M18079

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Mathematics Degree Examination, March 2018 BMAT2B02 - Calculus

(2017 Admission onwards)

. Time: 3 hours

Max. Marks: 80

PART-A

(Answer all questions. Each question carries one mark)

Define critical point of a function.

Give an example of a function which is increasing on $(0, \infty)$.

When is a curve said to be concave up at or near a point on the curve?

A line x = a is a vertical asymptote of the graph of a function f(x) if

The production level (if any) at which average cost is smallest is a level at which the average cost equals

Find dy if $y = \cos 5x$.

Define the norm of a partition of a closed bounded interval.

If
$$\int_{-1}^{1} f(x)dx = 3$$
 and $\int_{-1}^{1} g(x)dx = 4$, then $\int_{-1}^{1} [5f(x) - 3g(x)]dx = \cdots$

If f is integrable on [a, b], then its average value on [a, b] is given by....

Find
$$\frac{dy}{dx}$$
 if $y = \int_0^x \frac{2t}{1+t^2} dt$.

$$\int_{-1}^{1} t^3 (1+t^4)^3 dt = \cdots$$

If f is smooth on [a, b], then length of the curve y = f(x) from x = a to x = b is

 $(12 \times 1 = 12 \text{ Marks})$

PART-B

(Answer any seven questions. Each question carries two marks)

Find the absolute extrema values of the function $f(x) = 8x - x^3$ on [-2, 1].

State the first derivative test for increasing and decreasing functions.

Using Sandwich theorem, find the asymptotes of the curve $y = 2 + \frac{\sin x}{x}$.

Find the linearization of $f(x) = \cos x$ at $x = \frac{\pi}{2}$.

Using an area, evaluate the definite integral $\int_a^b x \, dx$, 0 < a < b.

Find the average value of $f(x) = x^2 - 6x + 8$ on [0, 3].

Find $\frac{d}{dx} \int_0^{\sqrt{x}} \cos t \, dt$.

- 20. Find the area between the curves $y = \sec^2 x$ and $y = \sin x$ from x = 0 to $x = \frac{\pi}{4}$.
- Show that the centre of mass of a straight, thin strip or rod of constant density lies half way between its two ends.

 $(7 \times 2 = 14 \text{ Marks})$

PART-C

(Answer any six questions. Each question carries five marks)

- 22. Verify Rolle's Theorem for the function $f(x) = (x a)^m (x b)^n$, where m and n being positive integers and $x \in [a, b]$.
- 23. Find two positive numbers whose sum is 20 and whose product is as large as possible.
- 24. Show that the points of inflection of the curve $y^2 = (x a)^2(x b)$ lie on the line 3x + a = 4b.
- 25. Find the area of the region between the curve $y = 4 x^2$, $0 \le x \le 3$, and the x-axis.
- 26. Find the volume of the solid that lies between planes perpendicular to the x-axis at x = 0 and x = 4, where the cross sections perpendicular to the x-axis on the interval $0 \le x \le 4$ are squares whose diagonals run from the parabola $y = -\sqrt{x}$ to the parabola $y = \sqrt{x}$.
- 27. Find the volume of the solid formed by the revolution about the major axis of the ellipse $\frac{x^2}{16} + \frac{y^2}{9} = 1$.
- 28. Find the length of the curve $y = \log \sec x$ between the points given by x = 0 and $x = \frac{\pi}{4}$.
- 29. The line segment x = 1 y, $0 \le y \le 1$, is revolved about the y-axis to generate a cone. Find its lateral surface area.

 $(6 \times 5 = 30 \text{ Marks})$

PART-D

(Answer any three questions. Each question carries eight marks)

- 30. Using the algorithm for graphing, graph the function $y = x^5 5x^4$. Include the coordinates of any local extreme points and inflection points.
- 31. A square piece of tin of side 12cm is to be made into a box without top, by cutting a square from each corner and folding up the flaps. What should be the side of the square to be cut off so that the volume of the box is maximum?
- 32. Using limits of Riemann sums, establish the equation $\int_a^b x^2 dx = \frac{b^3}{3} \frac{a^3}{3}$.
- 33. Show that the length of the arc of the curve $27y^2 = 4x^3$ measured between the origin and the point $(6, 4\sqrt{2})$ is equal to $2(3\sqrt{3} 1)$.
- 34. Show that the centre of mass of a thin plate of constant density covering the region bounded above by the parabola $y = 4 x^2$ and below by the x-axis. (3 x 8 = 24 Marks)

2N	11	8	08	0
LIV	11	0	ve	~

(Pages: 3)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Mathematics Degree Examination, March 2018 BMAT2C02 - Mathematics

(2017Admission onwards)

ax. Time: 3 hours

Max. Marks: 80

Answer all questions. Each question has ONE mark

- 1. $\sum_{k=1}^{n} \left(\frac{1}{n}\right) = \dots$
- 2. Find the norm of the partition $P = \{0, 1.2, 1.5, 2.3, 2.6, 3\}$
- 3. Express the limit $\lim_{\|P\|\to 0} \sum_{k=1}^n \frac{1}{1-c_k} \Delta x_k$ as a definite integral where P is a partition of [2,3].
- 4. Give a parametric representation of the astroid $x^2/3 + y^2/3 = a^2/3$
- 5. Define a hyperbolic sine function.
- 6. Express $sinh^{-1} x$ using the logarithmic function for all real values of x.
- 7. Find a formula for the n^{th} term of the sequence 2,6,10,14,18,
- 8. Find the value of b for which $1 + e^b + e^{2b} + e^{3b} + \dots = 9$.
- 9. Find the Taylor polynomial of order 2 for $f(x) = \frac{1}{x}$ at 2.
- 10. Replace the polar equation $r\cos\theta = 2$ by equivalent Cartesian equation.
- 11. What is the polar equation of the circle with centre $(-1, \frac{\pi}{2})$ and radius 2?
- 12. Write the polar equation of an ellipse whose eccentricity is e and semi-major axis is a.

 $(12 \times 1 = 12 \text{ Marks})$

II. Answer any SEVEN questions. Each question has TWO marks

- 13. Show that if f is continuous on [a,b] with $a \neq b$ and $\int_a^b f(x) dx = 0$, then f(x) = 0 at least once in [a,b].
- 14. Find a function y = f(x) on the domain $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ with derivative $\frac{dy}{dx} = \tan x$ that satisfies the condition f(3) = 5.
- 15. Define a smooth curve.

- 16. State Pappu's theorem for volumes.
- 17. Evaluate $\frac{d}{dt} \left(\tanh \sqrt{1 + t^2} \right)$
- 18. State the Sandwich theorem for sequences.
- 19. Find the sum of the series $\frac{1}{2 \cdot 3} + \frac{1}{3 \cdot 4} + \frac{1}{4 \cdot 5} + \cdots + \frac{1}{(n+1)(n+2)} + \cdots$
- 20. Show that the point $(2, \frac{\pi}{2})$ lies on the curve $r = 2 \cos 2\theta$.
- 21. Find the area of the region in the plane enclosed by the cardiod $r = 1 \cos \theta$.

 $(7 \times 2 = 14 \text{ Marks})$

II. Answer any SIX questions. Each question has FIVE marks

- 22. What values of a and b minimize the value of $\int_a^b (x^4 2x^2) dx$?
- 23. Find the volume of the solid that lies between planes perpendicular to the x-axis at x = -1 and x = 1. The cross sections perpendicular to the x-axis between these planes are squares whose diagonals run from the semi circle $y = -\sqrt{1-x^2}$ to the semi circle $y = \sqrt{1-x^2}$.
- 24. Using integration find the lateral surface area of the cone generated by revolving the line segment $y = \frac{x}{2}$, $1 \le x \le 4$ about the y- axis. Check the answer with the geometric formula, Lateral Surface Area = $\frac{1}{2}$ ×Base Circumference×Slant Height.
- 25. Evaluate $\int_0^{\ln 2} 4e^x \sinh x \, dx$
- 26. For any number x, prove that $\lim_{n\to\infty} \left(1+\frac{x}{n}\right)^n = e^x$
- 27. Examine the convergence of the series $\sum_{n=1}^{\infty} \frac{4^n n! n!}{(2n)!}$
- 28. Find the length of the cardiod $r = a(1 \cos \theta)$.
- 29. Find the area of the surface generated by revolving the right-hand loop of the lemniscate $r^2 = \cos 2\theta$ about the y-axis.

 $(6 \times 5 = 30 \text{ Marks})$

nswer any THREE questions. Each question has EIGHT marks

- (i). Suppose that a company's marginal revenue from the manufacture and sale of egg beaters is $\frac{dr}{dx} = 2 \frac{2}{(x+1)^2}$, where r is measured in thousands of dollars and x is in thousands of units. How much money should the company expect from a production run of x = 3 egg beaters?
- (ii). Find the area of the region in the first quadrant that is bounded above by $y = \sqrt{x}$ and below by the x-axis and the line y = x 2.
- (i). Find the length of the curve $y = \left(\frac{x}{2}\right)^{2/3}$ from x = 0 to x = 2.
- (ii). Find the area of the surface generated by revolving the curve $x = \frac{y^4}{4} + \frac{1}{8y^2}$, $1 \le y \le 2$, about the x-axis.

Discuss the convergence of the p-series $\sum \frac{1}{n^p}$.

For what values of x does the series $1 - \frac{1}{2}(x-3) + \frac{1}{4}(x-3)^2 - \frac{1}{8}(x-3)^3 + \dots$ converge? What is its sum? What series do you get if you differentiate the given series term by term? For what values of x does the new series converge? What is its sum? Find the area shared by the circle r = 2 and the cardiod $r = 2(1 - \cos \theta)$.

 $(3 \times 8 = 24 \text{ Marks})$