathbf{a}$.
- 32. $\mathbf{F} = xy \mathbf{i} + x^2 \mathbf{j}$. Evaluate $\int_c \mathbf{F} \cdot d\mathbf{r}$, where c is the quarter circle from (2,0) to (0,2) with centre as origin.
- 33. Show that the integral $\int_c 3 x^2 dx + 2yz dy + y^2 dz$ is independent of path and hence solve the integral from (0,1,2) to (1,-1,7).

 $(6 \times 5 = 30 \text{ marks})$

Part D (Essay Type Questions) Answer any Two Questions

34. a) Solve the differential equation $(x^2-2x+2y^2) dx + 2xy dy = 0$ b) Show that $V = (y^2 + 2xz^2 - 1)i + (2xy)j + (2xz^2)k$ is irrotational.

35. Let
$$A = \begin{bmatrix} 6 & -2 & -2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$$
, Find

- a)Eigen values and corresponding eigen vectors of A
- b) Use Cayley Hamilton theorem to find A-1
- 36. Verify Gauss's divergence theorem for \mathbf{F} , where $\mathbf{F} = (x^2 yz)\mathbf{i} + (y^2 zx)\mathbf{j} + (z^2 xy)\mathbf{k}$ over the rectangular parallelepiped $0 \le x \le 1$, $0 \le y \le 2$, $0 \le z \le 3$.

(2×10=20 marks)

1B3N16160	(Pages :3)	Reg. No:		
		Name:		
FAROOK C	OLLEGE (AUTONOMOU	US), KOZHIKODE		
Third Semeste	er B.Sc Degree Examina	tion, November 2016		
A11 - Basic Numerical Skills				
Ē	(2015 Admission onwa	rds)		
Max. Time: 3 hours		Max. Marks: 80		
	Part I swer all questions in this p ach question carries 1 mar			
Choose the correct answer from th	ne choice given:			
 (a) Mean (c) Geometric Mean 4. The best average to an (a) Mode (c) Geometric Mean 5. Which of the following (a) 0 ∈ {} (c) 0 ∈ {0} Fill in the blanks:- 6. The geometric mean b 7. Measures of dispersion 8. Condition for the matr 9 is the g 	(b) 4 (d) 7 has: (b) One Solution (d) Infinity man on of the 'less than' and 'n (b) Median (d) Harmonic Malyze speed is: (b) Arithmetic (d) Harmonic Market (d) O ⊂ {} (d) O ⊂ {} between a and b is n are called averages of the fix A to be symmetric is raphical method of studying the	ny Solutions nore than' 0 given corresponds to: Mean Mean Mean Mean order.		
10. The 6 th term of $\frac{3}{7}$, $\frac{3}{8}$,	$\frac{3}{8}, \frac{3}{5}$ is			
•	4"-4	$(10 \times 1 = 10 \text{ marks})$		
	^			
No of Person: 15 30 25. If $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ -1 & 1 & 2 \end{bmatrix}$ Wh	of dispersion and its coefficients of the dispersion and dispersion	60-60 $60-70$ $70-80110$ 115 125 . x^2-5x-6 .		
26. A man deposits a certain so years and amount to Rs.135	um of money into bank. It 65 in 10 years. Find the sur	t amounts to Rs.12325 in 8 m invested.		
27. What are the important func		them.		
28. Find the inverse of the matr	ix A =			
		$(6 \times 4 = 24 \text{ marks})$		
	Part IV ver any two questions. uestion carries 15 marks			
29. Solve the system of equation	ons with the help of matrice	es.		
2x - 2y + z = 1				
x + 2y + 2z = 2				
2x + y - 2z = 7				
30. Compute the trend values below. Also estimate the N	by the method of least number of sheep in 2009.	squares from the data given		
	2003 2004 2005 2006	5 2007 2008 2009		
No. of Sheep: 56	55 51 47 42	38 35 32.		
31. Explain any four methods	of random (probability) sa	mpling. $(15 \times 2 = 30)$		

 $(15 \times 2 = 30)$

Part II

Answer any eight questions. Each question carries 2 marks.

- 11. Solve x + y = 10 and xy = 24.
- 12. Define Power set. If set S is infinite set of 'n' elements, how many elements are in the power set?
- 13. $A = \{ x : x \text{ is natural number satisfy } 1 < x < 6 \}$ $B = \{ x : x \text{ is natural number satisfy } 6 \le x \le 10 \}$ Find $A \cup B$ and $A \cap B$
- 14. If the 5th and 10th terms of G.P are 32 and 1024 respectively, find the first term and the common ratio?
- 15. Let $P = \begin{bmatrix} 0 & 1 \\ 2 & 3 \end{bmatrix}$, $Q = \begin{bmatrix} -1 & 2 \\ 4 & 3 \end{bmatrix}$ and $R = \begin{bmatrix} 2 & -1 \\ 6 & 5 \end{bmatrix}$ Find P(Q+R) and PQ+PR, Hence prove P(Q + R) = PQ + PR.

16. If
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 3 \\ -1 & 1 \end{bmatrix} \begin{bmatrix} 3 \\ 4 \\ 2 \end{bmatrix}$$
 and $B = \begin{bmatrix} 0 & 2 & -1 \\ 1 & 3 & 4 \\ 0 & -2 & -3 \end{bmatrix}$ Show that $AB \neq BA$.

- 17. Prove that $A \cap (A \cup B) = A \cup (A \cap B)$ by means of Venn diagram.
- 18. Define Skewness. And Positive Skewness and Negative Skewness?
- 19. Find the first four central moments for the value given below:
- 8, 10, 12, 7, 18. Find coefficient of Skewness and measure of Kurtosis.
- 20. Define consumer price index number?

 $(8 \times 2 = 16 \text{ marks})$

Part III

Answer any six questions. Each question carries 4 marks

21. Solve the system of equations:

$$9x = 3y - 4z = 35$$
, $x + y - z = 4$, $2x - 5y - 4z + 48 = 0$

22. A club consist of members whose ages in A.P, the common difference being 3 months. If the youngest member of the club is 7 years old and the sum of the ages of all the members is 250 years, find the number of members in the Club?