1B3N16233		(Pages :2)	Reg. No:		
	EAROOK COLLE	GE (ALITONOMO	Name:US), KOZHIKODE		
			ntion, November 2016 inciples of Insurance		
		015 Admission onwa			
Max.	Time: 3 hours		Max. Marks: 8		
	Answer all ques	PART-A stions. Each question	n carries one mark		
1.	The cause that produces loss is	known as			
	a) Hazard		b) Peril		
	c) Risk		d) none of these		
2.	If $_{n}V_{x}=0.080$, $P_{x}=0.024$ and P_{x} :	$p_{n}^{1} = 0.2$, then $P_{x:n}^{1}$	$n_1 = \dots$		
	a) 0.08		b) 0.008		
2	c) -0.08		d) -0.008		
3.	The amount of premium payment is determined after an principle.				
4.	(a) expected value (b) ecor		quivalence (d) fair value.		
5.	Premiums are always paid in The contingent payment linked to the amount of loss is called				
6.	Write down the form of log uti		ss is carred		
7.	_		etary payments is called		
8.	The expected value of random prospects with monetary payments is called The amount of money that the insurer sets aside to meet future liabilities is called				
9.	is the satisfaction that a				
10.	Head office of the Oriental Ins	surance company is	situated in		
11.	Insurance contract related with a deductible amount is known as				
12.	Write down the form of fraction	onal power utility fu	inction.		
			$(12 \times 1 = 12 \text{ Marks})$		
		PART-B			
	Answer any seve	en questions. Each q	question carries two marks.		
13	Define pecuniary loss.	•			
14.	Define exponential utility fund	ction			
15.	Define prospective reserve				
16.	What is meant by valuation of	the policy?			
17.	Define net premium.				
18.	Define Hull insurance				
19.	Define professional indemnity	7.			
20.	Define equivalence principle.				
21.	Define risk averse.		in the second		
			$(7 \times 2 = 14 \text{ Marks})$		

PART-C

Answer any five questions. Each question carries six marks.

- 22. Distinguish between Life Insurance and General Insurance
- Consider a multiple decrement model with two causes of decrement, the forces of decrement are given by

$$\mu_x^{(1)}(t) = \frac{t}{100}, t \ge 0$$
$$\mu_x^{(2)}(t) = \frac{1}{100}, t \ge 0$$

Obtain expression for

- a) $f_{T,J}(t,j)$ b) $f_T(t)$ c) $f_J(j)$
- State and prove Jensen's Inequalities
- 25. Explain fully continuous whole life premium
- 26. Explain motor insurance.
- 27. Prove that $P_{x:n} = P_x + P_{x:n} (1 A_{x+n})$
- 28. Calculate the annual premium for a term assurance with a term of 10 years to a male aged 30, with a sum assured of Rs.200000, assuming AM92 ultimate mortality and interest of 6% p.a. Assume that the death benefit is payable at the end of the year of death
- 29. A 10-year term assurance with a sum assured of Rs.600,000 payable at the end of the year of death, is issued to a male aged 30 for a level annual premium of Rs.500. Calculate the prospective reserve at the end of the fifth year, ie., just before the sixth premium has been paid, assuming AM92 Ultimate mortality and 3% pa interest

 $(5 \times 6 = 30 \text{ Marks})$

PART-D

Answer any three questions. Each question carries eight marks.

- 30. Explain utility theory.
- 31. State and explain Thieles differential equation
- 32. A multiple decrement model with two causes of decrement has forces of decrement given by $\mu_x^{(1)}(t) = 1/(100-x-t)$ and $\mu_x^{(2)}(t) = 2/(100-x-t)$, t<100-x. If x = 50, obtain expression for

(i) $f_{T,J}(t,j)$ (ii) $f_{T}(t)$ (iii) $f_{J}(j)$ (iv) $f_{J/T}(j/t)$

- 33. Explain the history of insurance in India.
- 34. Explain (i) Apportionable premiums. (ii) Optimal insurance

 $(3 \times 8 = 24 \text{ Marks})$

1B3N16231		(Pages : 2)	Reg. No:
			Name:
	FAROOK COLLE	GE (AUTONOMOUS)	
		Sc Degree Examination,	
		03 - Statistical Estimat	
		015 Admission onwards)	поп
Max. Time: 3 hours		015 Admission onwards)	Max. Marks: 80
			THAN, HIAIRS, OU
			10%
	Part A (Answer A	ALL the questions. Each	n carries ONE mark)
	Fill in the blanks (Questions	s 1- 8)	
1.	The ratio of two sample varian	nces is distributed as	
2.	The square of any standard no		
3.	If t ₁ & t ₂ are two unbiased est	imators such that V(t ₁)	$=V(t_0)$ then t_0 is t_0 to
4.	The number of independent of	bservation in a distribut	ion is called
5.			uccess of a population using a
	sample of size 100with samp		
5.	The range of t- distribution is		
7.			n estimator is called
8.	The theory of estimation was	s founded by	
C	hoose the correct answer (Qu	estions 9-12)	
0	771		× ×
9.	The relation between the mea		quare distribution is
	(a) Mean = 2 Variance (b)2 N		
10.	(c) Mean = Variance(d) None If t is consistent estimator for		
O.	(a)t is also consistent estimate	5	tant autimotes 6-02
	(c) t ² is consistent estimator for		
11.	If $E(t) > \theta$, the parameter value		above
	(a) biased (b)unbiased (c)con		
12.	Formula for the confidence in		ariances of two normal
	population involves	iter var for the ratio of va	ariances of two normal
	(a)chi-square distribution(b)F	distribution(c) t distrib	oution(d)None of these
			$(12 \times 1 = 12)$
	Part B (Answer any SI	EVEN questions. Each	carries TWO marks.)
13.	Define Efficiency with an exa	ample	
4.	Distinguish between estimate	•	
15	Define convergence in probab	oility.	
16.	Write four properties of mle.		
7.	State Fisher-Neymman factor		
18.	Give an example of a consiste		ot unbiased.
19	Define statistic and parameter		
20. 21	Write the probability density		ribution.
21.	What do you mean by confide	ence interval?	F

 $(7 \times 2 = 14)$

20.

21.

Part C (Answer any SIX questions. Each carries FIVE marks.)

- Examine whether S^2 is unbiased for σ^2 . If not can you suggest an unbiased estimator for σ^2 when $X \to N(\mu, \sigma)$.
- Find m.l.e for Θ of frequency function $f(x, \Theta) = \Theta e^{-\Theta X}$, X > 0 $\Theta > 0$
- The mean & s.d of a sample of size 60 are found to be 145 and 40.construct 95% confidence interval for the population mean.
- Obtain the mgf of chi-square distribution and show that the distribution satisfies additive property.
- 26. If t is an estimate of a parameter θ , check whether t^2 is unbiased for θ^2 .
- 27. Estimate parameter p of a Binomial distribution using method of moments
- 28. State and prove Lindberg-Levy Central limit theorem
- 29. Explain with suitable example
 - (a)Consistent estimator
 - (b)Sufficient estimator

 $(6 \times 5 = 30)$

Part D (Answer any THREE questions. Each carries EIGHT marks.)

- 30. Let X_1, X_2, X_n is a random sample from a normal population with mean μ and variance σ^2 . Obtain the mle of μ and σ^2 .
- 31. Explain point & interval estimation with an example.
- If X_1, X_2, \dots, X_n is a random sample from a normal population with mean μ and variance σ^2 . Obtain the distribution of mean and variance.
- a) State and prove Chebychev's inequality
 b) Let X be a random variable taking values -1, 1 with probabilities 1/2 each. Using above inequality find the upper bound of P(| X | ≥ 1)
- Describe the method and fit the curve of the form $y = ax^b$ using least square method for the following data.

X: 0.5 1.5 2.5 3.5 4.5

Y: 3.2 9.0 27.6 80.4 250

 $(3 \times 8=24)$

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2016 ST3C03 - Statistical Inference

(2015 Admission onwards)

Max. Time: 3 hours

Max. Marks: 80

PART A

Answer all 12 questions. Each carries 1 mark.

Fill in the blanks (Questions 1-6)

1.	If X and Y are independent standard normal variates, then $V(X^2 + Y^2) =$				
2.	Random observations 12, 4, 24, 5, 15, 20, 15, 28, 18 are drawn from Uniform (0, θ).				
	The maximum likelihood estimator of θ based on the observations is				
3.	The critical value corresponding to 5% level of significance for one sided hypothesis				
	in large sample tests is				
4.	Equality of variances of two normal populations can be tested by test.				
5.	The statistical test used for testing the significance of population correlation				
	coefficient is				
6.	Chi-square test of goodness of fit was introduced by				
	Choose the correct answer (Questions 7-12)				
7.	Mean of student's t distribution with n degrees of freedom is				
	(a) n (b) 2 n (c) 0 (d) 1				
8.	Which property of an estimator is most desirable?				
	(a) Unbiasedness (b) Consistency (c) Efficiency (d) Sufficiency				
9.	Estimator of variance of normal population obtained by the method of moments is				
	estimator of population variance				
	(a) Unbiased (b) Consistent (c) Unbiased and consistent both (d) None of the above				
10.	Power of a test is related to				
	(a) Type I error (b) Type II error (c) Type I and II errors both (d) None of these				
11.	Degrees of freedom for chi-square in case of contingency table of order 5 X 4 are				
	(a) 9 (b) 20 (c) 12 (d) 19				
12.	The 99% shortest confidence interval for μ in $N(\mu, \sigma^2)$ when $\sigma^2 = 4$ based on				
	random sample of 100 observations with mean 64 is				
	(a) (63.484, 64.516) (b) (63.608, 64.392) (c) (63.671, 64.671) (d) (63.50, 64.50)				

Answer any 7 questions. Each question carries 2 marks

- 13. Define chi-square distribution. Find its moment generating function.
- 14. What is sufficient statistic? State factorization theorem on sufficiency.
- 15. Define (i) null and alternative hypotheses and (ii) size of a test.
- 16. A coin was tossed 400 times and head turned up 216 times. Test the hypothesis that the coin is unbiased.
- 17. Find an unbiased estimator of $e^{-\lambda}$ in Poisson (λ) distribution
- 18. Show that Max $(X_1, X_2, ..., X_n)$ is sufficient for estimating the parameter θ in Uniform $(0, \theta)$ distribution
- 19. Show that if F follows F(m, n), then $\frac{1}{F}$ follows F(n, m)
- 20. Find $100(1-\alpha)$ % shortest confidence interval of variance of normal population
- 21. Define MP test and state Neyman-Pearson lemma.

(7x 2 = 14 marks)

1811

PART C

Answer any 6 questions. Each question carries 5 marks

- 22. (i) What are two kinds of errors in testing a statistical hypothesis?
 - (ii) A population has the probability density function $f(x) = \frac{1}{4}$, $\theta 2 \le X \le \theta + 2$ and zero otherwise. To test the null hypothesis $\theta = 5$ against the alternative hypothesis $\theta = 8$ based on a sample of size one, say x. It is suggested to reject the hypothesis if $x \ge 6$. Find the power of the test.
- 23. Define t and F distributions. Establish the relation between t and F distributions
- 24. Derive the sufficient conditions for consistency of an estimator.
- 25. Find the maximum likelihood estimator of the parameter θ of the following distribution $f(x) = \frac{1}{2} e^{-|x-\theta|}, -\infty < x < \infty \text{ and } -\infty < \theta < \infty.$
- 26. Define interval estimation. Obtain the interval estimate of proportion of binomial population.
- 27. Stating the assumptions, describe student's t- test for paired samples.
- 28. Obtain chi-square statistic for a 2 X 2 contingency table under the independence of attributes.
- 29. Examine whether $\frac{1}{x} \sum (X \bar{X})^2$ is unbiased and consistent estimator of σ^2 in

PART D

Answer any 3 questions. Each question carries 8 marks

30. Explain the method of moments for estimating the parameters of a population. Estimate the parameters θ_1 and θ_2 of the following population with pdf by the method of moments

$$f(x) = \frac{1}{B(\theta_1, \theta_2)} x^{\theta_1 - 1} (1 - x)^{\theta_2 - 1}, 0 \le x \le 1, \theta_1, \theta_2 > 0$$

- 31. (i) Explain the large sample test for testing the equality of population proportions
 - (ii) In a sample of 600 men taken from a big city 400 are found to be smokers. In another sample of 900 men taking from another city 450 are smokers. Do the data indicate that there is a significant difference in the habit of smoking in the two cities? Use 5% level of significance.
- 32. (i) Given the sample values 4.5, 6.5, 3.8, 4.2, 7.7, 8.5, 9.4, 5.3, 3.9 from a normal distribution with mean μ and variance 4. Find the best critical region at 5% level of significance for testing
 H₀: μ = 4 against H₁: μ = 5.
 - (ii) Give the procedure for testing the equality of two normal population means based on independent samples when population variances are equal and unknown.
- (i) Explain the principle of maximum likelihood estimation.
 - (ii) Prove that the maximum likelihood estimator of the parameter θ of a population having pdf $(x) = \frac{2}{\theta^2} (\theta x)$, $0 < x < \theta$ for a sample of size one is 2x, x being the sample value. Show that the estimator is biased.
- 34. (i) Obtain 95 % confidence limits for the parameter μ in N(μ , σ^2) when σ^2 is unknown.
 - (ii) Explain chi-square test of goodness of fit.
 - (iii) Explain the concept of efficiency in estimation theory

 $(3 \times 8 = 24 \text{ marks})$