1B1N19073

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester B.Sc Degree Examination, November 2019

BMT1C01-Mathematics-I

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A

A maximum of 20 marks can be earned from this section Answer all question. Each question carries 2 marks

- 1. The position of a bus at a time x is $y = 3x^2 + 8x$, for x > 0. At what time is the instantaneous velocity 11m/s?
- 2. Evaluate $\lim_{x\to 2} \frac{(x^2+x-6)}{(x^2+2x-8)}$
- 3. If $h(x) = x^3 f(2x^2)$, find h'(x).
- 4. Find $\int \frac{dx}{(3x+1)^5}$.
- 5. Prove the constant multiple rule for anti-differentiation.
- 6. Show that there is a number x_0 such that $x_0^5 x_0 = 3$
- 7. A spherical balloon is being inflated. Find a general formula for the instantaneous rate of change of the volume V with respect to the radius .
- 8. Verify Rolle's Theorem for f(x) = cosx on $\left[\frac{\pi}{2}, \frac{3\pi}{2}\right]$.
- 9. Find $\sum_{j=3}^{102} (j-2)$.
- 10. If $f(x) = \begin{cases} 2, 1 \le x < 4 \\ 5, 4 \le x < 7 \\ 1, 7 \le x \le 10 \end{cases}$ find $\int_{1}^{10} f(x) dx$.
- 11. Let $F(x) = \int_0^{x^2} \frac{dt}{1+t^2}$. Find F'(x).
- 12. Find the average value of $f(x) = x^2 + 1$ on [1,2].

(Maximum Marks 20)

Section B

A maximum of 30 marks can be earned from this section Answer all question. Each question carries 5 marks

- 13. Calculate an approximate value for $\frac{2}{\sqrt{0.99}+(0.99)^2}$.
- 14. Find the equation of the tangent line to the curve $2x^6 + y^4 = 9xy$ at the point (1,2).
- 15. Find the rate of change of $y = (x^2 + 1)^{27}(x^4 + 3x + 1)^8$ with respect to x.
- 16. Find $\lim_{x\to\pi}(x-\pi)^{cotx}$.
- 17. Prove that, for any positive numbers a and b, $\frac{a+b}{2} \ge \sqrt{ab}$.
- 18. A ball of radius r is cut into three pieces by parallel planes at a distance of r/3 on each side of the center. Find the volume of each piece.
- 19. An object on the x-axis has velocity $v = 2t t^2$ at time t. If it starts out at x = -1, at time t = 0, where is it at time t = 3? How far has it travelled?

(Maximum Marks 30

Section C (Answer any One Question. Each carries ten Marks)

- 20. Sketch the graph of $f(x) = \frac{x}{1+x^2}$.
- 21. Find the area between the graphs $x = y^2 2$ and y = x.

 $(1 \times 10 = 10 \text{ Mark})$

B1N19072

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester B.Sc Mathematics Degree Examination, November 2019

BMT1B01- Basic Logic and Calculus - I

(2019 Admission onwards)

ime: 2.5 hours

Max. Marks: 80

Section A

A maximum of 25 marks can be earned from this section Each question carries 2 marks

Write the converse and contrapositive of the implication 'If the radio is working, then the battery is good'.

Prove that $\sim (p \to q) \equiv p \land \sim q$

Determine the truth value of each proposition, where $P(x, y) : x^2 > y$, and x and y are real numbers. (a) $(\exists x)(\exists y) P(x, y)$ (b) $(\forall y)(\exists x) P(x, y)$

Find the domain of the function $f(x) = \frac{2x + \sqrt{x+1}}{3x-1}$

Find $\lim_{x\to 0} \frac{\sin 5x}{2x}$

Find the differential of the function $f(x) = x \tan x$, at $x = \frac{\pi}{4}$

Find the linearization of $f(x) = 4x^3$ at x = 3.

State the mean value theorem for continuous functions.

Find the interval in which $f(x) = x^2 - 6x + 5$ is increasing.

- 0. Determine where the graph of the function $f(x) = x^3 6x$, is concave upward and where it is concave downward.
- 1. Find the equation of tangent line to the graph of the function $f(x) = 2 x^4$ at the point (1,2).
- 2. Evaluate $\sum_{k=1}^{3} \frac{k-3}{k}$
- 3. Graph the function $f(x) = -x^2$ in [0, 2]
- 4. Find the average value of $f(x) = 3x^2 1$ in [0, 4].
- 5. Find the derivative of the function $f(x) = \int_1^x \frac{1}{1+x^2} dx$

Section B.

A maximum of 35 marks can be earned from this section Each question carries 5 marks

- 16. Define a tautology and determine whether $(p \rightarrow \sim q) \leftrightarrow (q \rightarrow \sim p)$ is a tautology.
- 17. State and prove distributive laws of logic.
- Show that the function f(x) = |x|, is differentiable everywhere except at x = 0.
- 19. Using the precise definition of limit, prove that $\lim_{x\to 2} \frac{x^2-4}{x-2} = 4$
- 20. Find the dimensions of a rectangle of area 144 m² that has he smallest possible perimeter.
- 21. Find all asymptotes of the graph of the function $f(x) = \frac{x^2 3}{x^2 1}$
- 22. Find the value of 'c' whose existence is guaranteed by the mean value theorem for integrals for the function $f(x) = \sqrt{x+3}$ on [1,6].
- 23. A car moves along a straight road with velocity function $v(t) = t^3 + 2t 3$, $0 \le t \le 8$, where v(t) is measured in feet per second. Find the displacement of the car between t = 1 and t = 4.

Section C Answer any two questions Each question carries 10 marks

- 24. (a) Prove by contradiction: $\sqrt{2}$ is an irrational number.
 - (b) Prove that $n^4 n^2$ is divisible by 3.

25. (a) Let
$$f(x) = \begin{cases} ax + b, & \text{if } x < 1 \\ 4, & \text{if } x = 1 \\ 2ax - b, & \text{if } x > 1 \end{cases}$$

Find the values of a and b which will make the function continuous on $(-\infty, \infty)$

- (b) Show that the equation $f(x) = x^3 + x 1$, has exactly one zero in (0,1)
- 26. (a) Find all relative extreme values and absolute extreme values of the function

$$f(x) = -x^3 + 12x + 5$$
, where $-3 \le x \le 3$.

- (b) Find the points of inflection of $f(x) = (x-1)^{\frac{1}{3}}$
- 27. (a) State and prove fundamental theorem of integral calculus (First form).
 - (b) Find the area of the region under the graph of $f(x) = 4 x^2$ bounded by X-axis.