D	21	
Pages	31	

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Degree Examination, March /April 2019 BMAT4B04 - Theory of Equations , Matrices & Vector Calculus

(2017 Admission onwards)

ne: 3 hours

Max. Marks: 80

PART - A

Answer all questions. Each question carries one mark

- 1. Give an equation whose roots are the negatives of the roots of $x^4 - 3x^3 + x^2 - x + 2 = 0.$
- 2. Find \sum_{α}^{1} if α , β , γ are the roots of $x^{3} + \alpha x^{2} + bx + c = 0$.
- 3. Find the real root of $x^3 8x^2 + 22x 20 = 0$ if 3 + i is a root.
- 4. Give the minimum number of imaginary roots of $x^5 x^4 4x 1 = 0$, obtained by using Descartes rule of sign.
- 5. Define nullity of a Matrix.
- 6. Find the rank of $\begin{bmatrix} 1 & 3 & 2 \\ 3 & 9 & 6 \end{bmatrix}$.
- 7. Find the Characteristic roots of $\begin{bmatrix} -2 & 1 \\ 1 & 2 \end{bmatrix}$.
- 8. Write the normal form of $\begin{bmatrix} 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.
- 9. Find the value of λ so that the vectors a=2i+4j+5k, $b=3i+2j-\lambda k$ are perpendicular.
 - 0. Show that the vector $\mathbf{u}(t) = (\sin t)\mathbf{i} (\cos t)\mathbf{j} + 5\mathbf{k}$ has constant length.
- 1. If $T = (\cos t)i (\sin t)j$, find the principal unit normal vector N.
- 2. Give a vector formula for curvature in terms of velocity and acceleration.

 $(12 \times 1 = 12 Marks)$

PART - B

Answer any nine questions. Each question carries two marks

- 3. Find a rational cubic equation whose roots are 3, 2 i.
- 4. Remove the second term of the equation $x^4 + 8x^3 + x 5 = 0$.
- 5. Transform the equation $x^3 \frac{5}{2}x^2 \frac{7}{18}x + \frac{1}{108} = 0$ into one with integral coefficients and the leading coefficient unity.

- 16. If α , β , γ are the roots of the equation $ax^3 + bx^2 + cx + d = 0$, find the value of $\sum \frac{\alpha}{\beta \gamma}$.
- 17. If A is a non-singular matrix and A' its transpose, show that rank(A') = rank(A).
- 18. Reduce to Echelon form and find the rank of the matrix $\begin{bmatrix} 0 & 2 & 4 & 2 \\ 1 & 2 & 2 & 3 \\ 3 & 4 & 6 & -1 \end{bmatrix}$.
- 19. Solve the homogeneous system of equations x 2y + 3z = 0, 2x + 5y + 6z = 0.
- 20. Find the inverse of $\begin{bmatrix} 3 & -4 \\ -5 & 7 \end{bmatrix}$ using elementary column transformations.
- 21. Find a unit vector perpendicular to the plane of P = (2, -2, 1), Q(3, -1, 2) and R(3, -1, 1).
- 22. Find the parametric equation of the line passing through the points P = (-2, 0, 3) and Q(3, 5, -2).
- 23. Find the unit tangent vector to the curve $\mathbf{r}(t) = t \mathbf{i} + (t^3)\mathbf{j}$ at the point (1, 1, 0).
- 24. Find length of the Catenary $\mathbf{r}(t) = t \mathbf{i} + (\cosh t) \mathbf{j}$ from t = 0 to t = 1.

 $(9 \times 2 = 18 Marks)$

PART - C Answer any six questions. Each question carries five marks

- 25. Solve the equation $x^5 x^4 4x^2 + 7x 3 = 0$, given that it has multiple roots.
- 26. Solve the equation $x^4 + 15x^3 + 70x^2 + 120x + 64 = 0$. Given that the roots are in GP.
- 27. If α , β , γ are the roots of the equation $2x^3 + 3x^2 x 1 = 0$, find the equation whose roots are $\frac{1}{\alpha 1}$, $\frac{1}{\beta 1}$, $\frac{1}{\gamma 1}$ and hence find $\frac{1}{\alpha 1} + \frac{1}{\beta 1} + \frac{1}{\gamma 1}$.
- 28. Show that interchange of a pair of rows of a matrix does not change its rank.
- 29. If A is a square matrix of order n, prove that the sum of all the Eigen values of A is the trace of A.
- 30. Find the eigen values and the eigen vector corresponding to any one of the eigen values

of
$$\begin{bmatrix} 3 & 0 & 0 \\ 5 & 4 & 0 \\ 3 & 6 & 1 \end{bmatrix}$$
.

- 31. Find the distance from the point (2, -3, 4) to the plane x + 2y + 2z = 13.
- 32. Convert the spherical coordinates $\left(\sqrt{2}, \frac{\pi}{4}, \frac{\pi}{2}\right)$ in to rectangular coordinates and cylindrical coordinates.
- 33. Find the length of the curve $x = \sin t t \cos t$, $y = \cos t + t \sin t$, $z = t^2$ from (0, 1, 0) to $(-2\pi, 1, 4\pi^2)$.

 $(6 \times 5 = 30 Marks)$

PART – D Answer any two questions. Each question carries ten marks

34. (i) Solve
$$6x^6 - 35x^5 + 56x^4 - 56x^2 + 35x - 6 = 0$$
.

- (ii) Solve by Cardan's method: $x^3 18x 35 = 0$.
- 35. (i) Test for consistency and solve x + y + 2z = 4, 2x y + 3z = 9, 3x y z = 2.
 - (ii) Show that if λ is a non-zero characteristic root of a non-singular matrix A, then λ^{-1} is a characteristic root of A^{-1} .
- 36. (i) Find the length of the curve $\mathbf{r}(t) = (\cos^3 t)\mathbf{j} + (\sin^3 t)\mathbf{k}$ from t = 0 to $t = \frac{\pi}{2}$.
 - (ii) Show that if f is a twice differentiable function of x, then the curvature of the graph

of
$$y = f(x)$$
 is $\kappa(x) = \frac{|f''(x)|}{\{1 + [f'(x)]^2\}^{3/2}}$.

 $(2 \times 10 = 20 Marks)$

B4M19197(A)

(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Degree Examination, March /April 2019 BMAT4C04(CH) – Mathematics

(2017 Admission onwards)

ime: 3 hours

Max. Marks: 80

PART-A

Answer all the twelve questions Each question carries 1 mark

- 1. Find the Laplace transform of unit step function.
- 2. Find $L^{-1}(\frac{5s}{s^2+25})$.
- 3. Examine whether x|x| is odd, even or neither odd nor even.
- 4. Find the smallest positive period p of $\sin 2x$.
- 5. Show that F = yzi + zxj + xyk is solenoidal.
- 6. Find a normal vector to the line x 2y + 2 = 0.
- 7. Find the parametric representation of a straight line through a point (4,2,0) in the direction of the vector i + j.
- 8. Find the domain and the boundary of the domain of the function $f(x,y) = \sqrt{y-x}$.
- 9. The plane x = 1 intersect the paraboloid $z = x^2 + y^2$ in a parabola. Find the slope of the tangent to the parabola at (1,2,5).
- 10. Let $f(x, y) = 100 x^2 y^2$ find the level curve of f(x, y) = 75.
- 11. Compute $8 +_{10} 6$ using indicated modular addition.
- 12. Let * be a binary operation on Z letting a * b = a b check whether * is associative or not .

 $(12 \times 1 = 12 \text{ marks})$

PART-B

Answer any seven questions, Each question carries 2 marks

- 13. Find $L^{-1}(\frac{e^{-3s}}{(s-1)^3})$.
- 14. Find $L(e^{2t} \sin 2t \sin 3t)$.
- 15. Find a_0 in the Fourier series expansion $f(x) = \begin{cases} -2x & -\pi < x < 0 \\ 2x & 0 < x < \pi \end{cases}$ $p = 2\pi$.
- 16. Find the parametric representation of a straight line through a point (4,2,0) in the direction of the vector i + j.
- 17. Show that $\nabla^2 \left(\frac{x}{r^2} \right) = \frac{-2x}{r^4}$.
- 18. If F is a differentiable vector function and \emptyset is a differentiable scalar function then $div(\emptyset F) = (grad \emptyset) \cdot F + \emptyset div F$.
- 19. Using chain rule express $\frac{\partial w}{\partial u}$ and $\frac{\partial w}{\partial v}$ in terms of u and v if w = xy + yz + zx, x = u + v, y = u v, z = uv.
- 20. Find all solutions in C of the equation $z^2 = i$.

21. Let + and · be the usual binary operation of addition and multiplication on the set Z an $H = \{n^2 | n \in \mathbb{Z}^+\}$. Determine whether H is closed under addition and multiplication.

 $(7 \times 2 = 14 \text{ marks})$

PART-C

Answer any six questions, Each question carries 5 marks

22. Show that
$$L(sinat) = \frac{a}{s^2 + a^2}$$
.

23. Find
$$L^{-1}\left(\frac{-s-10}{(s^2-s-2)}\right)$$
.

24. Find two half range expansions of the function f(x) = x, 0 < x < 2.

25. Find the angle between the surfaces $x^2 + y^2 + z^2 = 9$ and $z = x^2 + y^2 - 3$ at (2, -1, 2)

26. A particle moves so that its position vector is given by $r(t) = \cos \omega t \, i + \sin \omega t \, j$ where a constant. Show that the velocity of the particle is perpendicular to r.

27. If
$$Z = x + f(u)$$
 where $u = xy$ show that $x \frac{\partial z}{\partial x} - y \frac{\partial z}{\partial y} = x$.

28. Let G be a group with binary operation * then prove that

$$a*b = a*c \Rightarrow b = c$$
 and $b*a = c*a \Rightarrow b = c$.

29. Complete the table so that * is a commutative binary operation on the set $S = \{a, b, c, d\}$

*	a	b	C	d
a	b			
b	d	a		
С	a	c	d	
d	a	b	Ь	c

 $(6 \times 5 = 30 \text{ marks})$

PART-D

Answer any three questions, Each question carries 8 marks

- 30. Evaluate the Laplace Transforms of t^n using definition of Laplace transforms.
- 31. Find the Fourier series expansion of the function f(x), which is periodic with the period which in $-\pi < x < \pi$ given by $(x) = \{ -x + 1, -\pi < x \le 0 \\ x + 1, 0 < x \le \pi \}$.

Deduce that
$$\frac{1}{1^2} + \frac{1}{3^2} + \frac{1}{5^2} = \frac{\pi^2}{8}$$
.

- 32. Prove that $curl(curl F) = grad div F \nabla^2 F$.
- 33. (a) If f(u, v, w) is differentiable and u = x y, v = y z, w = z x then show that $\frac{\partial f}{\partial x} + \frac{\partial f}{\partial y} + \frac{\partial f}{\partial z} = 0.$
 - (b) Show that $f(x, y, z) = x^2 + y^2 2z^2$ satisfies the Laplace equation.
- 34. (a) Define an abelian group.
 - (b) Show that $\langle nZ, + \rangle$ is a group and $\langle nZ, + \rangle \cong \langle Z, + \rangle$.

(3 x8 = 24 marks)

1B4M19197(B)

(Pages: 3)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Degree Examination, March /April 2019 BMAT4C04(CS) - Mathematics

(2017 Admission onwards)

Time: 3 hours

Max. Marks: 80

Part-A Answer all Questions. Each question carries 1 Mark

Laplace transform of 1 is

Give a periodic function with period 1.

Give an example for even function and odd function.

If
$$\vec{r} = \cos(x+y)i + x^2j + 2xyk$$
, find $\frac{\partial \vec{r}}{\partial x}$ and $\frac{\partial \vec{r}}{\partial y}$.

Find grad f if f(x, y, z) = xyz at (1,1,1).

Find the tangent vector to the circle $x = \cos t$, $y = \sin t$, z = 0 at $t = \frac{\pi}{2}$.

The domain of the function $w = \sqrt{y - x^2}$ is

Find
$$\lim_{(x,y)\to(0,0)} \frac{x^2+2y+1}{x+1}$$
.

Define the level surface of a function $f: \mathbb{R}^3 \to \mathbb{R}$.

Prove that $p \lor \neg p$ is a tautology.

Translate the statement " $\forall x \in R (x^2 \ge 0)$ " into English.

What is the truth value of $\neg p \rightarrow q$ if p: " $n^2 < 0$ for integer n." and q: "5 is a prime".

 $(12 \times 1 = 12 Marks)$

Part-B

Answer any seven Questions. Each question carries 2 Marks

Find the inverse Laplace transform of $\frac{s-3}{s^2-4}$.

Find the Fourier coefficient a_0 for the function $f(x) = \begin{cases} -1 & -\pi < x < 0 \\ 1 & 0 < x < \pi \end{cases}$

Find the unit normal vector to the surface $x^2 + y^2 + z^2 = 1$ at $(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}})$.

- 16. Find the length of the circular helix $\overrightarrow{r(t)} = cost \ i + sin t \ j + tk$ from (1,0,0) to (1,0,2 π).
- 17. Find the directional derivative of $f(x, y, z) = x^2 + y^2 x$ in the direction of i + j + k at the point (1)
- 18. Find $\frac{dy}{dx}$ if $y^2 x^2 \sin xy = 0$.
- 19. Solve the partial differential equation $u_{yy} = u$
- 20. State the converse and inverse of the proposition "If Jhon is a poet, then he is poor".
- 21. Express the statement "Every student in this class has visited either Ooty or kodaikanal" using predand quantifiers.

 $(7 \times 2 = 14 M$

Part-C Answer any six Questions. Each question carries 5 Marks

- 22. Find the $\mathcal{L}{f(t)}$ where $f(t) = \sinh t \cos t$.
- 23. Find the half range Fourier sine series of the function $f(x) = \pi x$ $0 < x < \pi$.
- 24. If \vec{V} is a differentiable vector, prove that $div(curl \vec{V}) = 0$.
- 25. Find the value of a if $\vec{V} = (x + 3y)i + (y 2z)j + (x + az)k$ is incompressible.
- 26. Show that $f(x,y) = \begin{cases} \frac{2xy}{x^2 + y^2} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$ is not continuous at the origin.
- 27. Find all the second order partial derivatives of $f(x, y) = x \cos y + e^{xy}$.
- 28. Using logical equivalence show that $(p \land q) \rightarrow (p \lor q)$ is a tautology.
- 29. Construct the truth table for the proposition $(p \rightarrow q) \leftrightarrow (\neg p \lor q)$.

 $(6 \times 5 = 30 M)$

Part-D Answer any 3 Questions. Each question carries 8 Marks

30. (a) Find the inverse Laplace transform of $\frac{s-2}{s^2-2s+5}$.

(b) Find the Laplace transform of the function
$$f(x) = \begin{cases} t & 0 \le t \le 1 \\ 1 & 1 \le t \le 2 \\ 0 & t > 2 \end{cases}$$

31. Find the Fourier series expansion of $f(x) = \begin{cases} -k & -\pi < x < 0 \\ k & 0 < x < \pi \end{cases}$, $f(x+2\pi) = f(x)$.

path of a moving particle at time t is given by the vector

$$\vec{r} = (\sin t - t\cos t) i + (\cos t + t\sin t) j + t^2 k.$$

Find the speed and acceleration of the particle.

Find the tangential and normal acceleration.

Let
$$w = f(x, y)$$
, $x = u(r, s)$ and $y = v(r, s)$. Write down the chain rule to find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$.

$$w = (x+y)^2$$
, $x = r+s$ and $y = rs$. Find $\frac{\partial w}{\partial r}$ and $\frac{\partial w}{\partial s}$.

Check whether $(p \to r) \land (q \to r)$ and $(p \land q) \to r$ are logically equivalent or not.

State and prove absorption law of logic.

 $(3 \times 8 = 24 Marks)$

1B4M19197(D)

/ 179	an
(Pages	41
11 4203	41

Reg.	N	0:														 	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Degree Examination, March /April 2019 BMAT4C04(ST) – Mathematics

(2017 Admission onwards)

Time: 3 hours

Max. Marks: 80

Section A Answer all the twelve questions. Each question carries 1 mark.

- 1. By definition Laplace transform of f(t), $\mathcal{L}[f(t)] =$
- 2. $\mathcal{L}[t^a], a > 0$ is
- 3. Define curl of a vector valued function.
- 4. Find the vector (in components) whose initial point is (-1, 5, 8) and terminal point is (1, 4, 6).
- 5. Write Cauchy-Schwarz inequality.
- 6. Find the parametric representation of the straight line y = 2x + 3, z = 7x.
- 7. Find a vector normal to the surface ax + by + cz = d, where a, b, c and d are constants.
- 8. Define level curves.
- 9. Write the domain of the function $\frac{1}{\sqrt{16-x^2-y^2}}$.
- 10. Express $\frac{4+i}{2-3i}$ in the form a+ib.
- 11. Write Im z in terms of \bar{z} .
- 12. Define interior point of a set S in the complex plane.

 $(12 \times 1 = 12 Marks)$

Section B Answer any seven out of Nine questions. Each question carries 2 marks.

13. Show that
$$\mathcal{L}[coshat] = \frac{s}{s^2 - a^2}$$
.

14. Find $\mathcal{L}[\sin^2 4t]$.

15. Define periodic function. Give one example.

16. Find the resultant (in components) and its magnitude

$$p = [1, 2, 0]$$
 $q = [0, 4, -1]$ $u = [4, 0, -3]$ $v = [6, 2, 4].$

- 17. Find the moment vector \mathbf{m} and the moment \mathbf{m} of a force $\mathbf{p} = [1, 2, 3]$ about a point Q(0, 1, 1) when \mathbf{p} acts on a line through A(1, 0, 3).
- 18. Evaluate $\lim_{(x,y)\to(0,0)} \frac{x^2-xy}{\sqrt{x}-\sqrt{y}}$.
- 19. Find f_y if $f(x, y) = \frac{2y}{y + \cos x}$.
- 20. Solve the partial differential equation $u_y = (coshx)yu$.
- 21. Find $Arg\left(\frac{i}{-2-2i}\right)$.

 $(7 \times 2 = 14 Marks)$

Section C Answer any six out of Eight questions. Each question carries 5 marks.

- 22. Prove that $\mathcal{L}[t^n] = \frac{n!}{s^{n+1}}, s > 0$ when n=1, 2, 3...
- 23. Find $\mathcal{L}^{-1}\left[\frac{1}{(s+a)(s+b)}\right]$,
- 24. Expand $f(x) = \sin x \ 0 < x < \pi$ as a half range cosine series.
- 25. Find the total length of the hypocycloid $r(t) = [a \cos^3 t, a \sin^3 t]$.
- 26. Let v = [x, -y, z] be the velocity vector of a steady fluid flow. Is the flow irrotational? Incompressible? Find the streamlines.
- 27. Show that the function $f(x,y) = \frac{2x^3y}{x^6+y^2}$ has no limit as $(x,y) \to (0,0)$.
- 28. Prove that
 - a) z is real if and only if $\bar{z} = z$
 - b) z is either real or pure imaginary if and only if $\bar{z}^2 = z^2$.
- 29. Find all values of $(-1)^{\frac{1}{3}}$.

 $(6 \times 5 = 30 Marks)$

Section D

Answer any three out of five questions. Each question carries 8 marks.

- 30. Find the Fourier series representing x in the interval $[-\pi, \pi]$. Hence deduce that $1 \frac{1}{2} + \frac{1}{5} \frac{1}{7} + \cdots = \frac{\pi}{4}$.
- 31. Find the Fourier series of the function $f(x) = \begin{cases} 1+x, & \text{if } -1 < x < 0 \\ 1-x, & \text{if } 0 \le x < 1 \end{cases}$ of period p = 2L = 2.
- 32. a) Find the directional derivative of $f = x^2 + y^2 + z^2$ at P: (2, -2, 1) in the direction of [-1, -1, 0].
 - b) Find the divergence of the function $(x^2 + y^2 + z^2)^{-\frac{3}{2}}[x, y, z]$.
- 33. a) Find the values of $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ of $\frac{1}{x} + \frac{1}{y} + \frac{1}{z} 1 = 0$ at (2,3, 6).
 - b) Evaluate $\frac{\partial z}{\partial u}$ in terms of u and v where $z = 4e^x \ln y$, $x = \ln(u \cos v)$, $y = u \sin v$.
- 34. Prove that for any two complex numbers z_1, z_2

 $|z_1+z_2| \le |z_1|+|z_2|$. Using this also prove $|z_1+z_2| \ge \big||z_1|-|z_2|\big|$. $(3\times 8=24\ Marks)$

10	46	1	10
19	13	111	(C)

(Pages: 3)	Re
(1 4803.3)	110

Nama

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Degree Examination, March /April 2019 BMAT4C04(PH) - Mathematics

(2017 Admission onwards)

3 hours

Max. Marks: 80

Part A Answer all questions. Each question carries 1 Mark.

- When n is a positive integer, what is the reduction formula for the laplace transform $L(t^n)$.
- State the first shifting theorem; shifting on x-axis.
- What is the volume of a parallelepiped whose co terminal edges are \overline{a} , \overline{b} and \overline{c} .
- 4. Find the resultant of the given vectors $\vec{a} = [4, -2, -3], \vec{b} = [8, 8, 1]$ and $\vec{c} = [-12, -6, -2]$.
- 5. Find a unit vector perpendicular to the plane 4x + 2y + 4z = -7.
- 6. Let f(x) be a function defined on $[0, \pi]$, then what is the half range Fourier sine series for f(x).
- 7. Find the fundamental period of the function e^x .
- 8. What is the order of the semi linear partial differential equation $u_{xx} + 2u_{xy} + 17u_{yy} = 0$.
- 9. Let $f(x) = x \sin x$ be a function defined on $[-\pi, \pi]$, then show that f(x) is even.
- 10. Describe the domain of the function $f(x, y) = \sqrt{y x^2}$.
- 11. Find the partial derivative of $f(x, y) = x^2 + 3xy + y 1$ with respect to x at a point (4,-5).
- 12. Define a level curve.

 $(12 \times 1=12 \text{ marks})$

Part B Answer any SEVEN questions. Each question carries 2 Marks.

- 13. Find the Laplace transform $L(e^{-2t}\cos t)$.
- 14. Find the inverse Laplace transform $L^{-1} \left[\frac{1}{(s-1)^3} \right]$.
- 15. Find the Laplace transform $L(sin^2t)$ using Laplace transform of derivatives.

- 16. Find the Fourier sine series for the function f(x) = x in $[0, \pi]$
- 17. Show that [3,5,9]; [73,-56,76] and [-4,7,-1] are linearly independent.
- 18. Show that $F = yz\overline{i} + xz\overline{j} + xy\overline{k}$ is solenoidal.
- 19. Define a conservative field.
- 20. Show that the function $u = x^2 y^2$ is a solution of the two dimensional Laplaces equation
- 21. State the one dimensional wave equation?

 $(7 \times 2 = 14 \text{ Mar})$

Part C Answer any SIX questions. Each question carries 5 Marks.

- 22. Solve the initial value problem y'' + 4y' + 3y = 0, given y(0) = 3 and y'(0) = 1.
- 23. Find the inverse Laplace transform of $L^{-1} \left[\frac{e^{-3s}}{(s-1)^4} \right]$.
- 24. Find the unit tangent vector to the curve $x = t^2 + 1$, y = 4t 3, $z = 2t^2 6t$ at the point t = 2
- 25. Prove that the points $4\overline{i} + 8\overline{j} + 12\overline{k}$; $2\overline{i} + 4\overline{j} + 6\overline{k}$; $3\overline{i} + 5\overline{j} + 4\overline{k}$ and $5\overline{i} + 8\overline{j} + 5\overline{k}$ are coplanar.
- 26. Find the directional derivative of $f = x^2 + y^2$ at (1,1) in the direction of 2i 4j.
- 27. If f(x) = -1 + x when $\pi < x < 0$ and f(x) = 1 + x when $0 < x < \pi$ and $f(x + 2\pi) = f(x)$ then find the Fourier series.
- 28. Find the partial derivative of f with respect to x and y where $f(x, y) = x \cdot \cos(xy)$.
- 29. Solve the partial differential equation $u_x 4 = 0$.

(6 x 5=30 Marl

Part D Answer any THREE questions. Each question carries 8 Marks.

- 30. Find the Fourier series for the function $f(x) = e^{x} in[-\pi, \pi]$ and $f(x+2\pi) = f(x)$.
- 31. If \bar{a} is a constant vector, then find the divergent and curl of $\bar{a} \times r$, where $\bar{r} = x\bar{i} + y\bar{j} + z\bar{k}$.
- 32. Solve $y'' + 2y' + 2y = \delta(t \pi)$, given y(0) = 1 and y'(0) = 0.
- Write the chain rule and find the partial derivative of $\omega = x + 2y + z^2$ with respect to r and s in terms of r and s, where $x = \frac{r}{s}$, $y = r^2 + Ins$ and z = 2r.
- 34. Applying the limit definition find $\lim_{(x,y)\to(0,0)} \left[\frac{4xy^2}{x^2 + y^2} \right]$ if it exist. (3x8 = 24 Marks