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PREFACE

Perhaps	 it’s	 not	 so	 surprising	 that	 when	 we	 (the	 authors)	 were	 learning
mathematics,	we	 thought	 that	we	were	 being	 taught	 some	well-known	 facts	 –
facts	 that	 had	 been	 around	 forever.	 It	 wasn’t	 until	 later	 that	 we	 started	 to
understand	that	these	facts	(the	word	“theorem”	was	beginning	to	become	part	of
our	 vocabulary)	 had	 not	 been	 around	 forever	 and	 that	 people	 had	 actually
discovered	 these	 facts.	 Indeed,	 names	 of	 people	 were	 becoming	 part	 of	 the
discussion.

Mathematics	 has	 existed	 for	 many	 centuries.	 In	 the	 ancient	 past,	 certain
cultures	 developed	 their	 own	 mathematics.	 This	 was	 certainly	 the	 case	 with
Egypt,	Babylonia,	Greece,	China,	India	and	Japan.	In	recent	centuries,	there	has
become	only	one	international	mathematics.	It	has	become	more	organized	and
has	been	divided	into	more	clearly	defined	areas	(even	though	there	is	significant
overlap).	 While	 this	 was	 occurring,	 explanations	 (proofs)	 as	 to	 why
mathematical	 statements	 are	 true	 were	 becoming	 more	 structured	 and	 clearly
written.

The	goal	of	this	book	is	to	introduce	undergraduates	to	the	mathematical	area
called	graph	theory,	which	only	came	into	existence	during	the	first	half	of	the
18th	 century.	 This	 area	 didn’t	 start	 to	 develop	 into	 an	 organized	 branch	 of
mathematics	until	 the	 second	half	of	 the	19th	 century	 and	 there	wasn’t	 even	a
book	on	the	subject	until	the	first	half	of	the	20th	century.	Since	the	second	half
of	the	20th	century,	however,	the	subject	has	exploded.

It	is	our	intent	to	describe	some	of	the	major	topics	of	this	subject	to	you	and
to	inform	you	of	some	of	the	people	who	helped	develop	and	shape	this	area.	In
the	beginning,	most	of	 these	people	were	 just	 like	you	–	students	who	enjoyed
mathematics	but	with	a	great	sense	of	curiosity.	As	with	everything	else	(though
not	 as	 often	 talked	 about),	 mathematics	 has	 its	 non-serious	 side	 and	 we’ve



described	 some	 of	 this	 as	 well.	 Even	 the	 most	 brilliant	 mathematicians	 don’t
know	 everything	 and	 we’ve	 presented	 some	 topics	 that	 have	 not	 been	 well-
studied	and	in	which	the	answers	(and	even	the	questions)	are	not	known.	This
will	 give	 you	 the	 chance	 to	 do	 some	 creative	 thinking	 of	 your	 own.	 In	 fact,
maybe	the	next	person	who	will	have	an	influence	on	this	subject	is	you.

Part	 of	 what	 makes	 graph	 theory	 interesting	 is	 that	 graphs	 can	 be	 used	 to
model	 situations	 that	 occur	 within	 certain	 kinds	 of	 problems.	 These	 problems
can	then	be	studied	(and	possibly	solved)	with	the	aid	of	graphs.	Because	of	this,
graph	models	occur	frequently	throughout	this	textbook.	However,	graph	theory
is	an	area	of	mathematics	and	consequently	concerns	the	study	of	mathematical
ideas	–	of	concepts	and	their	connections	with	each	other.	The	topics	and	results
we	have	 included	were	 chosen	because	we	 feel	 they	 are	 interesting,	 important
and/or	are	representative	of	the	subject.

As	 we	 said,	 this	 text	 has	 been	 written	 for	 undergraduates.	 Keeping	 this	 in
mind,	we	have	included	a	proof	of	a	theorem	if	we	believe	it	is	appropriate,	the
proof	technique	is	informative	and	if	the	proof	is	not	excessively	long.	We	would
like	 to	 think	 that	 the	 material	 in	 this	 text	 will	 be	 useful	 and	 interesting	 for
mathematics	 students	 as	 well	 as	 for	 other	 students	 whose	 areas	 of	 interest
include	graphs.	This	text	is	also	appropriate	for	self-study.

We	 have	 included	 three	 appendixes.	 In	 Appendix	 1,	 we	 review	 some
important	 facts	 about	 sets	 and	 logic.	 Appendix	 2	 is	 devoted	 to	 equivalence
relations	 and	 functions	 while	 Appendix	 3	 describes	 methods	 of	 proof.	 We
understand	how	frustrating	it	is	for	students	(or	anyone!)	who	try	to	read	a	proof
that	 is	 not	 reader-friendly	 and	which	 leaves	 too	many	details	 for	 the	 reader	 to
supply.	Consequently,	we	have	endeavored	to	give	clear,	well-written	proofs.

Although	this	can	very	well	be	said	about	any	area	of	mathematics	or	indeed
about	 any	 scholarly	 activity,	 we	 feel	 that	 appreciation	 of	 graph	 theory	 is
enhanced	by	being	familiar	with	many	of	the	people,	past	and	present,	who	were
or	are	responsible	for	its	development.	Consequently,	we	have	included	several
remarks	 that	 we	 find	 interesting	 about	 some	 of	 the	 “people	 of	 graph	 theory.”
Since	we	believe	that	these	people	are	part	of	the	story	that	is	graph	theory,	we
have	discussed	them	within	the	text	and	not	simply	as	footnotes.	We	often	fail	to
recognize	 that	 mathematics	 is	 a	 living	 subject.	 Graph	 theory	 was	 created	 by
people	and	is	a	subject	that	is	still	evolving.

There	are	 several	 sections	 that	have	been	designated	as	“Excursion.”	These
can	be	omitted	with	no	negative	effect	if	this	text	is	being	used	for	a	course.	In
some	 cases,	 an	 Excursion	 is	 an	 area	 of	 graph	 theory	 we	 find	 interesting	 but
which	the	instructor	may	choose	not	to	discuss	due	to	lack	of	time	or	because	it’s



not	one	of	his	or	her	favorites.	In	other	cases,	an	Excursion	brings	up	a	sidelight
of	graph	theory	that	perhaps	has	little,	if	any,	mathematical	content	but	which	we
simply	believe	is	interesting.

There	 are	 also	 sections	 that	 we	 have	 designated	 as	 “Exploration.”	 These
sections	 contain	 topics	 with	 which	 students	 can	 experiment	 and	 use	 their
imagination.	These	 give	 students	 opportunities	 to	 practice	 asking	questions.	 In
any	case,	we	believe	that	this	might	be	fun	for	some	students.

As	far	as	using	this	text	for	a	course,	we	consider	the	first	three	chapters	as
introductory.	Much	of	 this	could	be	covered	quite	quickly.	Students	could	read
these	 chapters	 on	 their	 own.	 It	 isn’t	 necessary	 to	 cover	 connectivity	 and
Menger’s	Theorem	if	the	instructor	chooses	not	to	do	so.	Sections	8.3,	9.2,	10.3
and	11.2	could	easily	be	omitted,	while	material	from	Chapters	12	and	13	can	be
covered	according	to	the	instructor’s	interest.

Solutions	or	hints	 for	 the	odd-numbered	exercises	 in	 the	regular	sections	of
the	text,	references,	an	index	of	mathematical	terms,	an	index	of	people	and	a	list
of	symbols	are	provided	at	the	end	of	the	text.

It	was	because	of	 discussions	we	had	with	Robert	Ross	 that	we	decided	 to
write	 “An	 Introduction	 to	 Graph	 Theory.”	We	 thank	 him	 for	 this	 and	 for	 his
encouragement.	 We	 especially	 thank	 John	 Grafton,	 Senior	 Reprint	 Editor	 at
Dover	Publications,	whose	encouragement	led	us	to	revise	the	book,	with	its	new
title	“A	First	Course	in	Graph	Theory.”	We	are	most	grateful	to	the	reviewers	of
the	 original	 edition	who	 gave	 us	many	 valuable	 suggestions:	 Jay	 Bagga,	 Ball
State	University;	Richard	Borie,	University	of	Alabama;	Anthony	Evans,	Wright
State	 University;	 Mark	 Ginn,	 Appalachian	 State	 University;	 Mark	 Goldberg,
Rensselaer	Polytechnic	 Institute;	Arthur	Hobbs,	Texas	A&M	University;	Garth
Isaak,	Lehigh	University;	Daphne	Liu,	California	State	University,	Los	Angeles;
Alan	 Mills,	 Tennessee	 Technological	 University;	 Dan	 Pritikin,	 Miami
University;	John	Reay,	Western	Washington	University;	Yue	Zhao,	University	of
Central	Florida.

Gary	Chartrand	and	Ping	Zhang
May	2011



Chapter	1
Introduction

1.1	Graphs	and	Graph	Models

A	major	publishing	company	has	ten	editors	(referred	to	by	1,	2,	…,	10)	in	the
scientific,	 technical	 and	 computing	 areas.	 These	 ten	 editors	 have	 a	 standard
meeting	time	during	the	first	Friday	of	every	month	and	have	divided	themselves
into	 seven	 committees	 to	 meet	 later	 in	 the	 day	 to	 discuss	 specific	 topics	 of
interest	to	the	company,	namely,	advertising,	securing	reviewers,	contacting	new
potential	 authors,	 finances,	 used	 and	 rented	 copies,	 electronic	 editions	 and
competing	textbooks.	This	leads	us	to	our	first	example.

Example	1.1	The	ten	editors	have	decided	on	the	seven	committees:	c1	=	{1,
2,	3},	c2	=	{1,	3,	4,	5},	c3	=	{2,	5,	6,	7},	c4	=	{4,	7,	8,	9},	c5	=	{2,	6,	7},	c6	=
{8,	9,	10},	c7	=	{1,	3,	9,	10}.	They	have	set	aside	three	time	periods	for	the
seven	committees	 to	meet	on	 those	Fridays	when	all	 ten	editors	are	present.
Some	pairs	of	committees	cannot	meet	during	the	same	period	because	one	or
two	 of	 the	 editors	 are	 on	 both	 committees.	 This	 situation	 can	 be	 modeled
visually	as	shown	in	Figure	1.1.

Figure	1.1:	A	graph



In	 this	 figure,	 there	 are	 seven	 small	 circles,	 representing	 the	 seven
committees	 and	 a	 straight	 line	 segment	 is	 drawn	 between	 two	 circles	 if	 the
committees	they	represent	have	at	 least	one	committee	member	in	common.	In
other	words,	a	straight	line	segment	between	two	small	circles	(committees)	tells
us	that	these	two	committees	should	not	be	scheduled	to	meet	at	the	same	time.
This	 gives	 us	 a	 picture	 or	 a	 “model”	 of	 the	 committees	 and	 the	 overlapping
nature	of	their	membership.

What	we	have	drawn	 in	Figure	1.1	 is	called	a	graph.	Formally,	a	graph	G
consists	 of	 a	 finite	 nonempty	 set	V	 of	 objects	 called	 vertices	 (the	 singular	 is
vertex)	and	a	set	E	of	2-element	subsets	of	V	called	edges.	The	sets	V	and	E	are
the	vertex	set	and	edge	set	of	G,	respectively.	So	a	graph	G	is	a	pair	(actually	an
ordered	 pair)	 of	 two	 sets	V	 and	E.	 For	 this	 reason,	 some	write	G	 =	 (V,	E).	 At
times,	it	is	useful	to	write	V(G)	and	E(G)	rather	than	V	and	E	to	emphasize	that
these	 are	 the	 vertex	 and	 edge	 sets	 of	 a	 particular	 graph	G.	Although	G	 is	 the
common	symbol	to	use	for	a	graph,	we	also	use	F	and	H,	as	well	as	G′,	G″	and
G1,	 G2,	 etc.	 Vertices	 are	 sometimes	 called	 points	 or	 nodes	 and	 edges	 are
sometimes	called	lines.	Indeed,	there	are	some	who	use	the	term	simple	graph
for	what	we	call	 a	graph.	Two	graphs	G	 and	H	 are	equal	 if	V(G)	=	V(H)	and
E(G)	=	E(H),	in	which	case	we	write	G	=	H.

It	 is	 common	 to	 represent	 a	graph	by	 a	diagram	 in	 the	plane	 (as	we	did	 in
Figure	1.1)	where	the	vertices	are	represented	by	points	(actually	small	circles	–
open	or	solid)	and	whose	edges	are	indicated	by	the	presence	of	a	line	segment
or	 curve	between	 the	 two	points	 in	 the	plane	 corresponding	 to	 the	 appropriate
vertices.	The	diagram	itself	is	then	also	referred	to	as	a	graph.	For	the	graph	G	of
Figure	1.1	then,	the	vertex	set	of	G	is	V(G)	=	{c1,	c2,	…,	c7}	and	the	edge	set	of
G	is

Let’s	consider	another	situation.	Have	you	ever	encountered	this	sequence	of
integers	before?

Every	 integer	 in	 the	 sequence	 is	 the	 sum	 of	 the	 two	 integers	 immediately
preceding	it	(except	for	the	first	two	integers	of	course).	These	numbers	are	well
known	 in	 mathematics	 and	 are	 called	 the	 Fibonacci	 numbers.	 In	 fact,	 these



integers	 occur	 so	 often	 that	 there	 is	 a	 journal	 (The	 Fibonacci	 Quarterly,
frequently	published	five	times	a	year!)	devoted	to	the	study	of	their	properties.
Our	second	example	concerns	these	numbers.

Example	1.2	Consider	the	set	S	=	{2,	3,	5,	8,	13,	21}	of	six	specific	Fibonacci
numbers.	There	are	some	pairs	of	distinct	integers	belonging	to	S	whose	sum
or	difference	(in	absolute	value)	also	belongs	to	S,	namely,	{2,	3},	{2,	5},	{3,
5},	 {3,	 8},	 {5,	 8},	 {5,	 13},	 {8,	 13},	 {8,	 21}	 and	{13,	21}.	There	 is	 a	more
visual	way	of	identifying	these	pairs,	namely	by	the	graph	H	of	Figure	1.2.	In
this	case,	V(H)	=	{2,	3,	5,	8,	13,	21}	and

Figure	1.2:	Another	graph

When	dealing	with	graphs,	 it	 is	customary	and	simpler	to	represent	an	edge
{u,	v}	by	uv	(or	vu).	If	uv	is	an	edge	of	G,	then	u	and	v	are	said	to	be	adjacent	in
G.	The	number	of	vertices	in	G	is	often	called	the	order	of	G,	while	the	number
of	edges	is	its	size.	Since	the	vertex	set	of	every	graph	is	nonempty,	the	order	of
every	 graph	 is	 at	 least	 1.	 A	 graph	 with	 exactly	 one	 vertex	 is	 called	 a	 trivial
graph,	implying	that	the	order	of	a	nontrivial	graph	is	at	least	2.	The	graph	G
of	Figure	1.1	has	order	7	and	size	13,	while	the	graph	H	of	Figure	1.2	has	order	6
and	size	9.	We	often	use	n	and	m	for	the	order	and	size,	respectively,	of	a	graph.
So,	for	the	graph	G	of	Figure	1.1,	n	=	7	and	m	=	13;	while	 for	 the	graph	H	of
Figure	1.2,	n	=	6	and	m	=	9.

A	graph	G	with	V(G)	=	{u,	v,	w,	x,	y}	and	E(G)	=	{uv,	uw,	vw,	vx,	wx,	xy}	is
shown	 in	 Figure	 1.3(a).	 There	 are	 occasions	 when	 we	 are	 interested	 in	 the
structure	of	a	graph	and	not	in	what	the	vertices	are	called.	In	this	case,	a	graph
is	 drawn	without	 labeling	 its	 vertices.	 For	 this	 reason,	 the	 graph	G	 of	 Figure
1.3(a)	is	a	labeled	graph	and	Figure	1.3(b)	represents	an	unlabeled	graph.



Figure	1.3:	A	labeled	graph	and	an	unlabeled	graph

Let	us	now	turn	to	yet	another	situation.

Example	1.3	Suppose	that	we	have	two	coins,	one	silver	and	one	gold,	placed
on	 two	 of	 the	 four	 squares	 of	 a	 2	×	 2	 checkerboard.	There	 are	 twelve	 such
configurations,	shown	in	Figure	1.4,	where	the	shaded	coin	is	the	gold	coin.

Figure	1.4:	Twelve	configurations

A	 configuration	 can	 be	 transformed	 into	 other	 configurations	 according	 to
certain	 rules.	 Specifically,	we	 say	 that	 the	 configuration	ci	 can	 be	 transformed
into	 the	configuration	 	 if	cj	 can	be	obtained	 from	ci
by	performing	exactly	one	of	the	following	two	steps:

(1)	moving	one	of	the	coins	in	ci	horizontally	or	vertically	to	an	unoccupied
square;

(2)	interchanging	the	two	coins	in	ci.

Necessarily,	if	ci	can	be	transformed	into	cj,	then	cj	can	be	transformed	into	ci.
For	example,	c2	can	be	transformed	(i)	into	c1	by	shifting	the	silver	coin	in	c2
to	the	right,	(ii)	into	c4	by	shifting	the	gold	coin	to	the	right	or	(iii)	into	c8	by



interchanging	the	two	coins	(see	Figure	1.5).

Figure	1.5:	Transformations	of	the	configuration	c2

Now	consider	the	twelve	configurations	shown	in	Figure	1.4.	Some	pairs	ci,
cj	of	these	configurations,	where	1	≤	i,	j	≤	12,	i	≠	j,	can	be	transformed	into	each
other	and	some	pairs	cannot.	This	situation	can	also	be	represented	by	a	graph,
say	by	a	graph	F	where	V(F)	=	{c1,	c2,	…,	c12}	and	cicj	is	an	edge	of	F	if	ci	and
cj	can	be	transformed	into	each	other.	This	graph	F	is	shown	in	Figure	1.6.

Let’s	look	at	a	somewhat	related	example.

Example	1.4.	Suppose	that	we	have	a	collection	of	3-letter	English	words,	say

ACT,	AIM,	ARC,	ARM,	ART,	CAR,	CAT,	OAR,	OAT,	RAT,	TAR.

Figure	1.6:	Modeling	transformations	of	twelve	configurations

We	say	that	a	word	W1	can	be	transformed	into	a	word	W2	if	W2	can	be	obtained
from	W1	by	performing	exactly	one	of	the	following	two	steps:



(1)	interchanging	two	letters	of	W1;

(2)	replacing	a	letter	in	W1	by	another	letter.

Therefore,	if	W1	can	be	transformed	into	W2,	then	W2	can	be	transformed	into
W1.	This	situation	can	be	modeled	by	a	graph	G,	where	 the	given	words	are
the	vertices	of	G	and	two	vertices	are	adjacent	in	G	if	the	corresponding	words
can	be	 transformed	 into	each	other.	This	graph	 is	called	 the	word	graph	of
the	 set	 of	 words.	 For	 the	 11	 words	 above,	 its	 word	 graph	G	 is	 shown	 in
Figure	1.7.

Figure	1.7:	The	word	graph	of	a	set	of	11	words

In	this	case,	a	graph	G	is	called	a	word	graph	if	G	is	the	word	graph	of	some
set	S	of	3-letter	words.	For	example,	the	(unlabeled)	graph	G	of	Figure	1.8(a)	is	a
word	graph	because	it	 is	 the	word	graph	of	the	set	S	=	{BAT,	BIT,	BUT,	BAD,	BAR,
CAT,	 HAT},	 as	 shown	 in	 Figure	 1.8(b).	 (This	 idea	 is	 related	 to	 the	 concept	 of
“isomorphic	graphs,”	which	will	be	discussed	in	Chapter	3.)

We	conclude	this	section	with	one	last	example.

Example	1.5	Figure	1.9	shows	the	traffic	lanes	at	the	intersection	of	two	busy
streets.	When	a	vehicle	approaches	this	intersection,	it	could	be	in	one	of	the
nine	lanes:	L1,	L2,	…,	L9.



Figure	1.8:	A	word	graph

Figure	1.9:	Traffic	lanes	at	street	intersections

This	 intersection	 has	 a	 traffic	 light	 that	 informs	 drivers	 in	 vehicles	 in	 the
various	lanes	when	they	are	permitted	to	proceed	through	the	intersection.	To	be
sure,	 there	 are	 pairs	 of	 lanes	 containing	 vehicles	 that	 should	 not	 enter	 the
intersection	at	 the	same	 time,	such	as	L1	and	L7.	However,	 there	would	be	no
difficulty	for	vehicles	in	L1	and	L5	to	drive	through	this	intersection	at	the	same
time.	 This	 situation	 can	 be	 represented	 by	 the	 graph	G	 of	 Figure	 1.10,	where
V(G)	 =	 {L1,	 L2,	 …,	 L9}	 and	 two	 vertices	 (lanes)	 are	 joined	 by	 an	 edge	 if
vehicles	in	these	two	lanes	cannot	safely	enter	the	intersection	at	the	same	time,
as	there	would	be	a	possibility	of	an	accident.

What	we	have	just	seen	is	how	five	different	situations	can	be	represented	by
graphs.	Actually,	in	each	case,	there	is	a	set	involved:	(1)	a	set	of	committees,	(2)
a	set	of	 integers,	 (3)	a	set	of	configurations	consisting	of	 two	coins	on	a	2	×	2



checkerboard,	 (4)	 a	 set	 of	 3-letter	 words,	 (5)	 a	 set	 of	 traffic	 lanes	 at	 a	 street
intersection.	Certain	pairs	of	elements	in	each	set	are	related	in	some	manner:	(1)
two	 committees	 have	 a	 member	 in	 common,	 (2)	 the	 sum	 or	 difference	 (in
absolute	 value)	 of	 two	 integers	 in	 the	 set	 also	 belongs	 to	 the	 set,	 (3)	 two
configurations	 can	 be	 transformed	 into	 each	 other	 according	 to	 some	 rule,	 (4)
two	3-letter	words	can	be	transformed	into	each	other	by	certain	movements	of
letters,	(5)	cars	in	certain	pairs	of	traffic	lanes	cannot	enter	the	intersection	at	the
same	time.	In	each	case,	a	graph	G	is	defined	whose	vertices	are	the	elements	of
the	set	and	two	vertices	of	G	are	adjacent	if	they	are	related	as	described	above.
The	 graph	G	 then	models	 the	 given	 situation.	 Often	 questions	 concerning	 the
situations	described	above	arise	and	can	be	analyzed	by	studying	the	graphs	that
model	 them.	We	will	encounter	such	questions	 throughout	 the	 text	and	discuss
how	graphs	can	be	used	to	help	us	answer	the	questions.

Figure	1.10:	The	graph	G	in	Example	1.5

Exercises	for	Section	1.1

1.1	What	is	a	logical	question	to	ask	in	Example	1.1?	Answer	this	question.

1.2	Create	an	example	of	your	own	similar	 to	Example	1.1	with	nine	editors
and	eight	committees	and	then	draw	the	corresponding	graph.

1.3	Let	S	=	{2,	3,	4,	7,	11,	13}.	Draw	the	graph	G	whose	vertex	set	 is	S	and
such	that	ij	∈	E	(G)	for	i,	j	∈	S	if	i	+	j	∈	S	or	|i	−	j|	∈	S.

1.4	Let	S	=	{−6,	−3,	0,	3,	6}.	Draw	the	graph	G	whose	vertex	set	is	S	and	such
that	ij	∈	E	(G)	for	i,	j	∈	S	if	i	+	j	∈	S	or	|i	−	j|	∈	S.



1.5	Create	your	own	set	S	of	integers	and	draw	the	graph	G	whose	vertex	set	is
S	and	such	that	ij	∈	E	(G)	if	i	and	j	are	related	by	some	rule	imposed	on	i
and	j.

1.6	Consider	the	twelve	configurations	c1,	c2,	…,	c12	in	Figure	1.4.	For	every
two	configurations	ci	and	cj,	where	1	≤	i,	j	≤	12,	i	≠	j,	it	may	be	possible	to
obtain	 cj	 from	 ci	 by	 first	 shifting	 one	 of	 the	 coins	 in	 ci	 horizontally	 or
vertically	and	 then	interchanging	the	two	coins.	Model	this	by	a	graph	F
such	that	V(F)	=	{c1,	c2,	…,	c12}	and	cicj	is	an	edge	of	F	if	ci	and	cj	can	be
transformed	into	each	other	by	this	2-step	process.

1.7	Following	Example	1.4,

(a)	give	an	example	of	ten	3-letter	words,	none	of	which	are	mentioned	in
Example	 1.4	 and	 whose	 corresponding	 word	 graph	 has	 at	 least	 six
edges.	Draw	this	graph.

(b)	give	a	set	of	five	3-letter	words	whose	word	graph	is	shown	in	Figure
1.11	(with	the	vertices	appropriately	labeled).

Figure	1.11:	The	graph	in	Exercise	1.7(b)

(c)	give	a	set	of	five	3-letter	words	whose	word	graph	is	shown	in	Figure
1.12	(with	the	vertices	appropriately	labeled).

Figure	1.12:	The	graph	in	Exercise	1.7(c)

1.8	Let	S	be	a	finite	set	of	3-letter	and/or	4-letter	words.	In	this	case,	the	word
graph	G(S)	 of	 S	 is	 that	 graph	 whose	 vertex	 set	 is	 S	 and	 such	 that	 two
vertices	(words)	w1	and	w2	are	adjacent	if	either	(1)	or	(2)	below	occurs:

(1)	one	of	the	words	can	be	obtained	from	the	other	by	replacing	one	letter
by	another	letter,

(2)	w1	is	a	3-letter	word	and	w2	is	a	4-letter	word	and	w2	can	be	obtained



from	w1	 by	 the	 insertion	 of	 a	 single	 letter	 (anywhere,	 including	 the
beginning	or	the	end)	into	w1.

(a)	Find	six	sets	S1,	S2,	…,	S6	of	3-letter	and/or	4-letter	words	so	that	for
each	integer	i	(1	≤	i	≤	6)	the	graph	Gi	of	Figure	1.13	is	the	word	graph
of	Si.

(b)	For	another	graph	H	(of	your	choice),	determine	whether	H	is	a	word
graph	of	some	set.

Figure	1.13:	The	graphs	for	Exercise	1.8(a)

1.9	Define	a	word	graph	differently	from	the	word	graphs	defined	in	Example
1.4	and	Exercise	1.8	and	illustrate	your	definition.

1.10	Figure	1.14	 illustrates	 the	 traffic	 lanes	 at	 the	 intersection	 of	 two	 streets.
When	 a	 vehicle	 approaches	 this	 intersection,	 it	 could	 be	 in	 one	 of	 the
seven	 lanes:	L1,	L2,	…,	L7.	Draw	a	graph	G	 that	models	 this	 situation,
where	V(G)	=	{L1,	L2,	…,	L7}	and	where	 two	vertices	are	 joined	by	an
edge	if	vehicles	in	these	two	lanes	cannot	safely	enter	this	intersection	at
the	same	time.



Figure	1.14:	Traffic	lanes	at	a	street	intersection	in	Exercise	1.10

1.2	Connected	Graphs

In	order	 to	 analyze	 certain	 situations	 that	 can	be	modeled	by	graphs,	we	must
have	a	better	understanding	of	graphs.	As	with	all	areas	of	mathematics,	there	is
a	certain	amount	of	terminology	with	which	we	must	first	be	familiar	in	order	to
discuss	 graphs	 and	 their	 properties.	 Becoming	 aware	 of	 this	 fundamental
terminology	is	our	current	goal.	First,	let’s	review	some	concepts	and	introduce
others.	Recall	that	a	graph	G	consists	of	a	finite	nonempty	set	V	of	vertices	and	a
set	E	of	2-element	subsets	of	V	called	edges.	If	e	=	uv	is	an	edge	of	G,	then	the
adjacent	vertices	u	and	v	are	said	to	be	joined	by	the	edge	e.	The	vertices	u	and	v
are	referred	to	as	neighbors	of	each	other.	In	this	case,	the	vertex	u	and	the	edge
e	 (as	well	 as	 v	 and	 e)	 are	 said	 to	 be	 incident	 with	 each	 other.	Distinct	 edges
incident	with	a	common	vertex	are	adjacent	edges.

As	we	mentioned	earlier,	 although	graphs	are	defined	 in	 terms	of	 sets,	 it	 is
customary	and	convenient	to	represent	graphs	by	(and,	in	fact,	to	consider	them
as)	diagrams.	A	graph	G	with	vertex	set	V	=	{u,	v,	w,	x,	y}	and	edge	set	E	=	{uv,
vw,	vx,	vy,	wy,	xy}	is	shown	in	Figure	1.15.	Since	this	graph	has	five	vertices	and
six	edges,	its	order	is	5	and	its	size	is	6.	In	this	graph	G,	the	vertices	u	and	v	are
adjacent,	while	u	and	w	are	not	adjacent.	The	vertex	v	is	incident	with	the	edge
vw	but	not	with	the	edge	wy.	The	edges	uv	and	vw	are	adjacent,	but	uv	and	xy	are
not	adjacent.



Figure	1.15:	A	graph	G	and	some	of	its	subgraphs

A	graph	H	is	called	a	subgraph	of	a	graph	G,	written	H	⊆	G,	if	V(H)	⊆	V(G)
and	E(H)	⊆	E(G).	We	also	say	that	G	contains	H	as	a	subgraph.	If	H	⊆	G	and
either	V(H)	is	a	proper	subset	of	V(G)	or	E(H)	is	a	proper	subset	of	E(G),	then	H
is	a	proper	subgraph	of	G.	So	the	graph	H	of	Figure	1.15	is	a	subgraph	of	the
graph	G	shown	in	that	figure;	indeed,	H	is	a	proper	subgraph	of	G.	If	a	subgraph
of	a	graph	G	has	the	same	vertex	set	as	G,	then	it	is	a	spanning	subgraph	of	G.

A	subgraph	F	of	a	graph	G	is	called	an	induced	subgraph	of	G	if	whenever
u	and	v	are	vertices	of	F	and	uv	is	an	edge	of	G,	then	uv	is	an	edge	of	F	as	well.
Therefore,	the	graph	H	of	Figure	1.15	is	not	an	induced	subgraph	of	the	graph	G
of	Figure	1.15	since,	for	example,	v,	x	∈	V(H)	and	vx	∈	E	(G)	but	vx	∉	E(H).	On
the	other	hand,	the	graph	F	of	Figure	1.15	is	an	induced	subgraph	of	G.	If	S	is	a
nonempty	set	of	vertices	of	a	graph	G,	then	the	subgraph	of	G	induced	by	S	is
the	 induced	 subgraph	with	 vertex	 set	 S.	 This	 induced	 subgraph	 is	 denoted	 by
G[S].	For	a	nonempty	set	X	of	edges,	the	subgraph	G[X]	induced	by	X	has	edge
set	X	 and	 consists	 of	 all	 vertices	 that	 are	 incident	with	 at	 least	 one	 edge	 in	X.
This	subgraph	is	called	an	edge-induced	subgraph	of	G.	Sometimes	 S G	and	 X

G	are	used	for	G[S]	and	G[X],	 respectively.	The	graph	F′	of	Figure	1.15	 is	 an
edge-induced	subgraph	of	G	in	that	figure;	indeed,	F′	=	G[X′],	where	X′	=	{e,	e′}.

Any	proper	subgraph	of	a	graph	G	can	be	obtained	by	removing	vertices	and
edges	from	G.	For	an	edge	e	of	G,	we	write	G	−	e	for	the	spanning	subgraph	of
G	whose	edge	set	consists	of	all	edges	of	G	except	e.	More	generally,	if	X	is	a	set
of	edges	of	G,	then	G	−	X	is	the	spanning	subgraph	of	G	with	E(G	−	X)	=	E(G)	−
X.	For	the	graph	G	of	Figure	1.15	and	e	=	vy,	the	subgraph	G	−	e	is	shown.	If	X	=
{e1,	e2,	…,	ek},	then	we	also	write	G	−	X	as	G	−	e1	−	e2−…	−	ek.

For	 a	 vertex	 v	 of	 a	 nontrivial	 graph	G,	 the	 subgraph	G	 −	 v	 consists	 of	 all
vertices	 of	G	 except	v	 and	 all	 edges	 of	G	 except	 those	 incident	with	 v.	 For	 a
proper	subset	U	of	V(G),	 the	subgraph	G	−	U	 has	vertex	 set	V(G)	−	U	 and	 its
edge	set	consists	of	all	edges	of	G	joining	two	vertices	in	V(G)	−	U.	Necessarily,
G	−	U	 is	 an	 induced	 subgraph	of	G.	For	U	 =	 {u,	y}	 in	 the	graph	G	 of	Figure
1.15,	G	−	U	is	the	subgraph	F	shown	in	that	figure.

If	u	and	v	are	nonadjacent	vertices	of	a	graph	G,	then	e	=	uv	∉	E(G).	By	G	+
e,	we	mean	the	graph	with	vertex	set	V(G)	and	edge	set	E(G)	∪	{e}.	Thus	G	is	a
spanning	subgraph	of	G	+	e.

Many	 of	 the	 concepts	 that	 occur	 in	 graph	 theory	 and	 which	 we	 will
investigate	in	detail	later	concern	various	ways	in	which	one	can	“move	about”
in	a	graph.	In	particular,	 if	we	think	of	 the	vertices	of	a	graph	as	 locations	and



the	 edges	 as	 roads	 between	 certain	 pairs	 of	 locations,	 then	 the	 graph	 can	 be
considered	as	modeling	some	community.	There	is	a	variety	of	kinds	of	trips	that
can	be	taken	in	the	community.

Let’s	start	at	some	vertex	u	of	a	graph	G.	If	we	proceed	from	u	to	a	neighbor
of	u	and	then	to	a	neighbor	of	that	vertex	and	so	on,	until	we	finally	come	to	a
stop	at	a	vertex	v,	 then	we	have	 just	described	a	walk	 from	u	 to	v	 in	G.	More
formally,	a	u	−	v	walk	W	in	G	is	a	sequence	of	vertices	in	G,	beginning	with	u
and	ending	at	v	such	that	consecutive	vertices	in	the	sequence	are	adjacent,	that
is,	we	can	express	W	as

where	k	≥	0	and	vi	and	vi	+	1	are	adjacent	for	i	=	0,	1,	2,	…,	k	−	1.	Each	vertex	vi
(0	≤	i	≤	k)	and	each	edge	vivi	+	1	(0	≤	i	≤	k	−	1)	is	said	to	lie	on	or	belong	to	W.
Notice	that	the	definition	of	the	walk	W	does	not	require	the	listed	vertices	to	be
distinct;	in	fact,	even	u	and	v	are	not	required	to	be	distinct.	However,	every	two
consecutive	vertices	in	W	are	distinct	since	they	are	adjacent.	If	u	=	v,	 then	 the
walk	W	is	closed;	while	if	u	≠	v,	then	W	is	open.	As	we	move	from	one	vertex	of
W	 to	 the	next,	we	are	actually	encountering	or	 traversing	edges	of	G,	possibly
traversing	some	edges	of	G	more	than	once.	The	number	of	edges	encountered	in
a	walk	 (including	multiple	 occurrences	 of	 an	 edge)	 is	 called	 the	 length	 of	 the
walk.	Thus	the	length	of	the	walk	W	defined	in	(1.1)	is	k.

For	the	graph	G	of	Figure	1.16,

is	therefore	a	walk,	indeed	an	x	−	w	walk	of	length	5	(one	less	than	the	number
of	occurrences	of	vertices	in	the	walk).	A	walk	of	length	0	is	a	trivial	walk.	So
W	=	(v)	is	a	trivial	walk.	(By	this	definition,	those	people	who	feel	guilty	about
not	 exercising	need	not	 feel	guilty	any	 longer	as	going	 for	 a	daily	“walk”	 just
became	easier.)

Provided	we	continue	to	proceed	from	a	vertex	to	one	of	its	neighbors	(and
eventually	 stop),	 there	 is	 essentially	 no	 conditions	 on	 a	 walk.	 However,	 there
will	be	occasions	when	we	want	to	place	restrictions	on	certain	types	of	walks.



Figure	1.16:	Illustrating	walks	in	a	graph

Borrowing	terminology	from	the	Old	West,	we	define	a	u	−	v	trail	in	a	graph
G	to	be	a	u	−	v	walk	in	which	no	edge	is	traversed	more	than	once.	Thus,	the	x	−
w	walk	W	in	(1.2)	is	not	an	x	−	w	trail	as	the	edge	wy	 is	repeated.	On	the	other
hand,

is	a	u	−	v	trail	in	the	graph	G	of	Figure	1.16.	Notice	that	this	trail	T	repeats	the
vertex	 w.	 This	 is	 perfectly	 permissible.	 Although	 the	 definition	 of	 a	 trail
stipulates	that	no	edge	can	be	repeated,	no	such	condition	is	placed	on	vertices.

A	u	−	v	walk	 in	a	graph	 in	which	no	vertices	are	 repeated	 is	 a	u	−	v	path.
While	the	u	−	v	trail	T	in	(1.3)	is	not	a	u	−	v	path	in	the	graph	G	of	Figure	1.16
(since	the	vertex	w	is	repeated),

is	a	u	−	v	path.	If	no	vertex	in	a	walk	is	repeated	(thereby	producing	a	path),	then
no	edge	is	repeated	either.	Hence	every	path	is	a	trail.

If	a	u	−	v	walk	 in	a	graph	 is	 followed	by	a	v	−	w	walk,	 then	a	u	 −	w	walk
results.	In	particular,	a	u	−	v	path	followed	by	a	v	−	w	path	is	a	u	−	w	walk	W	but
not	necessarily	a	u	−	w	path,	as	vertices	in	W	may	be	repeated.	While	not	every
walk	is	a	path,	if	a	graph	contains	a	u	−	v	walk,	then	it	must	also	contain	a	u	−	v
path.	This	is	our	first	theorem.

Theorem	1.6	If	a	graph	G	contains	a	u	−	v	walk	of	length	l,	then	G	contains	a
u	−	l	path	of	length	at	most	l.

Proof.	Among	all	u	−	v	walks	in	G,	let

be	a	u	−	v	walk	of	smallest	length	k.	Therefore,	k	≤	l.	We	claim	that	P	is	a	u	−	v
path.	Assume,	 to	 the	contrary,	 that	 this	 is	not	 the	case.	Then	some	vertex	of	G
must	be	repeated	in	P,	say	ui	=	uj	for	some	i	and	j	with	0	≤	i	<	j	≤	k.	If	we	then
delete	the	vertices	ui	+	1,	ui	+	2,	…,	uj	from	P,	we	arrive	at	the	u	−	v	walk

whose	length	is	less	than	k,	which	is	impossible.	Therefore,	as	claimed,	P	is	a	u
−	v	path	of	length	k	≤	l.



A	circuit	 in	a	graph	G	 is	a	closed	trail	of	 length	3	or	more.	Hence	a	circuit
begins	 and	 ends	 at	 the	 same	 vertex	 but	 repeats	 no	 edges.	 A	 circuit	 can	 be
described	by	choosing	any	of	 its	vertices	as	 the	beginning	 (and	ending)	vertex
provided	the	vertices	are	listed	in	the	same	cyclic	order.	In	a	circuit,	vertices	can
be	 repeated,	 in	 addition	 to	 the	 first	 and	 last.	 For	 example,	 in	 the	 graph	G	 of
Figure	1.16,

is	 a	 circuit.	 A	 circuit	 that	 repeats	 no	 vertex,	 except	 for	 the	 first	 and	 last,	 is	 a
cycle.	A	k-cycle	is	a	cycle	of	length	k.	A	3-cycle	is	also	referred	to	as	a	triangle.
A	cycle	of	odd	length	is	called	an	odd	cycle;	while,	not	surprisingly,	a	cycle	of
even	length	is	called	an	even	cycle.	In	the	graph	G	of	Figure	1.16,	the	circuit	C
in	(1.4)	is	not	a	cycle,	while

is	 a	 cycle,	 namely	 a	 4-cycle.	 If	 a	 vertex	 of	 a	 cycle	 is	 deleted,	 then	 a	 path	 is
obtained.	This	is	not	necessarily	true	for	circuits,	however.

The	vertices	and	edges	of	a	 trail,	path,	circuit	or	cycle	 in	a	graph	G	 form	a
subgraph	 of	G,	 also	 called	 a	 trail,	 path,	 circuit	 or	 cycle.	 Hence	 a	 path,	 for
example,	 is	 used	 to	 describe	 both	 a	manner	 of	 traversing	 certain	 vertices	 and
edges	of	G	and	a	subgraph	consisting	of	those	vertices	and	edges.	The	graph	G
of	Figure	1.16	is	shown	again	in	Figure	1.17.	Thus	the	subgraphs	G1,	G2,	G3,	G4
of	the	graph	G	are	a	trail,	path,	circuit	and	cycle,	respectively.

Figure	1.17:	Trails,	paths,	circuits	and	cycles	as	subgraphs	of	a	graph

We	will	have	a	special	 interest	 in	graphs	G	 in	which	 it	 is	possible	 to	 travel
from	each	vertex	of	G	to	any	other	vertex	of	G.	If	G	contains	a	u	−	v	path,	then	u
and	v	are	said	to	be	connected	and	u	is	connected	to	v	(and	v	is	connected	to	u).



So,	saying	that	u	and	v	are	connected	only	means	that	there	is	some	u	−	v	path	in
G;	it	doesn’t	say	that	u	and	v	are	joined	by	an	edge.	Of	course,	if	u	is	joined	to	v,
then	u	is	connected	to	v	as	well.	A	graph	G	is	connected	if	every	two	vertices	of
G	are	connected,	that	is,	if	G	contains	a	u	−	v	path	for	every	pair	u,	v	of	vertices
of	G.	By	Theorem	1.6,	G	is	connected	if	and	only	if	G	contains	a	u	−	v	walk	for
every	pair	u,	v	 of	 vertices	 of	G.	 Since	 every	 vertex	 is	 connected	 to	 itself,	 the
trivial	graph	is	connected.

A	 graph	 G	 that	 is	 not	 connected	 is	 called	 disconnected.	 A	 connected
subgraph	of	G	that	is	not	a	proper	subgraph	of	any	other	connected	subgraph	of
G	is	a	component	of	G.	The	number	of	components	of	a	graph	G	is	denoted	by
k(G).	Thus	a	graph	G	is	connected	if	and	only	if	k(G)	=	1.	While	the	graph	G	of
Figure	1.16	is	connected,	 the	graph	H	of	Figure	1.18	 is	disconnected	since,	 for
example,	there	is	no	s	−	w	path	in	H.	There	is	no	x	−	z	path	either.	The	graph	H
has	three	components,	namely	H1,	H2	and	H3	and	so	k(H)	=	3.

For	 subgraphs	G1,	G2,	…,	Gk,	 k	 ≥	 2,	 of	 a	 graph	G,	 with	mutually	 disjoint
vertex	sets,	we	write	G	=	G1	∪	G2	∪	…	∪	Gk	if	every	vertex	and	every	edge	of
G	belong	to	exactly	one	of	these	subgraphs.	In	this	case,	G	 is	the	union	of	 the
graphs	G1,	G2,	…,	Gk.	In	particular,	we	write	G	=	G1	∪	G2	∪	…	∪	Gk	if	G1,	G2,
…,	Gk	are	components	of	G.	That	is,	every	graph	is	the	union	of	its	components.
Therefore,	we	can	write	H	=	H1	∪	H2	∪	H3	for	the	graphs	in	Figure	1.18.

Figure	1.18:	A	disconnected	graph	and	its	components

Components	 can	 also	 be	 defined	 by	 means	 of	 an	 equivalence	 relation.
(Equivalence	relations	are	reviewed	in	Appendix	2.1.)

Theorem	1.7	Let	R	be	the	relation	defined	on	the	vertex	set	of	a	graph	G	by	u
R	v,	where	u,	v	∈	V(G),	 if	u	 is	connected	 to	v,	 that	 is,	 if	G	contains	a	u	−	v
path.	Then	R	is	an	equivalence	relation.

Proof.	It	is	immediate	that	R	is	reflexive	and	symmetric.	It	remains	therefore



only	to	show	that	R	is	transitive.	Let	u,	v,	w	∈	V(G)	such	that	u	R	v	and	v	R	w.
Hence	G	contains	a	u	−	v	path	P′	and	a	v	−	w	path	P″.	As	we	have	seen	earlier,
following	P′	by	P″	produces	a	u	−	w	walk	W.	By	Theorem	1.6,	G	contains	a	u
−	w	path	and	so	u	R	w.

The	equivalence	relation	described	in	Theorem	1.7	produces	a	partition	of	the
vertex	set	of	every	graph	G	into	equivalence	classes.	The	subgraph	of	G	induced
by	the	vertices	in	an	equivalence	class	is	a	component	of	G.	Exercise	1.14	asks
you	to	show	this.	As	a	consequence,	we	have	the	following:

Each	vertex	and	each	edge	of	a	graph	G	belong	to	exactly	one
component	of	G.	This	implies	that	if	G	is	a	disconnected	graph	and	u	and
v	are	vertices	belonging	to	different	components	of	G,	then	u	v	∉	E	(G).

The	following	theorem	provides	a	sufficient	condition	for	a	graph	of	order	at
least	3	to	be	connected.

Theorem	1.8	Let	G	be	a	graph	of	order	3	or	more.	If	G	contains	two	distinct
vertices	u	and	v	 such	 that	G	 −	u	and	G	 −	v	 are	 connected,	 then	G	 itself	 is
connected.

Proof.	Suppose	that	G	contains	distinct	vertices	u	and	v	such	that	G	−	u	and	G
−	v	are	connected.	To	show	that	G	itself	is	connected,	we	show	that	every	two
vertices	of	G	are	connected.	Let	x	and	y	be	two	vertices	of	G.	We	consider	two
cases.

Case	1.	{x,	y}	≠	{u,	v},	say	u	∉	{x,	y}.	Then	x	and	y	are	vertices	 in	G	−	u.
Since	G	−	u	is	connected,	there	is	an	x	−	y	path	P	in	G	−	u.	Hence	P	is	in	G	and	x
and	y	are	connected	in	G.

Case	 2.	 {x,	 y}	 =	 {u,	 v},	 say	 x	 =	 u	 and	 y	 =	 v.	We	 show	 that	 u	 and	 v	 are
connected	in	G.	Since	the	order	of	G	is	at	least	3,	there	is	a	vertex	w	in	G	 such
that	w	 ≠	 u,	 v.	 Since	G	 −	 v	 is	 connected,	 G	 −	 v	 contains	 a	 u	 −	 w	 path	 P′.
Furthermore,	 since	 G	 −	 u	 is	 connected,	 G	 −	 u	 contains	 a	 w	 −	 v	 path	 P″.
Therefore,	P′	followed	by	P″	produces	a	u	−	v	walk.	By	Theorem	1.6,	G	contains
a	u	−	v	path	and	so	u	and	v	are	connected	in	G.

If	G	 is	 the	 disconnected	 graph	 consisting	 of	 two	 vertices	 u	 and	 v	 and	 no
edges,	then	the	subgraphs	G	−	u	and	G	−	v	are	(trivially)	connected.	Therefore,
in	Theorem	1.8,	it	is	essential	that	the	order	of	the	graph	under	consideration	be
at	least	3.



If	u	and	v	are	vertices	in	a	connected	graph	G,	then	there	must	be	a	u	−	v	path
in	G.	 However,	 it	 is	 quite	 possible	 that	G	 contains	 several	 u	 −	 v	 paths.	 For
example,	in	the	graph	G	of	Figure	1.16,	all	of	the	following	are	u	−	y	paths:

The	length	of	P′	is	2,	the	length	of	P″	is	3	and	the	length	of	P′′′	is	4.	There	is	no
u	−	y	path	of	length	1	in	this	graph	since	u	and	y	are	not	adjacent	and	there	are	no
u	−	y	paths	of	length	5	or	more	as	G	only	has	five	vertices.

Let	G	be	a	connected	graph	of	order	n	and	let	u	and	v	be	two	vertices	of	G.
The	distance	between	u	and	v	is	the	smallest	length	of	any	u	−	v	path	in	G	and	is
denoted	by	dG(u,	v)	or	simply	d(u,	v)	if	the	graph	G	under	consideration	is	clear.
Hence	if	d(u,	v)	=	k,	then	there	exists	a	u	−	v	path

of	length	k	in	G	but	no	u	−	v	path	of	smaller	length	exists	in	G.	A	u	−	v	path	of
length	d(u,	v)	is	called	a	u	−	v	geodesic.	In	fact,	since	the	path	P	in	(1.5)	is	a	u	−
v	geodesic,	not	only	is	d(u,	v)	=	d(u,	vk)	=	k	but	d(u,	vi)	=	i	for	every	i	with	0	≤	i
≤	k.	Exercise	1.16	asks	you	to	verify	this.	If	u	=	v,	then	d(u,	v)	=	0.	If	uv	∉	E(G),
then	d(u,	v)	=	1.	In	general,	0	≤	d(u,	v)	≤	n	−	1	 for	every	 two	vertices	u	and	v
(distinct	or	not)	in	a	connected	graph	of	order	n.	For	the	vertices	u	and	y	in	the
graph	G	of	Figure	1.16,	d(u,	y)	=	2.	 If	G	 is	 disconnected,	 then	 there	 are	 some
pairs	x,	y	of	distinct	vertices	of	G	such	that	 there	 is	no	x	−	y	path	 in	G.	 In	 this
case,	d(x,	y)	is	not	defined.

At	times,	it	is	useful	to	visualize	the	vertices	of	a	connected	graph	according
to	their	distances	from	a	given	vertex.	The	graph	H	of	Figure	1.19(a)	is	redrawn
in	Figure	1.19(b)	to	indicate	those	vertices	at	a	given	distance	from	the	vertex	t.
The	vertex	t	(the	only	vertex	whose	distance	from	t	is	0)	is	drawn	at	the	top.	The
vertices	one	level	down	are	the	neighbors	of	t.	The	next	 level	consists	of	 those
vertices	whose	distance	from	t	is	2	and	so	on.	Observe	that	two	adjacent	vertices
must	either	belong	to	the	same	level	or	to	neighboring	levels.



Figure	1.19:	Distances	from	a	given	vertex

The	 greatest	 distance	 between	 any	 two	 vertices	 of	 a	 connected	 graph	G	 is
called	the	diameter	of	G	and	is	denoted	by	diam(G).	The	diameter	of	the	graph	H
of	Figure	1.19	is	3.	The	path	P′	=	(y,	u,	r,	s)	is	a	y	−	s	geodesic	whose	length	is
diam(H).

If	G	is	a	connected	graph	such	that	d(u,	v)	=	diam(G)	and	w	≠	u,	v,	then	no	u
−	w	geodesic	can	contain	v,	for	otherwise	d(u,	w)	>	d(u,	v)	=	diam(G),	which	is
impossible.

Let’s	 return	 to	Theorem	1.8,	where	we	proved	 that	 if	 a	graph	G	 of	 order	 3
contains	two	distinct	vertices	u	and	v	such	that	G	−	u	and	G	−	v	are	connected,
then	G	is	connected.	Actually,	the	converse	of	this	theorem	is	also	true;	that	is,	if
G	 is	a	connected	graph	of	order	at	 least	3,	 then	G	must	contain	 two	vertices	u
and	v	such	that	G	−	u	and	G	−	v	are	both	connected.	We	are	now	in	a	position	to
prove	this	theorem	as	well.

Theorem	1.9	If	G	is	a	connected	graph	of	order	3	or	more,	 then	G	contains
two	distinct	vertices	u	and	v	such	that	G	−	u	and	G	−	v	are	connected.

Proof.	Let	u	and	v	be	two	vertices	of	G	such	that	d(u,	v)	=	diam(G).	We	claim
that	G	−	u	and	G	 −	v	 are	 both	 connected.	Suppose	 that	 this	 is	 not	 the	 case.
Then	 at	 least	 one	 of	 G	 −	 u	 and	 G	 −	 v	 is	 disconnected,	 say	 G	 −	 v	 is
disconnected.	 Therefore,	G	 −	 v	 contains	 two	 vertices	 x	 and	 y	 that	 are	 not
connected	in	G	−	v.	However,	since	G	 is	connected,	 the	vertices	u	and	x	are
connected	in	G,	as	are	u	and	y.

Let	P′	be	an	x	−u	geodesic	in	G	and	 let	P″	be	a	u	−	y	geodesic	 in	G.	Since
dG(u,	v)	=	diam(G),	the	vertex	v	cannot	lie	on	either	P′	or	on	P″,	so	P′	and	P″	are
paths	in	G	−	v.	The	path	P′	followed	by	P″	produces	an	x	−	y	walk	W	in	G	−	v.



By	Theorem	1.6,	G	−	v	contains	an	x	−	y	path	and	so	x	and	y	are	connected	in	G
−	v.	This	is	a	contradiction.

Theorem	1.9	gives	a	property	that	every	connected	graph	of	order	at	least	3
must	have.	That	is,	Theorem	1.9	provides	a	necessary	condition	for	a	graph	to	be
connected.	Actually,	 Theorem	 1.9	 is	 true	 even	 if	 the	 order	 of	G	 is	 2,	 but	 we
stated	Theorem	1.9	as	we	did	so	we	could	combine	Theorems	1.8	and	1.9	into	a
single	necessary	and	sufficient	condition	for	a	graph	to	be	connected,	which	we
state	next.

Theorem	1.10	Let	G	be	a	graph	of	order	3	or	more.	Then	G	is	connected	 if
and	only	if	G	contains	two	distinct	vertices	u	and	v	such	that	G	−	u	and	G	−	v
are	connected.

Exercises	for	Section	1.2

1.11	Let	G	be	the	graph	of	Figure	1.20,	let	X	=	{e,	f},	where	e	=	ru	and	f	=	vw,
and	let	U	=	{u,	w}.	Draw	the	subgraphs	G	−	X	and	G	−	U	of	G.

Figure	1.20:	The	graph	G	in	Exercises	1.11	and	1.12

1.12	For	the	graph	G	of	Figure	1.20,	give	an	example	of	each	of	the	following
or	explain	why	no	such	example	exists.

(a)	An	x	−	y	walk	of	length	6.
(b)	A	v	−	w	trail	that	is	not	a	v	−	w	path.
(c)	An	r	−	z	path	of	length	2.
(d)	An	x	−	z	path	of	length	3.
(e)	An	x	−	t	path	of	length	d(x,	t).
(f)	A	circuit	of	length	10.



(g)	A	cycle	of	length	8.
(h)	A	geodesic	whose	length	is	diam(G).

1.13	(a)	Give	an	example	of	a	connected	graph	G	containing	three	vertices	u,	v
and	w	such	that	d(u,	v)	=	d(u,	w)	=	d(v,	w)	=	diam(G)	=	3.

(b)	Does	the	question	in	(a)	suggest	another	question?

1.14	 For	 a	 graph	G,	 a	 component	 of	G	 has	 been	 defined	 as	 (1)	 a	 connected
subgraph	 of	 G	 that	 is	 not	 a	 proper	 subgraph	 of	 any	 other	 connected
subgraph	of	G	and	has	been	described	as	(2)	a	subgraph	of	G	induced	by
the	vertices	in	an	equivalence	class	resulting	from	the	equivalence	relation
defined	 in	 Theorem	 1.7.	 Show	 that	 these	 two	 interpretations	 of
components	are	equivalent.

1.15	Draw	all	connected	graphs	of	order	5	in	which	the	distance	between	every
two	distinct	vertices	is	odd.	Explain	why	you	know	that	you	have	drawn
all	such	graphs.

1.16	 Let	 ,	 be	 a	 u	 −	 v	 geodesic	 in	 a
connected	graph	G.	Prove	that	d(u,	vi)	=	i	for	each	integer	i	with	1	≤	i	≤	k.

1.17	(a)	Prove	that	if	P	and	Q	are	two	longest	paths	in	a	connected	graph,	then
P	and	Q	have	at	least	one	vertex	in	common.

(b)	Prove	or	disprove:	Let	G	be	connected	graph	of	diameter	k.	If	P	and	Q
are	 two	geodesics	of	 length	k	 in	G,	 then	P	 and	Q	 have	 at	 least	 one
vertex	in	common.

1.18	A	graph	G	of	order	12	has	vertex	set	V(G)	=	{c1,	c2,	…,	c12}	for	the	twelve
configurations	in	Figure	1.4.	A	“move”	on	this	checkerboard	corresponds
to	moving	a	single	coin	to	an	unoccupied	square,	where

(1)	the	gold	coin	can	only	be	moved	horizontally	or	diagonally,
(2)	the	silver	coin	can	only	be	moved	vertically	or	diagonally.

Two	vertices	ci	and	cj	(i	≠	j)	are	adjacent	if	it	is	possible	to	move	ci	to	cj	by
a	single	move.
(a)	What	vertices	are	adjacent	to	c1	in	G?

(b)	What	vertices	are	adjacent	to	c2	in	G?

(c)	Draw	the	subgraph	of	G	induced	by	{c2,	c6,	c9,	c11}.

(d)n	Give	an	example	of	a	c1	−	c7	path	in	G.



1.19	Theorem	1.10	states	that	a	graph	G	of	order	3	or	more	is	connected	if	and
only	if	G	contains	two	distinct	vertices	u	and	v	such	that	G	−	u	and	G	−	v
are	 connected.	 Based	 on	 this,	 one	 might	 suspect	 that	 the	 following
statement	 is	 true.	Every	 connected	graph	G	of	order	4	or	more	 contains
three	distinct	vertices	u,	v	and	w	such	 that	G	−	u,	G	−	v	and	G	−	w	are
connected.	Is	it?

1.20	(a)	Let	u	and	v	be	distinct	vertices	in	a	connected	graph	G.	There	may	be
several	 connected	 subgraphs	 of	G	 containing	 u	 and	 v.	 What	 is	 the
minimum	 size	 of	 a	 connected	 subgraph	 of	 G	 containing	 u	 and	 v?
Explain	your	answer.

(b)	Does	the	question	in	(a)	suggest	another	question	to	you?

1.3	Common	Classes	of	Graphs

As	we	continue	to	study	graphs,	we	will	see	that	there	are	certain	graphs	that	are
encountered	often	and	 it	 is	useful	 to	be	familiar	with	 them.	In	many	 instances,
there	is	special	notation	reserved	for	these	graphs.

We	have	 already	 seen	 that	 paths	 and	 cycles	 are	 certain	 kinds	 of	walks	 and
subgraphs	 in	 graphs.	 These	 terms	 are	 also	 used	 to	 describe	 certain	 kinds	 of
graphs.	If	the	vertices	of	a	graph	G	of	order	n	can	be	labeled	(or	relabeled)	v1,	v2,
…,	vn	so	that	its	edges	are	v1v2,	v2v3,	…,	vn–1	vn,	then	G	is	called	a	path;	while	if
the	vertices	of	a	graph	G	of	order	n	≥	3	can	be	labeled	(or	relabeled)	v1,	v2,	…,	vn
so	that	its	edges	are	v1v2,	v2v3,	…,	vn–1	vn	and	v1vn,	then	G	 is	called	a	cycle.	A
graph	that	is	a	path	of	order	n	is	denoted	by	Pn,	while	a	graph	that	is	a	cycle	of
order	n	≥	3	is	denoted	by	Cn.	Several	paths	and	cycles	are	shown	in	Figure	1.21.

Figure	1.21:	Paths	and	cycles

A	graph	G	 is	 complete	 if	 every	 two	 distinct	 vertices	 of	G	 are	 adjacent.	A



complete	 graph	 of	 order	n	 is	 denoted	 by	Kn.	 Therefore,	Kn	 has	 the	maximum
possible	size	for	a	graph	with	n	vertices.	Since	every	two	distinct	vertices	of	Kn
are	joined	by	an	edge,	the	number	of	pairs	of	vertices	in	Kn	is	 	and	so

Therefore,	the	complete	graph	K3	has	three	edges,	K4	has	six	edges	and	K5	has
ten	edges.	The	five	smallest	complete	graphs	are	shown	in	Figure	1.22.	Notice
that	P1	and	K1	represent	the	same	graph,	as	do	P2	and	K2,	as	well	as	C3	and	K3.
Although	there	are	edges	that	cross	in	the	drawings	of	K4	and	K5,	 the	points	of
intersection	do	not	represent	vertices.

Figure	1.22:	Complete	graphs

The	graphs	that	are	drawn	in	Figures	1.21	and	1.22	bring	up	some	points	that
need	 to	 be	 discussed.	 Although	we	 have	 attempted	 to	 draw	 these	 graphs	 in	 a
manner	 that	makes	 them	 easy	 to	 visualize,	 this	 is	 certainly	 not	 a	 requirement
when	drawing	a	graph,	as	its	vertices	can	be	placed	in	any	convenient	location.
Figure	1.23	shows	a	variety	of	ways	to	draw	the	path	P4	and	the	complete	graph
K4.

Figure	1.23:	The	graphs	P4	and	K4

Since	the	disconnected	graph	G	in	Figure	1.24	has	 two	components	 that	are
complete	graphs	of	order	4,	one	that	is	C5	and	one	that	is	P3,	we	write	this	graph



as	G	=	2K4	∪	C5	∪	P3.

Figure	1.24:	The	graph	G	=	2K4	∪	C5	∪	P3

The	complement	 	of	a	graph	G	is	that	graph	whose	vertex	set	is	V(G)	and
such	that	for	each	pair	u,	v	of	distinct	vertices	of	G,	uv	 is	an	edge	of	 	 if	and
only	if	uv	is	not	an	edge	of	G.	Observe	that	if	G	is	a	graph	of	order	n	and	size	m,
then	 	is	a	graph	of	order	n	and	size	 .	The	graph	 	then	has	n	vertices
and	no	edges;	it	is	called	the	empty	graph	of	order	n.	Therefore,	empty	graphs
have	empty	edge	sets.	In	fact,	if	G	is	any	graph	of	order	n,	then	G	−	E(G)	is	the
empty	graph	 .	By	definition,	no	graph	can	have	an	empty	vertex	set.	A	graph
H	 and	 its	 complement	 are	 shown	 in	 Figure	 1.25.	 Both	 of	 these	 graphs	 are
connected.	Although	a	graph	and	its	complement	need	not	both	be	connected,	at
least	one	must	be	connected.

Figure	1.25:	A	graph	and	its	complement

Theorem	1.11	If	G	is	a	disconnected	graph,	then	 	is	connected.

Proof.	Since	G	 is	disconnected,	G	 contains	 two	or	more	 components.	Let	u
and	v	be	two	vertices	of	 .	We	show	that	u	and	v	are	connected	in	 .	If	u	and
v	belong	to	different	components	of	G,	then	u	and	v	are	not	adjacent	in	G	and
so	u	 and	 v	 are	 adjacent	 in	 .	 Hence	 	 contains	 a	 u	 −	 v	 path	 of	 length	 1.
Suppose	next	 that	u	 and	v	 belong	 to	 the	 same	 component	 of	G.	Let	w	 be	 a
vertex	of	G	that	belongs	to	a	different	component	of	G.	Then	uw,	vw	∉	E(G),
implying	that	uw,	vw	∈	E( )	and	so	(u,	w,	v)	is	a	u	−	v	path	in	 .

We	now	turn	to	graphs	whose	vertex	sets	can	be	partitioned	in	special	ways.



A	graph	G	is	a	bipartite	graph	if	V(G)	can	be	partitioned	into	two	subsets	U	and
W,	called	partite	sets,	such	that	every	edge	of	G	joins	a	vertex	of	U	and	a	vertex
of	W.	 It’s	 not	 always	 easy	 to	 tell	 at	 a	 glance	whether	 a	 graph	 is	 bipartite.	 For
example,	the	connected	graphs	G1	and	G2	of	Figure	1.26	are	bipartite,	as	every
edge	of	G1	 joins	 a	vertex	of	U1	=	{u1,	x1,	y1}	 and	 a	 vertex	 of	W1	 =	 {v1,	w1},
while	every	edge	of	G2	joins	a	vertex	of	U2	=	{u2,	w2,	y2}	and	a	vertex	of	W2	=
{v2,	x2,	z2}.	The	bipartite	nature	of	these	graphs	is	illustrated	in	Figure	1.26.	By
letting	U	=	U1	∪	U2	and	W	=	W1	∪	W2,	we	see	that	every	edge	of	G	=	G1	∪	G2
joins	 a	 vertex	 of	U	 and	 a	 vertex	 of	W.	 This	 illustrates	 the	 observation	 that	 a
graph	is	bipartite	if	and	only	if	each	of	its	components	is	bipartite.

Certainly	not	every	graph	is	bipartite.	For	example,	consider	the	5-cycle	C5	in
Figure	1.27.	If	C5	were	bipartite,	then	its	vertex	set	could	be	partitioned	into	two
sets	U	and	W	such	that	every	edge	of	C5	joins	a	vertex	of	U	and	a	vertex	of	W.
The	vertex	v1	must	belong	to	either	U	or	W,	say	v1	∈	U.	Since	v1v2	is	an	edge	of
C5,	 it	follows	that	v2	∈	W.	Since	v2v3	 is	an	edge	of	C5,	 it	 follows	 that	v3	∈	U.
Similarly,	v4	∈	W	and	v5	∈	U.	However,	v1,	v5	∈	U	and	v1v5	 is	an	edge	of	C5.
This	 is	 a	 contradiction.	 Therefore,	C5	 is	 not	 bipartite.	 In	 fact,	 no	 odd	 cycle	 is
bipartite.	 Indeed,	 any	 graph	 that	 contains	 an	 odd	 cycle	 is	 not	 bipartite.	 The
converse	is	true	as	well,	which	may	come	as	a	surprise.

Theorem	 1.12	A	 nontrivial	 graph	 G	 is	 a	 bipartite	 graph	 if	 and	 only	 if	 G
contains	no	odd	cycles.

Proof.	We	have	already	seen	that	if	a	graph	contains	an	odd	cycle,	then	it’s



Figure	1.26:	Bipartite	graphs

Figure	1.27:	A	5-cycle:	A	graph	that	is	not	bipartite

not	bipartite.	To	prove	the	converse,	 let	G	be	a	nontrivial	graph	having	no	odd
cycles.	We	 show	 that	G	 is	 bipartite.	 Because	 of	 our	 earlier	 observation	 that	 a
graph	 is	 bipartite	 if	 and	 only	 if	 each	 of	 its	 components	 is	 bipartite,	 we	 may
assume	that	G	is	connected.	Let	u	be	any	vertex	of	G,	let	U	consist	of	all	vertices
of	G	 whose	 distance	 from	 u	 is	 even	 and	 let	W	 consist	 of	 all	 vertices	 whose
distance	from	u	is	odd.	Thus	{U,	W}	is	a	partition	of	V(G).	Since	d(u,	u)	=	0,	it
follows	 that	u	∈	U.	We	claim	 that	 every	 edge	of	G	 joins	 a	 vertex	 of	U	 and	 a
vertex	of	W.

Assume,	 to	 the	 contrary,	 that	 there	 exist	 two	 adjacent	 vertices	 in	U	 or	 two
adjacent	 vertices	 in	W.	 Since	 these	 two	 situations	 are	 similar,	we	will	 assume
that	there	are	vertices	v	and	w	in	W	such	that	vw	∈	E(G).	Since	d(u,	v)	and	d(u,
w)	are	both	odd,	d(u,	v)	=	2s	+	1	and	d(u,	w)	=	2t	+	1	for	nonnegative	integers	s
and	t.	Let	P′	=	(u	=	v0,	v1,	…,	v2s	+	1	=	v)	be	a	u	−	v	geodesic	and	let	P″	=	(u	=	w0,
w1,	…,	w2t	 +	 1	=	w)	be	a	u	−	w	 geodesic	 in	G.	Certainly,	P′	 and	P″	have	 their
initial	vertex	u	in	common	but	they	may	have	other	vertices	in	common	as	well.
Among	the	vertices	P′	and	P″	have	in	common,	let	x	be	the	last	vertex.	Perhaps	x
=	u.	In	any	case,	x	=	vi	for	some	integer	i	≥	0.	Thus	d(u,	vi)	=	i.	Since	x	is	on	P″
and	wi	is	the	only	vertex	of	P″	whose	distance	from	u	is	i,	it	follows	that	x	=	wi.
So	x	=	vi	=	wi.	However	then,	C	=	(vi,	vi	+	1,	…,	v2s	+	1,	w2t	+	1,	w2t,	…,	wi	=	vi)	is
a	cycle	of	length

and	so	C	is	an	odd	cycle,	which	is	a	contradiction.

We	know	that	if	G	is	a	bipartite	graph,	then	V(G)	can	be	partitioned	into	two
subsets	U	and	W,	called	partite	sets,	such	that	every	edge	of	G	joins	a	vertex	of



U	 and	 a	 vertex	 of	W.	 However,	 this	 does	 not	mean	 that	 every	 vertex	 of	U	 is
adjacent	 to	every	vertex	of	W.	 If	 this	 does	happen,	 however,	 then	we	call	G	a
complete	bipartite	graph.	A	complete	bipartite	graph	with	|U|	=	s	and	|W|	=	t	is
denoted	 by	Ks,	 t	 or	Kt,	 s.	 If	 either	 s	 =	 1	 or	 t	 =	 1,	 then	Ks,	 t	 is	 a	 star.	 Several
complete	 bipartite	 graphs	 are	 shown	 in	 Figure	 1.28,	 including	 the	 star	 K1,	 3.
Observe	that	K2,	2	is	the	same	graph	as	C4,	although	it	is	certainly	not	drawn	the
same	way	 that	we	drew	C4	 in	Figure	1.21.	When	 two	graphs	G	 and	H	 are	 the
same	except	possibly	for	the	way	that	they’re	drawn	or	their	vertices	are	labeled,
then	 we	 write	G	≅	H.	 (The	 technical	 term	 for	 this	 is	 that	 these	 graphs	 are
isomorphic.	We’ll	 discuss	 this	 in	Chapter	3.)	 If	 the	 structures	 of	G	 and	H	 are
different,	then	we	write	G	 	H.

Figure	1.28:	Complete	bipartite	graphs

Bipartite	graphs	belong	to	a	more	general	class	of	graphs.	A	graph	G	 is	a	k-
partite	graph	if	V(G)	can	be	partitioned	into	k	subsets	V1,	V2,	…,	Vk	(once	again
called	partite	 sets)	 such	 that	 if	 uv	 is	 an	 edge	 of	G,	 then	 u	 and	 v	 belong	 to
different	partite	sets.	If,	in	addition,	every	two	vertices	in	different	partite	sets	are
joined	by	an	edge,	then	G	is	a	complete	k-partite	graph.	If	|Vi|	=	ni	for	1	≤	i	≤	k,
then	we	denote	 this	complete	k-partite	graph	by	Kn1,	n2,	…,	nk.	The	complete	k-
partite	graphs	are	also	referred	to	as	complete	multipartite	graphs.	If	ni	=	1	for
every	i	(1	≤	i	≤	k),	then	Kn1,	n2,	…,	nk	is	the	complete	graph	Kk.	Complete	2-partite
graphs	are	thus	complete	bipartite	graphs.	Several	complete	multipartite	graphs
are	shown	in	Figure	1.29.



Figure	1.29:	Complete	multipartite	graphs

There	are	several	ways	to	produce	a	new	graph	from	a	given	pair	of	graphs.
For	two	vertex-disjoint	graphs	G	and	H,	we	have	already	mentioned	the	union	G
∪	H	of	G	and	H	as	that	(disconnected)	graph	with	vertex	set	V(G)	∪	V(H)	and
edge	set	E(G)	∪	E(H).	The	join	G	+	H	consists	of	G	∪	H	and	all	edges	joining	a
vertex	of	G	and	a	vertex	of	H.	The	join	of	P3	and	K2	is	shown	in	Figure	1.30.

Figure	1.30:	The	join	of	two	graphs

For	two	graphs	G	and	H,	the	Cartesian	product	G	×	H	has	vertex	set	V(G	×
H)	=	V(G)	×	V(H),	that	is,	every	vertex	of	G	×	H	is	an	ordered	pair	(u,	v),	where
u	∈	V(G)	and	v	∈	V(H).	The	Cartesian	product	of	G	and	H	is	often	denote	by	G	
	H	as	well.	Two	distinct	vertices	(u,	v)	and	(x,	y)	are	adjacent	in	G	×	H	if	either

(1)	u	 =	x	 and	vy	∈	E(H)	or	 (2)	v	 =	y	 and	ux	∈	E	 (G).	Figure	 1.31	 shows	 the
Cartesian	product	of	P3	and	K2.

Figure	1.31:	The	Cartesian	product	of	two	graphs

Some	 additional	 comments	 about	 Cartesian	 products	 of	 graphs	 are	 useful.
First,	 the	 definition	 of	 Cartesian	 product	 tells	 us	 that	 the	 order	 in	 which	 the
graphs	G	and	H	are	written	is	structurally	irrelevant,	that	is,	G	×	H	and	H	×G	are
the	same	graph,	that	is,	they	are	isomorphic	graphs.

There	is	an	informal	way	of	drawing	the	graph	G	×	H	(or	H	×	G)	that	doesn’t
require	us	to	label	the	vertices.	Replace	each	vertex	x	of	G	by	a	copy	Hx	of	the
graph	H.	Let	u	and	v	be	two	vertices	of	G.	If	u	and	v	are	adjacent	in	G,	then	we
join	corresponding	vertices	of	Hu	and	Hv	by	an	edge.	If	u	and	v	are	not	adjacent



in	G,	then	we	add	no	edges	between	Hu	and	Hv.	This	is	illustrated	in	Figure	1.32.
Notice	that	K2	×	K2	is	the	4-cycle.	The	graph	C4	×	K2	is	often	denoted	by	Q3

and	is	called	the	3-cube.	More	generally,	we	define	Q1	 to	be	K2	and	for	n	≥	2,
define	 Qn	 to	 be	 Qn	 −	 1	 ×	 K2.	 The	 graphs	 Qn	 are	 then	 called	 n-cubes	 or
hypercubes.	The	n-cube	can	also	be	defined	as	that	graph	whose	vertex	set	is	the
set	of	ordered	n-tuples	of	0s	and	1s	(commonly	called	n-bit	strings)	and	where
two	vertices	are	adjacent	if	their	ordered	n-tuples	differ	in	exactly

Figure	1.32:	The	Cartesian	product	of	two	graphs

one	position	(coordinate).	The	n-cubes	for	n	=	1,	2,	3	are	shown	in	Figure	1.33,
where	their	vertices	are	labeled	by	n-bit	strings.

Figure	1.33:	The	n-cubes	for	1	≤	n	≤	3

Exercises	for	Section	1.3

1.21	Draw	the	graph	3P4	∪	2C4	∪	K4.

1.22	Let	G	be	a	disconnected	graph.	By	Theorem	1.11,	 	is	connected.	Prove
that	if	u	and	v	are	any	two	vertices	of	 ,	then	 	or	
.	Therefore,	if	G	is	a	disconnected	graph,	then	diam( )	≤	2.



1.23	Consider	the	following	question:	For	a	given	positive	integer	k,	does	there
exist	 a	 connected	 graph	G	 whose	 complement	 	 is	 also	 connected	 and
contains	four	distinct	vertices	u,	v,	x,	y	for	which	
?

(a)	Show	that	the	answer	to	this	question	is	yes	if	k	=	1	or	k	=	2.
(b)	Find	the	largest	value	of	k	for	which	the	answer	to	this	question	is	yes.

1.24	Determine	whether	the	graphs	G1	and	G2	of	Figure	1.34	are	bipartite.	If	a
graph	is	bipartite,	then	redraw	it	indicating	the	partite	sets;	if	not,	then	give
an	explanation	as	to	why	the	graph	is	not	bipartite.

1.25	Let	G	be	a	graph	of	order	5	or	more.	Prove	that	at	most	one	of	G	and	G	is
bipartite.

Figure	1.34:	Graphs	in	Exercise	1.24

1.26	Suppose	that	the	vertex	set	of	a	graph	G	is	a	(finite)	set	of	integers.	Two
vertices	x	and	y	are	adjacent	if	x	+	y	is	odd.	To	which	well-known	class	of
graphs	is	G	a	member?

1.27	For	the	following	pairs	G,	H	of	graphs,	draw	G	+	H	and	G	×	H.

(a)	G	=	K5	and	H	=	K2.

(b)	G	=	 5	and	H	=	 3.

(c)	G	=	C5	and	H	=	K1.

1.28	We	have	seen	that	for	n	≥	1,	the	n-cube	Qn	is	that	graph	whose	vertex	set	is
the	set	of	n-bit	strings,	where	two	vertices	of	Qn	are	adjacent	if	they	differ
in	exactly	one	coordinate.

(a)	For	n	≥	2,	define	the	graph	Rn	to	be	that	graph	whose	vertex	set	is	the
set	of	n-bit	strings,	where	two	vertices	of	Rn	are	adjacent	if	they	differ



in	exactly	two	coordinates.	Draw	R2	and	R3.

(b)	For	n	≥	3,	define	the	graph	Sn	to	be	that	graph	whose	vertex	set	is	the
set	of	n-bit	strings,	where	two	vertices	of	Sn	are	adjacent	if	they	differ
in	exactly	three	coordinates.	Draw	S3	and	S4.

1.4	Multigraphs	and	Digraphs

There	are	occasions	when	graphs	may	not	be	an	appropriate	model	for	a	problem
we	 are	 investigating.	We	 now	 describe	 two	 variations	 of	 graphs	 that	 we	 will
encounter	from	time	to	time.	In	a	graph,	two	vertices	are	either	adjacent	or	they
are	not,	that	is,	two	vertices	are	joined	by	one	edge	or	no	edges.	A	multigraph
M	 consists	 of	 a	 finite	nonempty	 set	V	 of	 vertices	 and	 a	 set	E	 of	 edges,	where
every	two	vertices	of	M	are	joined	by	a	finite	number	of	edges	(possibly	zero).	If
two	or	more	edges	join	the	same	pair	of	(distinct)	vertices,	then	these	edges	are
called	parallel	edges.	 In	a	pseudograph,	not	only	are	parallel	edges	permitted
but	an	edge	is	also	permitted	to	join	a	vertex	to	itself.	Such	an	edge	is	called	a
loop.	If	a	loop	e	joins	a	vertex	v	to	itself,	then	e	is	said	to	be	a	loop	at	v.	There
can	be	any	finite	number	of	loops	at	the	same	vertex	in	a	pseudograph.	In	Figure
1.35,	M1	and	M2	are	multigraphs,	M3	is	a	pseudograph	and	M4	is	a	graph.	In	fact,
M4	is	a	multigraph	and	all	four	are	pseudographs.

Figure	1.35:	Multigraphs	and	pseudographs

If	M	 is	 a	multigraph	with	 vertex	 set	V,	 then	 it	 is	 no	 longer	 appropriate	 to
regard	an	edge	of	M	as	a	2-element	subset	of	V	as	we	must	somehow	indicate	the
multiplicity	of	the	edge.

Let’s	return	to	Example	1.2	where	we	considered	the	set	S	=	{2,	3,	5,	8,	13,
21}	as	well	as	those	pairs	of	integers	of	S	whose	sum	or	difference	(in	absolute
value)	belongs	to	S.	The	graph	H	of	Figure	1.2	models	this	situation.	In	H	there



is	an	edge	joining	the	vertices	3	and	5,	indicating	that	3	+	5	∈	S	or	|3	−	5|	∈	S.	In
this	 case,	 however,	 both	 3	 +	 5	∈	 S	 and	 |3	 −	 5|	∈	 S,	 but	 there	 is	 no	 way	 of
knowing	 this	 from	 H.	 The	 multigraph	 M	 of	 Figure	 1.36	 supplies	 this
information.	However,	even	in	this	case,	the	existence	of	a	single	edge	between	a
pair	i,	j	of	vertices	doesn’t	tell	us	whether	i	+	j	∈	S	or	|i	−	j	|	∈	S;	it	only	tells	us
that	one	of	these	occurs.	Thus	the	multigraph	M	of	Figure	1.36	is	a	better	model
of	this	situation.

Figure	1.36:	A	multigraph

A	digraph	(or	directed	graph)	D	is	a	finite	nonempty	set	V	of	objects	called
vertices	together	with	a	set	E	of	ordered	pairs	of	distinct	vertices.	The	elements
of	E	 are	 called	 directed	 edges	 or	 arcs.	 If	 (u,	 v)	 is	 a	 directed	 edge,	 then	 we
indicate	this	in	a	diagram	representing	D	by	drawing	a	directed	line	segment	or
curve	from	u	to	v.	Then	u	is	said	to	be	adjacent	to	v	and	v	is	adjacent	from	u.
The	vertices	u	and	v	 are	 also	 said	 to	be	 incident	with	 the	directed	edge	 (u,	 v).
Arcs	 (u,	 v)	 and	 (v,	 u)	 may	 both	 be	 present	 in	 some	 directed	 graph.	 If,	 in	 the
definition	of	digraph,	for	each	pair	u,	v	of	distinct	vertices,	at	most	one	of	(u,	v)
and	(v,	u)	 is	 a	 directed	 edge,	 then	 the	 resulting	digraph	 is	 an	oriented	 graph.
Thus	an	oriented	graph	D	 is	obtained	by	assigning	a	direction	 to	 each	edge	of
some	graph	G.	The	digraph	D	 is	 also	 called	 an	orientation	 of	G.	 Figure	 1.37
shows	two	digraphs	D1	and	D2,	where	D2	is	an	oriented	graph	but	D1	is	not.

Figure	1.37:	Digraphs

Next,	we	return	to	Example	1.3,	where	we	considered	twelve	configurations



of	two	coins	(one	silver,	one	gold),	which	were	denoted	by	c1,	c2,	…,	c12.	Now,
we	say	that	ci	can	be	transformed	into	cj	if	cj	can	be	obtained	by	moving	one	of
the	 coins	 in	 ci	 to	 the	 right	 or	 up.	 Modeling	 this	 situation	 requires	 a	 digraph,
namely,	the	digraph	D	shown	in	Figure	1.38,	which	is	an	oriented	graph.

Figure	1.38:	Modeling	twelve	configurations	by	a	digraph

Exercises	for	Section	1.4

1.29	(a)	Let	S	=	{2,	3,	4,	7,	11,	13}.	Construct	the	multigraph	M	whose	vertex
set	 is	 S	 and	 where	 ij	 is	 an	 edge	 for	 distinct	 elements	 i	 and	 j	 in	 S
whenever	 i	 +	 j	∈	S	 and	 ij	 is	 an	 edge	whenever	 |i	 −	 j|	∈	S.	 In	 other
words,	i	and	j	are	joined	by	two	edges	if	both	i	+	j	∈	S	and	|	i	−	j	|	∈	S.

(b)	How	are	 the	 problem	 and	 solution	 in	 (a)	 affected	 if	we	 remove	 the
word	“distinct”?

1.30	Consider	the	twelve	configurations	ci,	1	≤	i	≤	12,	in	Figure	1.38.	Draw	the
digraph	D,	where	V(D)	=	{c1,	c2,	…,	c12}	and	where	(ci,	cj)	 is	a	directed



edge	of	D	if	it	is	possible	to	obtain	cj	by	rotating	the	configuration	ci	either
90°	or	180°	clockwise	about	the	midpoint	of	the	checkerboard.

1.31	Using	 the	 twelve	 configurations	 in	 Figure	 1.38,	 define	 a	 transformation
different	 from	 the	one	described	 in	Exercise	1.30	which	can	be	modeled
by	a	digraph	but	not	by	a	graph.

1.32	Let	S	and	A	be	 two	finite	nonempty	sets	of	 integers.	Define	a	digraph	D
with	V(D)	=	A,	where	(x,	y)	is	an	arc	of	D	if	x	≠	y	and	y	−	x	∈	S.
(a)	Draw	the	digraph	D	for	A	=	{0,	1,	2,	3,	4}	and	S	=	{−2,	1,	2,	4}.
(b)	What	can	be	said	about	D	if	A	and	S	consist	only	of	odd	integers?
(c)	How	can	the	question	in	(b)	be	generalized?
(d)	If	|A|	=	|S|	=	5,	how	large	can	the	size	of	D	be?

1.33	A	digraph	D	has	vertex	set	{−3,	3,	6,	12}	and	(i,	j)	∈	D	if	i	≠	j	and	i	|	j,	that
is,	j	is	a	multiple	of	i.	Draw	the	digraph	D.



Chapter	2
Degrees

2.1	The	Degree	of	a	Vertex

There	are	many	numbers,	referred	to	as	parameters,	associated	with	a	graph	G.
Knowing	the	values	of	certain	parameters	provides	us	with	information	about	G
but	rarely	tells	us	the	entire	structure	of	G.	(These	comments	are	tied	in	with	the
concept	 of	 isomorphic	 graphs,	 which	 will	 be	 discussed	 in	 Chapter	 3.)	 We’ve
already	mentioned	the	best	known	parameters:	the	order	and	the	size.	There	are
also	numbers	associated	with	each	vertex	of	a	graph.	We	now	consider	the	best
known	of	these.

The	degree	of	a	vertex	v	in	a	graph	G	is	the	number	of	edges	incident	with	v
and	 is	 denoted	by	degG	v	 or	 simply	by	deg	v	 if	 the	 graph	G	 is	 clear	 from	 the
context.	 Also,	 deg	 v	 is	 the	 number	 of	 vertices	 adjacent	 to	 v.	 Recall	 that	 two
adjacent	 vertices	 are	 referred	 to	 as	 neighbors	 of	 each	 other.	 The	 set	 N(v)	 of
neighbors	of	a	vertex	v	is	called	the	neighborhood	of	v.	Thus	deg	v	=	|N(v)|.

A	 vertex	 of	 degree	 0	 is	 referred	 to	 as	 an	 isolated	 vertex	 and	 a	 vertex	 of
degree	 1	 is	 an	 end-vertex	 (or	 a	 leaf).	 The	 minimum	 degree	 of	 G	 is	 the
minimum	degree	among	the	vertices	of	G	and	is	denoted	by	 (G);	the	maximum
degree	of	G	is	denoted	by	Δ(G).	So	if	G	is	a	graph	of	order	n	and	v	is	any	vertex
of	G,	then

The	graph	G	of	Figure	2.1	has	order	6	and	size	5.	Each	vertex	of	G	 is	 labeled
with	its	degree.	Since	G	contains	an	isolated	vertex,	namely	u,	it	follows	that	
(G)	=	0.	Furthermore,	w	has	 the	 largest	degree	in	G	and	so	Δ(G)	=	deg	w	=	4.
Both	v	and	z	are	end-vertices	of	G	since	deg	v	=	deg	z	=	1.	If	we	add	the	degrees
of	the	vertices	of	G,	we	obtain	0	+	1	+	1	+	2	+	2	+	4	=	10,	which	happens	to	be
twice	the	size	of	G.	This	is	not	a	coincidence	as	we	show	in	our	next	theorem,



which	 is	often	 referred	 to	as	The	First	Theorem	of	Graph	Theory,	 so-called
because	 it	 is	 likely	 that	 anyone	 studying	graph	 theory	 for	 the	 first	 time	would
discover	 this	 result	 as	 his	 or	 her	 own	 first	 theorem	 on	 the	 subject.	 Although
we’ve	 already	 discovered	 some	 theorems	 in	Chapter	 1,	we’ll	 follow	 the	 trend
and	also	refer	to	the	following	theorem	as	the	First	Theorem	of	Graph	Theory.

Figure	2.1:	A	graph	G	with	 (G)	=	0	and	Δ(G)	=	4

Theorem	2.1	(The	First	Theorem	of	Graph	Theory)	If	G	is	a	graph	of	size
m,	then

Proof.	When	 summing	 the	 degrees	 of	 the	 vertices	 of	G,	 each	 edge	 of	G	 is
counted	twice,	once	for	each	of	its	two	incident	vertices.

The	First	Theorem	of	Graph	Theory	is	useful	in	solving	problems	such	as	the
following.

Example	2.2	A	certain	graph	G	has	order	14	and	size	27.	The	degree	of	each
vertex	of	G	is	3,	4	or	5.	There	are	six	vertices	of	degree	4.	How	many	vertices
of	G	have	degree	3	and	how	many	have	degree	5?

Solution.	 Let	 x	 be	 the	 number	 of	 vertices	 of	G	 having	 degree	 3.	 Since	 the
order	of	G	is	14	and	six	vertices	have	degree	4,	eight	vertices	have	degree	3	or
5.	So	there	are	8	−	x	vertices	of	degree	5.	Summing	the	degrees	of	the	vertices
of	G	and	applying	the	First	Theorem	of	Graph	Theory,	we	obtain



and	 so	 8	 −	 x	 =	 3.	 Thus	G	 has	 five	 vertices	 of	 degree	 3	 and	 three	 vertices	 of
degree	5.

The	method	we	used	to	solve	the	problem	in	Example	2.2	tells	us	that	there	is
a	 unique	 solution.	 Perhaps	 other	methods	 of	 solving	 this	 problem	might	 have
occurred	to	you,	such	as	trying	to	draw	the	graph.	Consider	the	graph	of	Figure
2.2,	each	of	whose	vertices	is	labeled	by	its	degree.	This	graph	has	order	14,	size
27	 and	 six	 vertices	 of	 degree	 4,	 which	 are	 characteristics	 of	 the	 graph	G	 of
Example	2.2.	We	see	 that	 the	graph	of	Figure	2.2	has	 five	vertices	of	degree	3
and	 three	vertices	of	degree	5,	solving	 the	problem.	Even	 though	 this	provides
the	correct	answers	to	our	question,	the	explanation	is	not	correct;	for	how	do	we
know	that	the	graph	we	have	just	drawn	is	the	graph	G	referred	to	in	the	problem
and	therefore	gives	us	the	correct	answer?

Figure	2.2:	A	graph	of	order	14	and	size	27

Another	possible	“solution”	might	go	something	like	this:	We	know	that	we
are	looking	for	integers	x	and	y	such	that	x	+	y	=	8	and

3x	+	4	⋅	6	+	5y	=	2	⋅	27	=	54.
By	observation,	we	see	that	x	=	5	and	y	=	3	satisfy	this	equation.	Thus	we	have
“solved”	 the	 problem.	But	 this	 “solution”	 also	 has	 its	 drawbacks.	How	do	we
know	that	this	is	the	only	solution?	(Of	course,	we	could	try	all	possible	values
of	x	and	y.)	The	solution	that	we	gave	for	Example	2.2	shows	that	there	is	only
one	 solution	 for	 each	 of	 x	 and	 y	 and	 that	 the	 solutions	 do	 not	 depend	 on	 the



graph	under	consideration	(provided	it	has	order	14,	size	27	and	six	vertices	of
degree	4).	Just	as	when	asked	to	solve	x2	−	x	=	3x	−	4	for	a	real	number	x,	it	is
not	enough	to	simply	note	that	x	=	2	is	a	root.	It	is	required	to	find	all	roots	and
even	if	x	=	2	is	the	only	root,	we	are	obliged	to	show	that	this	is	so.

Suppose	that	G	is	a	bipartite	graph	of	size	m	with	partite	sets	U	=	{u1,	u2,	…,
us}and	W	=	{w1,	w2,	…,	wt}.	Since	every	edge	of	G	 joins	a	vertex	of	U	and	a
vertex	of	W,	 it	 follows	 that	 adding	 the	 degrees	 of	 the	 vertices	 in	U	 (or	 in	W)
gives	the	number	of	edges	in	G,	that	is,

A	 vertex	 of	 even	 degree	 is	 called	 an	 even	 vertex,	 while	 a	 vertex	 of	 odd
degree	is	an	odd	vertex.	Returning	to	the	graph	G	of	Figure	2.2,	we	see	 that	 it
has	 six	 even	 vertices	 and	 eight	 odd	 vertices.	 In	 particular,	 the	 number	 of	 odd
vertices	of	G	is	even.	We	show	that	this	is	the	case	for	every	graph.

Corollary	2.3	Every	graph	has	an	even	number	of	odd	vertices.

Proof.	Let	G	be	a	graph	of	size	m.	Divide	V(G)	 into	 two	subsets	V1	and	V2,
where	V1	consists	of	the	odd	vertices	of	G	and	V2	consists	of	the	even	vertices
of	G.	By	the	First	Theorem	of	Graph	Theory,

The	number	 	is	even	since	it	is	a	sum	of	even	integers.	Thus

which	implies	that	 	is	even.	Since	each	of	the	numbers	deg	v,	v	∈
V1,	is	odd,	the	number	of	odd	vertices	of	G	is	even.

There	is	a	great	deal	of	information	that	can	be	learned	about	a	graph	from
the	degrees	of	its	vertices.	For	example,	if	a	graph	G	of	order	n	contains	a	vertex
of	degree	n	−	1,	 then	G	 is	connected.	 In	order	 to	see	why	 this	 is	 true,	suppose
that	deg	w	=	n	−	1.	Therefore,	w	is	adjacent	to	all	other	vertices	of	G.	To	show
that	G	 is	 connected,	we	need	 to	 show	 that	 every	pair	x,	y	 of	 vertices	 of	G	are
connected,	that	is,	G	contains	an	x	−	y	path.	This	is	certainly	true	if	one	of	x	and



y	is	w.	If	neither	x	nor	y	is	w,	then	since	w	is	adjacent	to	both	x	and	y,	it	follows
that	(x,	w,	y)	is	an	x	−	y	path	and	consequently	G	contains	an	x	−	y	path.

This	degree	condition	is	certainly	not	necessary	for	a	graph	to	be	connected.
For	example,	for	n	≥	4,	the	path	Pn	of	order	n	is	connected	but	contains	no	vertex
of	degree	greater	than	2.	Next,	we	present	another	degree	condition	that	implies
that	a	graph	is	connected	and	more.

Theorem	2.4	Let	G	be	a	graph	of	order	n.	If

for	 every	 two	 nonadjacent	 vertices	 u	 and	 v	 of	 G,	 then	 G	 is	 connected	 and
diam(G)	≤	2.

Proof.	We	show	that	every	two	distinct	vertices	of	G	are	connected	by	a	path
of	length	at	most	2.	Let	x,	y	∈	V(G).	If	xy	∈	E(G),	then	(x,	y)	is	a	path	and	x
and	 y	 are	 certainly	 connected.	 Hence	 we	 may	 assume	 that	 xy	 ∉	 E(G).
Therefore,	deg	x	+	deg	y	≥	n	−	1,	which	implies	that	there	must	be	a	vertex	w
that	is	adjacent	to	both	x	and	y.	So	(x,	w,	y)	is	a	path	in	G,	as	desired.

Theorem	2.4	implies	that	if	G	is	a	graph	of	order	n	such	that	deg	v	≥	(n−1)/2
for	every	vertex	v	of	G,	then	G	must	be	connected.

Corollary	 2.5	 If	 G	 is	 a	 graph	 of	 order	 n	with	 (G)	 ≥	 (n	 −	 1)/2,	 then	G	 is
connected.

Proof.	For	every	two	nonadjacent	vertices	u	and	v	of	G,

By	Theorem	2.4,	G	is	connected.

According	to	Corollary	2.5,	if	G	is	a	graph	of	order	n	=	7	and	 (G)	≥	(7	−	1)/2
=	3,	then	G	is	connected.	Also,	if	G	is	a	graph	of	order	n	=	8	and	 (G)	≥	(8	−	1)/2
=	3.5,	then	G	 is	connected.	Of	course,	in	the	latter	case,	this	says	that	if	G	is	a
graph	of	order	n	=	8	and	 (G)	≥	4,	then	G	 is	connected.	For	an	even	integer	n,
Corollary	2.5	then	says	that	if	G	is	a	graph	of	order	n	with	 (G)	≥	n/2,	then	G	is
connected.

Let’s	return	to	Theorem	2.4.	This	theorem	tells	us	then	that	if	the	sum	of	the



degrees	 of	 any	 two	 nonadjacent	 vertices	 of	 a	 graph	 G	 of	 order	 n	 is	 “large
enough,”	then	G	is	connected.	According	to	Theorem	2.4,	n	−	1	is	large	enough.
Obviously,	if	the	sum	of	the	degrees	of	any	two	nonadjacent	vertices	of	G	is	at
least	n,	then	G	must	be	connected	as	well.	But	what	if	the	sum	of	the	degrees	of
any	two	nonadjacent	vertices	of	G	is	at	least	n	−	2?	Does	that	also	guarantee	that
G	 is	connected?	What	we	are	now	discussing	is	the	sharpness	of	 the	bound	in
Theorem	2.4.	That	is,	would	Theorem	2.4	still	be	true	if	we	replace	n	−	1	by	a
smaller	integer?	If	not,	then	Theorem	2.4	cannot	be	improved	and	the	bound	is
sharp.

As	it	turns	out,	the	bound	in	Theorem	2.4	is	sharp.	For	example,	suppose	that
n	 is	 even,	 say	 n	 =	 2k	 and	 consider	 the	 graph	 G	 =	 2Kk,	 that	 is,	 G	 is	 the
disconnected	graph	with	two	components	each	of	which	is	Kk	(see	Figure	2.3).	If
u	and	v	 are	 two	nonadjacent	vertices	 in	 this	graph	G,	 then	u	 and	v	must	 be	 in
different	components	and	each	has	degree	k	−	1.	So

Therefore,	if	the	sum	of	the	degrees	of	any	two	nonadjacent	vertices	of	a	graph
G	of	order	n	is	at	least	n	−	2,	then	there	is	no	guarantee	that	G	is	connected.

Figure	2.3:	A	disconnected	graph	of	order	n	=	2k	such	that	the	sum	of	the
degrees	of	any	two	nonadjacent	vertices	is	n	−	2

Observe	also	that	if	G	is	a	disconnected	graph	of	order	n,	then	(since	G	has	at
least	two	components)	some	component	G1	of	G	has	order	n1	that	is	at	most	n/2.
Every	vertex	of	G1	has	degree	at	most	n1	−	1	≤	(n/2)	−	1	=	(n	−	2)/2	and	so	 (G)
≤	 (n	 −	 2)/2.	 (This	 observation	 actually	 provides	 a	 proof	 by	 contrapositive	 of
Corollary	2.5.)	If	G	has	three	components,	then	the	order	of	some	component	of
G	is	at	most	n/3.	More	generally,	if	G	has	k	components,	then	the	order	of	some
component	of	G	is	at	most	n/k.

The	 concept	 of	 degree	 has	 counterparts	 in	 both	multigraphs,	 pseudographs
and	digraphs.	For	a	vertex	v	in	a	multigraph	or	pseudograph	G,	the	degree	deg	v
of	 v	 in	 G	 is	 the	 number	 of	 edges	 of	 G	 incident	 with	 v,	 where	 there	 is	 a
contribution	of	2	for	each	loop	at	v	in	a	pseudograph.	For	the	pseudograph	G	of
Figure	2.4,



Figure	2.4:	Illustrating	degrees	in	a	multigraph	and	a	digraph

For	 a	 vertex	 v	 in	 a	 digraph	D,	 the	 outdegree	 od	 v	 of	 v	 is	 the	 number	 of
vertices	of	D	to	which	v	is	adjacent,	while	the	indegree	id	v	of	v	is	the	number	of
vertices	of	D	from	which	v	is	adjacent.	For	the	digraph	D	of	Figure	2.4,

Exercises	for	Section	2.1

2.1	Give	an	example	of	the	following	or	explain	why	no	such	example	exists:

(a)	a	graph	of	order	7	whose	vertices	have	degrees	1,	1,	1,	2,	2,	3,	3.
(b)	a	graph	of	order	7	whose	vertices	have	degrees	1,	2,	2,	2,	3,	3,	7.
(c)	a	graph	of	order	4	whose	vertices	have	degrees	1,	3,	3,	3.

2.2	Give	an	example	of	the	following	or	explain	why	no	such	example	exists:

(a)	a	graph	that	has	no	odd	vertices.
(b)	a	noncomplete	graph,	all	of	whose	vertices	have	degree	3.
(c)	a	graph	G	of	order	5	or	more	with	the	property	that	deg	u	≠	deg	v	for

every	pair	u,	v	of	adjacent	vertices	of	G.
(d)	a	noncomplete	graph	H	of	order	5	or	more	with	the	property	that	deg

u	≠	deg	v	for	every	pair	u,	v	of	nonadjacent	vertices	of	H.

2.3	The	 degree	 of	 each	 vertex	 of	 a	 certain	 graph	 of	 order	 12	 and	 size	 31	 is
either	4	or	6.	How	many	vertices	of	degree	4	are	there?

2.4	Give	an	example	of	a	graph	G	of	order	6	and	size	10	such	that	 (G)	=	3
and	Δ(G)	=	4.



2.5	The	degree	of	every	vertex	of	a	graph	G	of	order	25	and	size	62	is	3,	4,	5
or	6.	There	are	two	vertices	of	degree	4	and	11	vertices	of	degree	6.	How
many	vertices	of	G	have	degree	5?

2.6	 Prove	 that	 if	 a	 graph	 of	 order	 3n	 (n	 ≥	 1)	 has	 n	 vertices	 of	 each	 of	 the
degrees	n	−	1,	n	and	n	+	1,	then	n	is	even.

2.7	(a)	Prove	that	if	G	is	a	bipartite	graph	of	size	m	with	partite	sets	U	and	W,
then	 .

(b)	Let	G	be	a	bipartite	graph	of	order	22	with	partite	sets	U	and	W,	where
|U|	 =	 12.	 Suppose	 that	 every	 vertex	 in	U	 has	 degree	 3,	 while	 every
vertex	of	W	has	degree	2	or	4.	How	many	vertices	of	G	have	degree	2?

2.8	Let	G	be	a	graph	of	order	n.	If	deg	u	+	deg	v	+	deg	w	≥	n	−	1	 for	every
three	pairwise	nonadjacent	vertices	u,	v	and	w	of	G,	must	G	be	connected?

2.9	Show	that	if	G	is	a	disconnected	graph	containing	exactly	two	odd	vertices,
then	these	odd	vertices	must	be	in	the	same	component	of	G.

2.10	We	have	already	seen	that	if	G	is	a	graph	of	order	n	such	that	deg	u	+	deg
v	≥	n	−	2	for	every	two	nonadjacent	vertices	u	and	v	of	G,	then	G	might	be
disconnected.

(a)	Show	that	there	exists	a	connected	graph	G	of	order	n	such	that	deg	u
+	deg	v	≥	n	−	2	 for	every	 two	nonadjacent	vertices	u	and	v	 and	 for
which	deg	x	+	deg	y	=	n	−	2	for	some	pair	x,	y	of	nonadjacent	vertices
of	G.

(b)	Let	G	be	a	graph	of	order	n.	Prove	that	if	deg	u	+	deg	v	≥	n	−	2	 for
every	pair	u,	v	of	nonadjacent	vertices	of	G,	then	G	has	at	most	two
components.

(c)	Is	the	bound	in	part	(b)	sharp?

2.11	Corollary	2.5	states	that	if	G	is	a	graph	of	order	n	with	 (G)	≥	(n	−	1)/2,
then	G	is	connected.	Is	the	bound	(n	−	1)/2	sharp,	that	is,	in	this	case,	can
(n	−	1)/2	be	replaced	by	(n	−	2)/2	and	obtain	the	same	conclusion?

2.12	Prove	that	if	G	is	a	graph	of	order	n	such	that	Δ(G)	+	 (G)	≥	n	−	1,	then	G
is	connected	and	diam(G)	≤	4.	Show	that	the	bound	n	−	1	is	sharp.

2.13	Let	G	be	a	graph	of	order	n	≥	2.

(a)	Prove	that	if	deg	v	≥	(n	−	2)/3	for	every	vertex	v	of	G,	then	G	contains
at	most	two	components.



(b)	Show	that	the	bound	in	(a)	is	sharp.

2.14	A	graph	G	has	the	property	that	every	edge	of	G	joins	an	odd	vertex	with
an	even	vertex.	Show	that	G	is	bipartite	and	has	even	size.

2.15	A	certain	connected	graph	G	has	the	property	that	for	every	two	vertices	u
and	v	of	G,	the	length	of	each	u	−	v	path	is	even	or	the	length	of	each	u	−	v
path	is	odd.	Prove	that	G	is	bipartite.

2.16	The	degree	of	every	vertex	of	a	graph	G	of	order	2n	+	1	≥	5	is	either	n	+	1
or	n	+	2.	Prove	that	G	contains	at	least	n	+	1	vertices	of	degree	n	+	2	or	at
least	n	+	2	vertices	of	degree	n	+	1.

2.17	Let	G	be	a	connected	graph	containing	a	vertex	w	such	that	(1)	deg	w	 	0
(mod	3)	and	(2)	deg	u	+	deg	v	≡	0	(mod	3)	for	every	two	adjacent	vertices
u	and	v	of	G.	Prove	that	G	is	bipartite	and	contains	no	vertex	x	such	that
deg	x	≡	0	(mod	3).

2.18	Let	G	be	a	graph	of	order	8	with	v(G)	=	{v1,	v2,	…,	v8}	such	that	deg	vi	=	i
for	1	≤	i	≤	7.	What	is	deg	v8?

2.2	Regular	Graphs

We	have	already	mentioned	that	0	≤	 (G)	≤	Δ(G)	≤	n	−	1	for	every	graph	G	of
order	n.	 If	 (G)	=	Δ(G),	 then	 the	vertices	of	G	have	 the	same	degree	and	G	 is
called	regular.	If	deg	v	=	r	for	every	vertex	v	of	G,	where	0	≤	r	≤	n	−	1,	then	G
is	r-regular	or	regular	of	degree	r.	The	only	regular	graphs	of	order	4	or	5	are
shown	in	Figure	2.5.	There	is	no	1-regular	or	3-regular	graph	of	order	5,	as	no
graph	contains	an	odd	number	of	odd	vertices	by	Corollary	2.3.



Figure	2.5:	Some	regular	graphs

A	3-regular	graph	 is	also	referred	 to	as	a	cubic	graph.	The	graphs	K4,	K3,3
and	Q3	are	cubic	graphs;	however,	the	best	known	cubic	graph	may	very	well	be
the	Petersen	graph,	shown	in	Figure	2.6.	We	will	see	this	graph	again.	(Indeed,
Section	8.5	is	devoted	to	this	graph.)

Figure	2.6:	The	Petersen	graph

By	Corollary	2.3,	there	are	no	r-regular	graphs	of	order	n	if	r	and	n	are	both
odd.	 However,	 provided	 0	 ≤	 r	 ≤	 n	 −	 1,	 there	 are	 no	 other	 restrictions	 on	 the
existence	 of	 an	 r-regular	 graph	 of	 order	 n.	 In	 the	 next	 proof,	 we	 will	 be
considering	a	graph	G	with	 vertex	 set	V(G)	=	 {v1,	v2,	…,	 vn}	 and	 performing
arithmetic	on	 the	subscripts	of	 the	vertices.	We	follow	 the	standard	practice	of
performing	 the	arithmetic	modulo	n.	For	example,	 if	n	=	6	and	 i	=	5,	 then	 the
vertex	vi	+	2	denotes	v1.

Theorem	 2.6	Let	 r	 and	 n	 be	 integers	 with	 0	 ≤	 r	 ≤	 n	 −	 1.	 There	 exists	 an
rregular	graph	of	order	n	if	and	only	if	at	least	one	of	r	and	n	is	even.



Proof.	As	we	already	mentioned,	there	is	no	r-regular	graph	of	order	n	if	r	and
n	 are	 both	 odd.	 It	 remains	 only	 to	 verify	 the	 converse.	 So	 let	 r	 and	 n	 be
integers	 with	 0	 ≤	 r	 ≤	 n	 −	 1	 such	 that	 at	 least	 one	 of	 r	 and	 n	 is	 even.	We
construct	an	r-regular	graph	Hr,	 n	 of	order	n.	Let	V(Hr,	 n)	=	 {v1,	 v2,	…,	 vn}.
First,	assume	that	r	is	even.	Then	r	=	2k	≤	n	−	1	for	some	nonnegative	integer
k	≤	(n	−	1)/2.	For	each	i	(1	≤	i	≤	n),	we	join	vi	to	vi	+	1,	vi	+	2,	…,	vi	+	k	and	to	vi
−	1,	vi	−	2,	…,	vi	−	k.	If	we	think	of	arranging	the	vertices	v1,	v2,	…,	vn	cyclically,
then	each	vertex	vi	is	adjacent	to	the	k	vertices	that	immediately	follow	vi	and
the	k	vertices	that	immediately	precede	vi.	Thus	Hr,	n	is	r-regular.	For	r	=	4	and
n	=	10,	the	graph	H4,	10	is	shown	in	Figure	2.7(a).

Second,	assume	that	r	is	odd.	Then	n	=	2l	is	even.	Also,	r	=	2k	+	1	≤	n	−	1
for	 some	 nonnegative	 integer	 k	 ≤	 (n	 −	 2)/2.	 We	 join	 vi	 to	 the	 2k	 vertices
described	above	as	well	as	to	vi	+	l.	In	this	case,	we	again	think	of	arranging	the
vertices	 v1,	 v2,	 …,	 vn	 cyclically	 and	 joining	 each	 vertex	 vi	 to	 the	 k	 vertices
immediately	following	it,	the	k	vertices	immediately	preceding	it	and	the	unique
vertex	“opposite”	vi.	Thus	Hr,	n	is	r-regular.	For	r	=	5	and	n	=	10,	the	graph	H5,	10
is	shown	in	Figure	2.7(b).

The	graphs	Hr,	n	described	above	are	called	Harary	graphs,	named	for	Frank
Harary.	We	will	visit	him	again.	Also,	we	will	visit	these	graphs	again	in	Section
5.3.

The	proof	of	Theorem	2.6	that	we	have	presented	is	a	constructive	proof,	that
is,	we	actually	constructed	a	graph	with	the	desired	properties	and	didn’t

Figure	2.7:	A	4-regular	graph	and	a	5-regular	graph,	both	of	order	10

simply	show	that	some	graph	with	these	properties	exists.	Although	the	proof	of
Theorem	2.6	 doesn’t	 suggest	 it,	 there	 is	 little	 restriction	 on	 the	 subgraphs	 that



regular	graphs	can	contain.	Of	course,	if	H	is	an	r-regular	graph,	then	H	cannot
contain	any	graph	G	as	a	subgraph	if	Δ(G)	>	r.	On	the	other	hand,	if	G	is	a	graph
with	 Δ(G)	 ≤	 r	 for	 some	 integer	 r,	 then	G	 is	 a	 subgraph	 (indeed,	 an	 induced
subgraph)	of	some	r-regular	graph	H,	as	we	now	see.

Theorem	2.7	For	every	graph	G	and	every	integer	r	≥	Δ(G),	 there	exists	an
rregular	graph	H	containing	G	as	an	induced	subgraph.

Proof.	If	G	is	r-regular,	then	we	let	H	=	G.	Thus,	we	may	assume	that	G	is	not
an	r-regular	graph.	Suppose	that	G	has	order	n	and	V(G)	=	{v1,	v2,	…,	vn}.	Let
G′	be	another	copy	of	G	with	 ,	where	each	vertex	
	 in	G′	corresponds	 to	vi	 in	G	 for	1	≤	 i	≤	n.	We	now	construct	 a	 graph	G1

from	G	and	G′	by	adding	the	edges	 	for	all	vertices	vi(1	≤	i	≤	n)	of	G	for
which	deg	vi	≤	r.	Then	G	is	an	induced	subgraph	of	G1	and	 (G1)	=	 (G)	+	1.
If	G1	is	r-regular,	then	we	let	H	=	G1.	If	not,	then	we	continue	this	procedure
until	we	arrive	at	an	r-regular	graph	Gk,	where	k	=	r	−	 (G).	The	graph	Gk	 is
the	desired	graph	H.

To	illustrate	the	construction	described	in	Theorem	2.7,	consider	the	graph	G
of	 Figure	 2.8,	 where	 Δ(G)	 =	 4	 and	 (G)	 =	 2.	 We	 seek	 a	 4-regular	 graph	H
containing	G	as	an	 induced	subgraph.	First,	we	construct	a	graph	G1	 from	two
copies	of	G	by	joining	all	pairs	of	corresponding	vertices	in	these	copies	whose
degrees	are	less	than	4.	Then	Δ(G1)	=	4,	 (G1)	=	3	and	G	is	an	induced	subgraph
of	G1.	 We	 then	 construct	 H	 from	 two	 copies	 of	 G1	 by	 joining	 all	 pairs	 of
corresponding	vertices	in	these	copies	whose	degrees	are	3.	Then	H	is	4-regular
and	G	is	an	induced	subgraph	of	H.

Theorem	 2.7	 appears	 in	 the	 first	 book	 entirely	 devoted	 to	 graph	 theory,
published	 in	 1936	 and	 written	 by	 Dénes	 König.	 Although	 König	 stated	 and
proved	 the	 theorem	 for	multigraphs,	 the	proof	he	presented	 suggests	 the	proof
we	gave	for	graphs	in	Theorem	2.7.	The	proof	of	Theorem	2.7	does	not	construct
an	r-regular	graph	of	smallest	order	containing	a	given	graph	G	with	Δ(G)	≤	r	as



Figure	2.8:	A	4-regular	graph	H	containing	G	as	an	induced	subgraph

an	 induced	 subgraph.	 Paul	 Erdös	 and	 Paul	 J.	 Kelly	 discovered	 a	 method	 for
finding	 the	smallest	order	of	 such	an	r-regular	graph.	We	consider	an	example
dealing	with	this	problem.

Example	 2.8	For	 the	 graph	 G	 of	Figure	 2.9,	 find	 a	 5-regular	 graph	 H	 of
minimum	order	containing	G	as	an	induced	subgraph.

Figure	2.9:	The	graph	G	in	Example	2.8

Solution.	Since	 (G)	=	2	and	the	order	of	G	is	6,	the	order	of	such	a	graph	H
must	be	at	least	9.	However,	there	does	not	exist	a	5-regular	graph	of	order	9,
so	 the	order	 of	H	must	 be	 at	 least	 10.	Hence	 to	 construct	 a	 5-regular	 graph
containing	G	 as	 an	 induced	 subgraph,	 it	 is	 necessary	 to	 add	 at	 least	 four
vertices	u,	v,	w,	x	to	G	(see	Figure	2.10(a)).	Joining	u,	v,	w,	x	to	the	vertices	of
G	and	to	each	other	as	indicated	in	Figure	2.10(b)	produces	a	5-regular	graph
H	containing	G	 as	an	 induced	subgraph.	Thus	 the	minimum	order	of	 such	a
graph	H	is	10.



Figure	2.10:	The	graph	H	in	Example	2.8

Exercises	for	Section	2.2

2.19	Construct	an	r-regular	graph	of	order	6	and	an	s-regular	graph	of	order	7
for	all	possible	values	of	r	and	s.

2.20	Show	 that	 if	G	 is	 a	connected	graph	 that	 is	not	 regular,	 then	G	contains
adjacent	vertices	u	and	v	such	that	deg	u	≠	deg	v.

2.21	(a)	Find	spanning	subgraphs	G0,	G1,	G2,	G3	of	the	Petersen	graph,	where
Gr	is	r-regular	for	0	≤	r	≤	3.

(b)	Find	induced	subgraphs	F0,	F1,	F2,	F3	in	the	Petersen	graph,	where	Fr
is	r-regular	for	0	≤	r	≤	3.

(c)	 How	 can	 the	 problem	 in	 (b)	 be	 revised	 so	 that	 it	 would	 be	 more
interesting	(and	more	challenging)?

2.22	For	the	graph	G	of	Figure	2.11,	construct	a	3-regular	graph	H	containing	G
as	an	induced	subgraph

(a)	using	the	proof	of	Theorem	2.7.	What	is	the	order	of	H?
(b)	such	that	H	has	the	smallest	possible	order.	What	is	this	order?

Figure	2.11:	The	graph	G	in	Exercise	2.22

2.23	 For	 each	 of	 the	 following	 paths,	 construct	 a	 3-regular	 graph	 H	 of
minimum	order	containing	the	path	as	an	induced	subgraph:	(a)	P5,	(b)	P6,



(c)	P7.

2.24	What	is	the	minimum	order	of	a	3-regular	graph	H	containing	the	graph	G
in	Figure	2.12	as	an	induced	subgraph?

Figure	2.12:	The	graph	G	in	Exercise	2.24

2.25	(a)	Let	v	be	a	vertex	of	a	graph	G.	Show	that	if	G	−	v	is	3-regular,	then	G
has	odd	order.

(b)	Let	G	 be	 an	 r-regular	graph,	where	 r	 is	 odd.	Show	 that	G	 does	 not
contain	any	component	of	odd	order.

2.26	(a)	Show	that	a	graph	G	is	regular	if	and	only	if	 	is	regular.

(b)	Show	that	if	G	and	 	are	both	r-regular	for	some	nonnegative	integer
r,	then	G	has	odd	order.

2.27	Prove	that	if	G	is	an	r-regular	bipartite	graph	with	r	≥	1	and	partite	sets	U
and	W,	then	|U|	=	|W|.

2.28	 Investigate	 the	 following	 question:	 Does	 there	 exist	 a	 graph	G	 and	 an
integer	r	with	 (G)	≤	r	and	Δ(G)	≤	r,	 such	 that	 the	r-regular	graph	H	 in
Theorem	2.7	that	contains	G	as	an	induced	subgraph	has	the	smallest	order
among	all	r-regular	graphs	with	this	property?

2.29	(a)	Prove	that	if	G	is	a	graph	of	order	n,	then	 (G)	+	 ( )	≤	n	−	1.

(b)	Prove,	for	a	graph	G	of	order	n,	that	 (G)	+	 ( )	=	n	−	1	if	and	only	if
G	is	regular.

(c)	Prove	 that	a	graph	G	 is	 regular	 if	 and	only	 if	G	 contains	a	vertex	v
such	that	degG	v	=	 (G)	and	 .

(d)	What	 can	we	 say	 about	 a	 graph	G	with	 the	 property	 that	 for	 every
vertex	v	of	G,	either	degG	v	=	 (G)	or	 	but	not	both?

2.30	Beginning	with	G	=	K1,	use	the	construction	in	Theorem	2.7	to	produce	a
3-regular	 graph	H	 (containing	G	 as	 an	 induced	 subgraph).	What	 famous
graph	is	H?



2.3	Degree	Sequences

Although	 we’ve	 been	 discussing	 graphs	 all	 of	 whose	 vertices	 have	 the	 same
degree,	it	is	more	typical	for	the	vertices	of	a	graph	to	have	a	variety	of	degrees.
If	 the	degrees	of	 the	vertices	of	a	graph	G	 are	 listed	 in	a	 sequence	s,	 then	s	 is
called	a	degree	sequence	of	G.	For	example,	all	of	the	sequences

are	degree	sequences	of	 the	graph	G	of	Figure	2.13,	 each	of	whose	vertices	 is
labeled	by	its	degree.	The	sequence	s	is	non-increasing,	s′	is	non-decreasing	and
s″	is	neither.	Determining	a	degree	sequence	of	a	graph	is	not	difficult.	There	is	a
converse	question	that	is	considerably	more	intriguing,	however.

Figure	2.13:	A	graph	with	degree	sequence	4,	3,	2,	2,	2,	1,	1,	1,	0

Suppose	that	we	are	given	a	finite	sequence	s	of	nonnegative	integers.	Is	s	a
degree	 sequence	 of	 some	 graph?	A	 finite	 sequence	 of	 nonnegative	 integers	 is
called	graphical	 if	 it	 is	a	degree	sequence	of	some	graph.	Of	course,	all	of	the
sequences	in	(2.2)	are	graphical.

Example	2.9	Which	of	the	following	sequences	are	graphical?

(1)	s1	:	3,	3,	2,	2,	1,	1

(2)	s2	:	6,	5,	5,	4,	3,	3,	3,	2,	2

(3)	s3	:	7,	6,	4,	4,	3,	3,	3

(4)	s4	:	3,	3,	3,	1

Solution.

		(1)	The	sequence	s1	is	graphical.	Indeed,	it	is	a	degree	sequence	of	the	graph



G1	of	Figure	2.14.

Figure	2.14:	A	graph	with	degree	sequence	3,	3,	2,	2,	1,	1

		(2)	Since	s2	has	an	odd	number	of	terms	that	are	odd	integers,	s2	cannot	be	a
degree	 sequence	 of	 a	 graph	 (for	 otherwise,	 such	 a	 graph	would	 have	 an
odd	number	of	odd	vertices,	contradicting	Corollary	2.3).	Therefore,	s2	is
not	graphical.

		(3)	The	sequence	s3	is	also	not	graphical;	for	otherwise,	s3	would	be	a	degree
sequence	of	a	graph	of	order	7	and	containing	a	vertex	of	degree	7.	(The
degree	of	any	vertex	in	a	graph	of	order	7	is	at	most	7	−	1	=	6.)

		(4)	The	sequence	s4	contains	four	terms,	all	of	which	are	at	most	4	−	1	=	3.
Also,	s4	contains	an	even	number	of	terms	that	are	odd	integers.	Yet,	s4	is
not	graphical.	Assume,	to	the	contrary,	that	s4	is	graphical.	Then	there	is	a
graph	G4	of	order	4	with	V(G4)	=	{u,	v,	w,	x}	such	that	deg	u	=	deg	v	=	deg
w	=	3	and	deg	x	=	1.	This	implies	that	each	of	u,	v	and	w	is	adjacent	to	all
other	vertices	of	G4,	including	x,	but	x	is	adjacent	to	only	one	of	u,	v	and
w.	This	is	impossible.

The	 sequence	 s4	 shows	 that	 determining	which	 sequences	 are	 graphical	 is
potentially	difficult.	We	present	a	theorem	that	will	help	us	to	efficiently	decide
whether	a	given	sequence	is	graphical.	This	theorem	is	due	to	Václav	Havel	and
S.	Louis	Hakimi	and	is	often	referred	to	as	the	Havel-Hakimi	Theorem,	despite
the	 fact	 that	 Havel	 and	 Hakimi	 gave	 independent	 proofs	 and	 wrote	 separate
papers	 that	 include	 this	 theorem.	To	 use	 this	 theorem,	we	 assume	 that	we	 are
beginning	with	a	non-increasing	sequence.

Theorem	 2.10	 A	 non-increasing	 sequence	 s	 :	 d1,	 d2,	 …,	 dn	 (n	 ≥	 2)	 of
nonnegative	integers,	where	d1	≥	1,	is	graphical	if	and	only	if	the	sequence



is	graphical.

Proof.	First,	assume	that	s1	is	graphical.	Then	there	is	a	graph	G1	with	V(G1)
=	{v2,	v3,	…,	vn}	such	that

We	construct	a	graph	G	from	G1	by	adding	a	new	vertex	v1	and	the	d1	edges	v1vi
for	2	≤	i	≤	d1	+	1.	Since	degG	vi	=	di	for	1	≤	i	≤	n,	it	follows	that	s	 is	a	degree
sequence	of	G	and	so	s	is	graphical.

Proving	 the	 converse	 is	 more	 challenging.	 Assume	 that	 s	 is	 graphical.
Suppose	that	a	graph	H	has	degree	sequence	s	and	contains	a	vertex	u	of	degree
d1	such	that	u	is	adjacent	to	vertices	whose	degrees	are	 .	Then
s1	is	a	degree	sequence	of	H	−	u	and	the	proof	of	the	converse	is	complete.	We
show	 next	 that	 there	must	 be	 a	 graph	H	 with	 degree	 sequence	 s	 containing	 a
vertex	 u	 of	 degree	 d1	 that	 is	 adjacent	 to	 vertices	 whose	 degrees	 are	

.
Assume,	 to	 the	 contrary,	 that	 there	 is	 no	 graph	 with	 degree	 sequence	 s

containing	a	vertex	of	degree	d1	 that	 is	adjacent	 to	vertices	whose	degrees	are	
.	Among	all	graphs	with	degree	sequence	s,	let	G	be	one	with

V(G)	=	{v1,	v2,	…,	vn}	 such	 that	 deg	vi	 =	di	 for	 1	≤	 i	 ≤	n	 and	 the	 sum	of	 the
degrees	of	vertices	adjacent	to	v1	is	as	large	as	possible.	Since	v1	is	not	adjacent
to	 vertices	 having	 degrees	 	 (that	 is,	 v1	 is	 not	 adjacent	 to
vertices	 with	 the	 next	 d1	 highest	 degrees),	 v1	 must	 be	 adjacent	 to	 a	 vertex	 vs
having	a	smaller	degree	than	a	vertex	vr	to	which	v1	is	not	adjacent.	That	is,	there
exist	vertices	vr	and	vs	with	dr	>	ds	 such	 that	v1	 is	adjacent	 to	vs	but	not	 to	vr.
Since	deg	vr	=	dr	>	ds	=	deg	vs,	there	exists	a	vertex	vt	such	that	vt	is	adjacent	to
vr	but	not	to	vs.	Consider	the	graph	G′	obtained	from	G	by	removing	the	edges
v1vs	and	vrvt	and	adding	the	edges	v1vr	and	vsvt	(see	Figure	2.15,	where	a	dashed
line	means	no	edge).



Figure	2.15:	Edges	in	(and	not	in)	G	and	G′	in	the	proof	of	Theorem	2.10

Then	G	and	G′	have	 the	same	vertex	set;	 indeed,	s	 is	 a	degree	 sequence	of
both	G	and	G′.	However,	the	sum	of	the	degrees	of	the	vertices	adjacent	to	v1	in
G′	is	larger	than	that	in	G,	which	produces	a	contradiction.

We	now	illustrate	Theorem	2.10	with	the	following	two	examples.

Example	2.11	Decide	whether	 the	 sequence	 s	 :	5,	4,	3,	3,	2,	2,	2,	1,	1,	1	 is
graphical.

Solution.	Deleting	5	 from	 s	 and	 subtracting	 1	 from	 the	 next	 five	 terms,	we
obtain

	:	3,	2,	2,	1,	1,	2,	1,	1,	1.

Reordering	this	sequence	(so	that	a	non-increasing	sequence	results	and	we	can
apply	Theorem	2.10	again),	we	have

s1	:	3,	2,	2,	2,	1,	1,	1,	1,	1.

By	 Theorem	 2.10,	 s	 is	 graphical	 if	 and	 only	 if	 s1	 is.	 To	 decide	 whether	 s1	 is
graphical,	 we	 choose	 to	 continue	 this	 procedure	 since	 s1	 is	 relatively
complicated.	Deleting	3	from	s1	and	subtracting	1	from	the	next	three	terms,	we
obtain

	=	s2	:	1,	1,	1,	1,	1,	1,	1,	1.

By	Theorem	2.10,	s1	is	graphical	if	and	only	if	s2	is.	But	s2	is	so	simple	that	we
can	quickly	observe	that	s2	is	a	(actually	the)	degree	sequence	of	the	graph	G2	=
4K2	of	Figure	2.16.	Therefore,	s2	is	graphical,	so	s1	and	s	are	graphical	as	well.



Figure	2.16:	The	graphs	G2,	G1	and	G	in	Example	2.11

In	Example	2.11,	we	stopped	when	we	arrived	at	 the	sequence	s2,	as	 it	was
clear	 that	 s2	 is	 a	 degree	 sequence	 of	 some	 graph,	 namely	 s2	 is	 the	 degree
sequence	of	the	graph	G2	of	Figure	2.16.	Recall	that	the	sequence	 	was
obtained	 from	 s1	 by	 deleting	 3	 from	 s1	 and	 subtracting	 1	 from	 the	 next	 three
terms	of	s1.	Consequently,	if	we	add	a	new	vertex	v1	to	G2	and	join	v1	to	three
vertices	 of	 degree	 1	 in	G2,	 then	we	 obtain	 a	 graph	G1	 (see	 Figure	 2.16)	with
degree	sequence	s1.

In	 Example	 2.11,	 the	 sequence	 s1	 was	 obtained	 from	 	 by	 rearranging	 its
terms	 to	 produce	 a	 non-increasing	 sequence.	 The	 sequence	 	 was,	 in	 turn,
obtained	from	s	 by	deleting	 the	 first	 term	5	 from	s	 and	 subtracting	1	 from	 the
next	five	terms	of	s.	Therefore,	if	we	add	a	new	vertex	v	to	G1	and	join	v	to	the
vertex	of	degree	3,	to	two	vertices	of	degree	2	and	to	two	vertices	of	degree	1,
then	we	obtain	a	graph	G	with	degree	sequence	s.	So	we	have	just	constructed	a
graph	with	 degree	 sequence	 s.	 Informally,	we	 have	 just	 described	 an	 efficient
algorithm	 for	 deciding	 whether	 a	 given	 sequence	 of	 nonnegative	 integers	 is
graphical.	We	present	one	additional	example	to	illustrate	how	to	proceed	when
the	sequence	is	not	graphical.

Example	 2.12	 Decide	 whether	 the	 sequence	 s	 :	 7,	 7,	 4,	 3,	 3,	 3,	 2,	 1	 is
graphical.

Solution.	 Deleting	 the	 first	 term	 7	 from	 s	 and	 subtracting	 1	 from	 the	 next
seven	terms	of	s,	we	obtain

s1	=	 	:	6,	3,	2,	2,	2,	1,	0.

Perhaps	 we	 can	 see	 that	 s1	 is	 not	 graphical	 but	 nevertheless	 let’s	 continue.
Deleting	the	first	term	6	from	s1	and	subtracting	1	from	the	next	six	terms	of	s1,
we	obtain



s2	=	 	:	2,	1,	1,	1,	0,	−1.

Since	s2	contains	 the	negative	number	−1	and,	of	course,	no	vertex	can	have	a
negative	degree,	it	is	now	very	clear	that	s2	 is	not	graphical.	By	Theorem	2.10,
the	sequence	s1	is	not	graphical	and	so	neither	is	s.

Another	way	to	show	that	the	sequence	in	Example	2.12	is	not	graphical	is	to
observe	that	if	it	were	graphical,	then	there	would	be	a	graph	G	of	order	8	with
degree	sequence	s,	implying	that	G	has	two	vertices	of	degree	7	and	so	all	other
vertices	of	G	have	degree	at	least	2.	Hence	G	can	have	no	vertex	of	degree	1.

Exercises	for	Section	2.3

2.31	Prove	that	a	sequence	d1,	d2,	…,	dn	is	graphical	if	and	only	if	n	−	d1	−	1,	n
−	d2	−	1,	…,	n	−	dn	−	1	is	graphical.

2.32	 Use	 Theorem	 2.10	 to	 determine	 which	 of	 the	 following	 sequences	 are
graphical.	 For	 each	 of	 those	 that	 are	 graphical,	 construct	 a	 graph,	 as	 in
Example	2.11,	 for	which	 the	given	sequence	 is	a	degree	sequence	of	 the
graph.

(a)	s1	:	5,	3,	3,	3,	3,	2,	2,	2,	1			(b)	s2	:	6,	3,	3,	3,	3,	2,	2,	2,	2,	1,	1

(c)	s3	:	6,	5,	5,	4,	3,	2,	1			(d)	s4	:	7,	5,	4,	4,	4,	3,	2,	1			(e)	s5	:	7,	6,	5,	4,	4,
3,	2,	1.

2.33	Prove	that	for	every	integer	x	with	0	≤	x	≤	5,	the	sequence	x,	1,	2,	3,	5,	5	is
not	graphical.

2.34	For	which	integers	x	(0	≤	x	≤	7),	if	any,	is	the	sequence	7,	6,	5,	4,	3,	2,	1,	x
graphical?

2.35	If	the	sequence	x,	7,	7,	5,	5,	4,	3,	2	is	graphical,	then	what	are	the	possible
values	of	x	(0	≤	x	≤	7)?

2.36	Let	S	=	{2,	6,	7}.	Prove	that	there	exists	a	positive	integer	k	such	that	the
sequence	obtained	by	listing	each	element	of	S	a	total	k	times	is	a	degree
sequence	of	some	graph.	What	is	the	minimum	value	of	k?



2.4	Excursion:	Graphs	and	Matrices

As	we	know,	a	graph	G	can	be	defined	by	two	sets,	namely	its	vertex	set	V(G)
and	edge	set	E(G)	or	by	a	diagram.	A	graph	can	also	be	described	by	a	matrix
and	for	some	purposes	this	is	especially	useful.

Let	G	be	a	graph	of	order	n	and	size	m,	where	V(G)	=	{v1,	v2,	…,	vn}	 and
E(G)	=	{e1,	e2,	…,	em}.	The	adjacency	matrix	of	G	is	the	n	×	n	matrix	A	=	[ai	j],
where

while	the	incidence	matrix	of	G	is	the	n	×	m	matrix	B	=	[bi	j],	where

These	matrices	are	shown	for	the	graph	G	of	Figure	2.17.

Figure	2.17:	The	adjacency	matrix	and	incidence	matrix	of	a	graph

Here	are	a	few	useful	observations	about	the	adjacency	matrix	and	incidence
matrix.	First,	 these	matrices	are	dependent	on	how	the	vertices	and	edges	of	G
are	labeled.	In	any	case,	the	adjacency	matrix	is	a	symmetric	n	×	n	matrix	where
every	entry	on	the	main	diagonal	is	0.	The	number	of	1s	in	row	i	(or	column	i)	is
the	 degree	 of	 the	 vertex	vi.	While	 the	 number	 of	 1s	 in	 row	 i	 of	 the	 incidence
matrix	is	also	the	degree	of	vi,	the	number	of	1s	in	each	of	its	columns	is	2	since
there	are	exactly	two	vertices	incident	with	every	edge.

Two	u	 −	v	walks	 are	 considered	 equal	 if,	 as	 sequences,	 they	 are	 identical,
term	by	term.	Let’s	now	return	to	the	graph	G	and	its	adjacency	matrix	A	shown



in	Figure	2.17.	The	square	A2	and	the	cube	A3	of	A	are	given	in	Figure	2.18.	 If
we	 look	at	 the	entries	along	 the	main	diagonal	 in	A2,	we	see	 that	 these	are	 the
degrees	of	 the	vertices	of	G.	This	 is	not	only	 true	 in	general	but	each	entry	 in
each	power	of	A	represents	some	characteristic	of	the	graph	G.

Theorem	2.13	Let	G	be	a	graph	with	vertex	set	V(G)	=	{v1,	v2,	…,	vn}	and
adjacency	matrix	A	=	[ai	j].	Then	the	entry	 	in	row	i	and	column	j	of	Ak	is
the	number	of	distinct	vi	−	vj	walks	of	length	k	in	G.

Figure	2.18:	Powers	of	an	adjacency	matrix

Proof.	 We	 proceed	 by	 induction.	 We	 begin	 with	 A	 =	 A1.	 Each	 entry	
	of	A	is	either	1	or	0,	according	to	whether	vivj	is	or	is	not	an	edge

of	G.	Hence	 	gives	the	number	of	vi	−	vj	walks	of	length	1	in	G.	Assume,
for	a	positive	 integer	k,	 that	 the	number	of	vi	−	vj	walks	of	 length	k	 in	G	 is
given	 by	 .	 From	 the	 definition	 of	matrix	multiplication,	 the	 (i,	 j)-entry	

	in	Ak	+	1	is	the	dot	product	of	row	i	of	Ak	and	column	j	of	A,	that	is,

Every	vi	−	vj	walk	W	of	length	k	+	1	is	produced	by	beginning	with	a	vi	−	vt	walk
W′	of	length	k	for	some	vertex	vt	adjacent	to	vj	and	then	following	W′	by	vj.	By
the	induction	hypothesis,	the	number	of	vi	−	vt	walks	of	length	k	is	 ,	while	 t

is	 adjacent	 to	 j	 if	 and	 only	 if	 atj	 =	 1.	 Hence	 by	 (2.3),	 	 does	 indeed
provide	the	number	of	vi	−	vj	walks	of	length	k	+	1	in	G.

In	view	of	Theorem	2.13,	 	is	twice	the	number	of
triangles	in	G	that	contain	vi.	Indeed,	knowing	what	each	entry	of	Ak	represents



allows	 us	 to	 compute	 powers	 of	 adjacency	matrices,	 at	 least	 small	 powers	 of
adjacency	 matrices	 of	 graphs	 of	 small	 orders	 without	 actually	 multiplying
matrices.	For	example,	for	the	graph	G	of	Figure	2.17,	the	entry	 	of	A3	is	the
number	of	distinct	v4	 −	v1	walks	 in	G	 of	 length	3.	Since	 there	 are	 six	v4	 −	 v1
walks	of	length	3	in	G,	namely:

it	follows	that	 ,	as	we	have	seen.

Exercises	for	Section	2.4

2.37	For	the	adjacency	matrix	A	of	the	graph	G1	of	Figure	2.19,	determine	A2

and	A3	without	computing	A	or	performing	matrix	multiplication.

2.38	For	the	adjacency	matrix	A	of	the	graph	G2	of	Figure	2.19,	determine	A2

and	A3	without	computing	A	or	performing	matrix	multiplication.

Figure	2.19:	Graphs	for	Exercises	2.37-2.39

2.39	For	the	adjacency	matrix	A	of	the	graph	G3	of	Figure	2.19,	determine	A4

without	computing	A	or	performing	matrix	multiplication.

2.40	For	G	=	Kr,	r	with	partite	sets	U	=	{v1,	v2,	…,	vr}	and	W	=	{vr	+	1,	vr	+	2,	…,
v2r},	determine	the	adjacency	matrix	A	of	G	and	its	powers	A2,	A3	and	A4

without	performing	matrix	multiplication.

2.41	(a)	For	the	incidence	matrix	B	in	Figure	2.17,	compute	BBt,	where	Bt	is	the
transpose	of	B.



(b)	For	a	graph	G	with	V(G)	=	{v1,	v2,	…,	vn},	what	does	the	(i,	j)-entry
of	BBt	represent	in	G?

2.5	Exploration:	Irregular	Graphs

Recall	that	a	graph	G	is	regular	if	every	two	vertices	of	G	have	the	same	degree.
We’ve	 already	 discussed	 the	 existence	 of	 regular	 graphs.	 We	 now	 consider
graphs	 that	 are	opposite	 to	 regular	graphs	and	 the	existence	of	 such	graphs.	A
graph	G	of	order	at	least	2	is	irregular	if	every	two	vertices	of	G	have	distinct
degrees.	Before	proceeding	further	with	 this	 line	of	discussion,	however,	 let	us
pause	a	bit.

In	 the	 Fall	 1988	 issue	 (Volume	 10,	 No.	 4)	 of	 the	 magazine	Mathematical
Intelligencer,	the	British	mathematics	educator	and	writer	David	Wells	asked	the
readers	 to	 evaluate	 24	 theorems	 for	 their	 beauty.	 Two	 years	 later	 (Volume	 12,
No.	 3),	 he	 reported	 the	 results	 of	 the	 responses	 he	 received.	The	 theorem	 that
finished	first	was

eiπ	=	−1.
There	was	a	tie	for	second	place:

Euler’s	Polyhedral	Formula:	V	−	E	+	F	=	2.
There	are	infinitely	many	primes.

We	will	visit	Euler’s	Polyhedral	Formula	later	(expressed	in	a	different	form),
as	well	as	two	other	theorems	that	made	David	Wells’	list,	including	a	theorem
that	was	one	of	six	theorems	that	tied	for	15th	place:

The	Party	Theorem	At	any	party,	there	is	a	pair	of	people	who	have	the
same	number	of	friends	present.

The	so-called	Party	Theorem	can	be	described	in	terms	of	graphs.	Let	G	be	a
graph	whose	vertices	are	the	people	present	at	the	party.	Join	two	vertices	by	an
edge	if	the	two	vertices	(people)	are	friends.	The	number	of	friends	that	a	person
has	at	the	party	is	then	the	degree	of	that	vertex	(person)	in	G.	According	to	the
Party	 Theorem,	 there	 are	 always	 two	 vertices	 with	 the	 same	 degree.	 This
theorem	can	be	restated	using	the	terminology	we	introduced	a	short	while	ago.

Theorem	2.14	No	nontrivial	graph	is	irregular.



Proof.	 Assume,	 to	 the	 contrary,	 that	 there	 exists	 a	 graph	G	 of	 order	 n	 ≥	 2
whose	 vertices	 have	 distinct	 degrees.	 These	 degrees	 must	 be	 among	 the	 n
integers	0,	1,	2,	…,	n	−1.	So	G	must	have	one	vertex	of	each	such	degree.	Let
u	and	v	be	the	vertices	of	G	such	that	deg	u	=	0	and	deg	v	=	n	−	1.	Since	deg	u
=	0,	it	follows	that	u	is	adjacent	to	no	vertex	of	G,	including	v.	On	the	other
hand,	since	deg	v	=	n	−	1,	it	follows	that	v	is	adjacent	to	all	other	vertices	of	G,
including	u.	This	is	impossible.

In	view	of	Theorem	2.14,	there	appears	to	be	little	reason	to	discuss	irregular
graphs.	 There	 are	 other	 options,	 however.	 Recall	 that	 we	 defined	 a	 nontrivial
graph	G	 to	 be	 irregular	 if	 every	 two	 vertices	 of	G	 have	distinct	 degrees.	But
what	if	we	were	to	redefine	what	we	mean	by	degree?

Let	F	be	a	nontrivial	graph.	For	a	graph	G	and	a	vertex	v	of	G,	define	the	F-
degree	F	deg	v	of	v	in	G	as	the	number	of	copies	(unlabeled	subgraphs,	induced
or	not,	having	the	same	structure)	of	F	in	G	that	contain	v.	For	example,	for	F	=
K3	 and	 the	graph	G	of	Figure	2.20,	 the	vertices	of	G	 are	 labeled	with	 their	F-
degrees.

Figure	2.20:	Illustrating	F-degrees	in	a	graph	G

Observe	that	if	F	=	K2,	then	F	deg	v	=	deg	v	for	every	vertex	v	of	a	graph	G.
So	the	F-degree	of	a	vertex	is	a	generalization	of	the	ordinary	degree	of	a	vertex.
Speaking	of	generalizations,	we	see	 that	 the	 following	 theorem	generalizes	 the
First	Theorem	of	Graph	Theory	(Theorem	2.1).

Theorem	2.15	Let	F	be	a	graph	of	 order	 k	≥	2	and	 let	G	be	 a	 graph.	 If	G
contains	m	copies	of	the	graph	F,	then

Proof.	Equality	(2.4)	follows	since	every	copy	of	F	 is	counted	k	times,	once



for	each	of	the	k	vertices	contained	in	this	copy.

For	example,	the	graph	F	=	K3	of	Figure	2.20	has	order	3	and	the	sum	of	the
F-degrees	of	the	vertices	of	G	is	9,	which	implies	that	G	contains	three	triangles.

Corollary	2.16	Let	F	be	a	graph	of	even	order	and	let	G	be	a	graph.	Then	G
has	an	even	number	of	vertices	with	odd	F-degree.

Let	F	be	a	nontrivial	graph.	A	graph	G	is	F-regular	if	every	two	vertices	of	G
have	the	same	F-degree,	while	G	is	F-irregular	if	every	two	vertices	of	G	have
distinct	F-degrees.	If	F	=	K2,	then	F-regularity	and	regularity	are	the	same,	as	are
F-irregularity	and	irregularity.	So,	for	F	=	K2,	there	are	no	nontrivial	F-irregular
graphs.	For	F	=	K3,	the	F-degrees	of	 the	vertices	of	 two	graphs	G1	and	G2	are
shown	in	Figure	2.21.	The	graph	G1	is	F-regular	but	not	regular,	while	the	graph
G2	is	regular	but	not	F-regular.

Figure	2.21:	F-degrees	in	the	graphs	G1	and	G2

For	F	=	P3,	 the	vertices	of	the	graph	G	of	Figure	2.22	are	also	 labeled	with
their	F-degrees.	The	six	copies	of	P3	containing	v	are	also	shown	in	Figure	2.22.
Observe	that	this	nontrivial	graph	G	is	F-irregular.	The	graph	G	of	Figure	2.22
shows	that	even	though	there	exists	no	K2-irregular	graph,	P3-irregular	graphs	do
exist.	In	fact,	there	is	a	conjecture	on	this	topic.

Conjecture	2.17	Let	F	 be	 a	 nontrivial	 connected	 graph.	 There	 exists	 an	F-
irregular	graph	if	and	only	if	F	≠	K2.

Once	 again,	 recall	 that	 we	 defined	 a	 graph	G	 to	 be	 irregular	 if	 every	 two
vertices	 of	 G	 have	 distinct	 degrees	 and	 showed	 that	 no	 nontrivial	 graph	 is



irregular.	We	saw	that	if	we	redefined	degree	in	a	new	way,	then	irregular	graphs
do	exist.	But	what	 if	we	define	degree	 in	 the	 standard	manner	and	 re-interpret
what	 we	 mean	 by	 a	 graph,	 say	 we	 consider	 multigraphs	 instead?	 Since	 the
multigraph

Figure	2.22:	An	F-irregular	graph

Figure	2.23:	An	irregular	multigraph

M	of	Figure	2.23	is	irregular	(its	vertices	are	labeled	with	their	degrees),	we	see
that	irregular	multigraphs	exist.

Now	 that	 we	 know	 irregular	 multigraphs	 exist,	 what	 problems	 might	 be
interesting	to	study?	If	M	is	a	multigraph	and	all	parallel	edges	joining	pairs	of
vertices	of	M	are	replaced	by	a	single	edge,	then	the	resulting	graph	G	is	called
the	underlying	graph	of	M.	Consider	the	graph	G	=	K3	of	Figure	2.24,	which	is
the	 underlying	 graph	 of	 the	multigraph	M	 of	Figure	2.23.	Of	 course,	G	 is	 not
irregular.	In	view	of	the	multigraph	M	of	Figure	2.23,	we	see	that	it’s	possible	to
replace	 one	 or	 more	 edges	 of	 some	 graph	 by	 parallel	 edges	 to	 produce	 an
irregular	multigraph.	Which	graphs	have	this	property?	That	is,	which	graphs	are
the	underlying	graphs	of	irregular	multigraphs?	Before	attempting	to	answer	this
question,	we	note	that	we	can	represent	the	multigraph	M	of	Figure	2.23	 in	 the
simpler	 manner	 shown	 in	 Figure	 2.24,	 where	 each	 edge	 of	 G	 is	 assigned	 a



positive	integer	that	represents	the	number	of	parallel	edges	joining	a	particular
pair	 of	 vertices	 in	 the	 multigraph.	 This	 is	 referred	 to	 as	 a	 weighted	 graph.
Irregular	multigraphs	can	therefore	be	referred	to	as	irregular	weighted	graphs.

Figure	2.24:	A	graph,	a	multigraph	and	a	weighted	graph

Among	the	nontrivial	connected	graphs,	K2	 is	 the	only	graph	that	 is	not	 the
underlying	graph	of	an	irregular	weighted	graph.

Theorem	2.18	Let	G	be	a	connected	graph	of	order	2	or	more.	Then	G	is	the
underlying	graph	of	an	irregular	multigraph	(weighted	graph)	if	and	only	if	G
≠	K2.

Exercises	for	Section	2.5

2.42	For	F	=	K4,	give	an	example	of	two	graphs	H1	and	H2	such	that	H1	is	F-
regular	but	not	regular,	while	H2	is	regular	but	not	F-regular.

2.43	Give	an	example	of	a	connected	graph	F	and	a	connected	graph	G	 such
that	G	is	regular	and	G	contains	vertices	u	and	v	such	that	F	deg	u	−	F	deg
v	≥	2.

2.44	For	F	=	P3,	give	an	example	of	an	F-irregular	graph	of	order	7	or	more.

2.45	Investigate	F-degrees	for	a	disconnected	graph	F	of	your	choosing.

2.46	Find	an	irregular	multigraph	whose	underlying	graph	is

(a)	P3,	(b)	P4,	(c)	C4,	(d)	C5,	(e)	K4.

2.47	(a)	Find	an	irregular	multigraph	(weighted	graph)	whose	underlying	graph
is	C4	such	that	the	sum	s	of	the	weights	of	its	edges	is	minimum.

(b)	For	the	integer	s	in	(a),	investigate	the	following	question:	For	which
integers	s′	>	s	is	there	an	irregular	weighted	graph	whose	underlying



graph	is	C4	and	such	that	the	sum	of	the	weights	of	its	edges	is	s′?

2.48	Prove	Theorem	2.18.

2.49	For	a	given	graph	G,	color	each	edge	of	G	either	red	or	blue.	A	vertex	v	of
the	colored	graph	G	has	degree	(a,	b)	if	v	is	incident	with	a	red	edges	and
b	blue	edges.	Define	a	graph	G	to	be	2-color	irregular	if	there	exists	a	red-
blue	coloring	of	 the	edges	of	G	 such	 that	no	 two	vertices	of	G	 have	 the
same	degree.	Is	the	graph	H	of	Figure	2.25	2-color	irregular?

Figure	2.25:	The	graph	in	Exercise	2.49



Chapter	3
Isomorphic	Graphs

3.1	The	Definition	of	Isomorphism

Recall	that	two	graphs	G	and	H	are	equal	if	V(G)	=	V(H)	and	E(G)	=	E(H).	We
have	called	 two	graphs	G	and	H	 “isomorphic”	 if	 they	have	 the	 same	 structure
and	have	written	G	≅	H	to	indicate	this.	That	is,	G	≅	H	if	the	vertices	of	G	and
H	can	be	labeled	(or	relabeled)	to	produce	two	equal	graphs.	We	now	make	all	of
this	more	precise.

Suppose	that	you	are	asked	to	give	an	example	of	three	graphs	having	order	5
and	 size	 5.	Would	 the	 three	 graphs	H1,	H2	 and	H3	 given	 in	 Figure	 3.1	 be	 an
acceptable	answer	to	this	question?

Figure	3.1:	Graph(s)	of	order	5	and	size	5

By	 repositioning	 the	 vertices	 of	H2,	we	 have	 redrawn	H2	 as	 in	 Figure	 3.2.
Similarly,	we	can	redraw	H3	as	in	Figure	3.2.

It	 should	now	be	 clear	 that	 the	graphs	of	Figure	3.1	differ	only	 in	 the	way
they	 are	 labeled	 and	 in	 the	 way	 they	 are	 drawn,	 that	 is,	 they	 have	 the	 same
structure.	In	a	certain	sense	then,	we	have	only	given	an	example	of	one	graph	of
order	5	and	size	5.	That	is,	the	graphs	of	Figure	3.1	are	simply	disguised	forms
of	 the	 same	 graph,	 namely,	 the	 5-cycle	C5.	 For	 example,	 the	 redrawing	 of	H2



shown	in	Figure	3.2	suggests	that	(1)	u2	in	H2	is	playing	the	role	of	u1	in	H1,	(2)
w2	is	playing	the	role	of	v1,	(3)	y2	is	playing	the	role	of	w1,	(4)	v2

Figure	3.2:	A	graph	of	order	5	and	size	5

is	playing	the	role	of	x1	and	(5)	x2	is	playing	the	role	of	y1.	The	manner	in	which
the	vertices	of	H2	correspond	to	the	vertices	of	H1	is	not	unique,	however.	Two
other	 drawings	 of	 H2	 shown	 in	 Figure	 3.3	 suggest	 that	 there	 are	 other
correspondences	between	the	vertices	of	H1	and	the	vertices	of	H2.	Indeed,	there
are	several	such	correspondences.

Figure	3.3:	Other	drawings	of	the	graph	H2

As	 we	 have	 said,	 when	 two	 graphs	 differ	 only	 in	 the	 way	 they’re	 drawn
and/or	 labeled,	 then	 they	 are	 said	 to	 be	 isomorphic.	 Formally,	 two	 (labeled)
graphs	G	and	H	are	isomorphic	(have	the	same	structure)	if	there	exists	a	one-
to-one	correspondence	 	from	V(G)	to	V(H)	such	that	uv	∈	E(G)	if	and	only	if	
(u) (v)	∈	E(H).	In	this	case,	 	is	called	an	isomorphism	from	G	to	H.	Thus,	if
G	and	H	are	isomorphic	graphs,	then	we	say	that	G	is	isomorphic	to	H	and	we
write	G	≅	H.	If	G	and	H	are	unlabeled,	then	they	are	isomorphic	if,	under	any
labeling	of	their	vertices,	they	are	isomorphic	as	labeled	graphs.	If	two	graphs	G
and	H	are	not	isomorphic,	then	they	are	called	non-isomorphic	graphs	and	we
write	G	 	H.

As	is	implied	by	the	redrawing	of	the	graph	H2	in	Figure	3.2,	the	function	 	:
V(H1)	→	V(H2)	defined	by



is	an	isomorphism	and	so	H1	≅	H2.	Intuitively	then,	two	graphs	are	isomorphic
if	it	is	possible	to	redraw	one	of	them	so	that	the	two	diagrams	are	the	same.	This
highly	 informal	 interpretation	 of	 isomorphism,	 although	 often	 suitable,	 is	 not
satisfactory	 in	 all	 cases	 and	 so	 it	 may	 be	 necessary	 to	 rely	 on	 the	 formal
definition.	In	this	context	then,	we	consider	two	graphs	to	be	the	“same”	graph	if
they	are	isomorphic	and	to	be	“different”	if	 they	are	not	 isomorphic.	From	this
point	of	view,	there	is	only	one	graph	of	order	1,	two	graphs	of	order	2	and	four
graphs	of	order	3.	There	are	eleven	(non-isomorphic)	graphs	of	order	4	and	these
are	shown	in	Figure	3.4.

Figure	3.4:	The	eleven	graphs	of	order	4

Let’s	 look	at	 the	definition	of	 isomorphism	more	closely.	First,	 in	order	 for
two	 graphs	 G1	 and	 G2	 to	 be	 isomorphic,	 there	 must	 be	 a	 one-to-one
correspondence	from	the	vertex	set	of	G1	to	the	vertex	set	of	G2.	This	means	that
it	 must	 be	 possible	 to	 pair	 off	 the	 vertices	 of	 G1	 with	 the	 vertices	 of	 G2.
Therefore,	|V(G1)|	=	|V(G2)|	and	so	G1	and	G2	have	the	same	order.	It	is	certainly
not	surprising	that	we	would	want	two	graphs	to	be	of	the	same	order	if	we	want
to	consider	them	to	be	the	same	graph.

Continuing	 to	 analyze	 the	 definition	 of	 isomorphic	 graphs,	we	 see	 that	 not
only	must	 there	 be	 a	 one-to-one	 correspondence	 from	V(G1)	 to	V(G2)	 but	 two
vertices	u1	 and	 v1	 of	G1	 are	 adjacent	 in	G1	 if	 and	 only	 if	 the	 corresponding
vertices	 (u1)	 and	 (u2)	 are	 adjacent	 in	 G2.	 So	 adjacent	 vertices	 in	 G1	 are
mapped	to	adjacent	vertices	in	G2,	while	nonadjacent	vertices	in	G1	are	mapped
to	nonadjacent	vertices	in	G2.	This	implies	that	for	G1	and	G2	to	be	isomorphic,
they	 must	 have	 the	 same	 size	 –	 again	 not	 a	 particularly	 surprising	 piece	 of
information.

Hence	if	two	graphs	are	isomorphic,	then	they	must	have	the	same	order	and
the	same	size.	The	contrapositive	of	this	statement	says	that	if	two	graphs	have



different	 orders	 or	 different	 sizes,	 then	 they	 are	 not	 isomorphic.	 For	 example,
even	though	the	graphs	F′	and	F″	of	Figure	3.5	have	the	same	size	6,	they	are	not
isomorphic	 because	 their	 orders	 are	 different.	 Also,	 the	 graphs	H′	 and	H″	 of
Figure	3.5	have	the	same	order	6	but	cannot	be	isomorphic	since	their	sizes	are
different.

Figure	3.5:	Non-isomorphic	graphs

On	the	other	hand,	if	two	graphs	have	the	same	order	and	the	same	size,	then
there	is	no	guarantee	that	the	graphs	are	isomorphic.	For	example,	the	graphs	G1
and	G2	 of	Figure	3.6	 have	 order	 6	 and	 size	 6,	 yet	 they	 are	 not	 isomorphic.	 In
order	 to	 see	 this,	assume,	 to	 the	contrary,	 that	 they	are	 isomorphic.	Then	 there
exists	an	isomorphism	 :	V(G1)	→	V(G2).	Hence	there	are	 three	vertices	of	G1
that	map	into	u2,	v2	and	z2	of	G2.	Since	u2,	v2	and	z2	are	pairwise	adjacent	and
form	a	triangle,	so	too	are	the	vertices	of	G1	that	map	into	these	three	vertices	of
G2.	However,	G1	doesn’t	contain	a	triangle	and	so	a	contradiction	is	produced.

Figure	3.6:	Two	non-isomorphic	graphs

Let’s	revisit	the	definition	of	isomorphism	yet	again.	Two	graphs	G	and	H	are
isomorphic	 if	 there	 exists	 a	 one-to-one	 correspondence	 	 from	V(G)	 to	 V(H)
such	that	every	two	adjacent	vertices	of	G	are	mapped	to	adjacent	vertices	of	H
and	every	two	nonadjacent	vertices	of	G	are	mapped	to	nonadjacent	vertices	of
H.	Recall	 that	a	 function	 	with	 these	properties	 is	an	 isomorphism.	However,
since	 	 and	 ,	 the	 same	 function	
also	 maps	 adjacent	 vertices	 of	 	 to	 adjacent	 vertices	 of	 	 and	 nonadjacent
vertices	of	 	to	nonadjacent	vertices	of	 .	This	observation	provides	us	with	the



following	theorem.

Theorem	 3.1	 Two	 graphs	 G	 and	 H	 are	 isomorphic	 if	 and	 only	 if	 their
complements	 	and	 	are	isomorphic.

Let’s	consider	 the	 two	graphs	H1	and	H2	 shown	in	Figure	3.7.	Both	graphs
have	order	6	and	size	9;	so	H1	and_H2	might	be	isomorphic	but	we	don’t	know
this	for	sure.	Since	 1	=	G1	and	 2	=	G2	(where	G1	and	G2	are	the	graphs	shown
in	Figure	3.6)	and	G1	and	G2	are	not	isomorphic,	it	follows	by	Theorem	3.1	that
H1	and	H2	are	also	not	 isomorphic.	It	 is	possible	 to	see	that	H1	and	H2	are	not
isomorphic	without	 the	aid	of	Theorem	3.1,	however.	Assume,	 to	 the	contrary,
that	H1	and	H2	are	 isomorphic.	Then	 there	exists	an	 isomorphism	 :	V(H1)	→
V(H2).	The	vertices	v1,	x1	and	z1	are	mutually	adjacent	in	H1	and	form	a	triangle
and	 so	 (v1),	 (x1)	 and	 (z1)	 form	a	 triangle	 in	H2.	However,	H2	 contains	 no
triangle	and	a	contradiction	is	produced.

Figure	3.7:	Two	graphs	H1	and	H2

A	graph	and	its	complement	may,	in	fact,	be	isomorphic.	A	graph	G	is	self-
complementary	if	G	≅	 .	Of	course,	this	can	only	occur	if	G	and	 	have	the
same	size,	namely	 .	In	order	for	 	to	be	an	integer,	either
4	 |	n	or	4	 |	 (n	−	1),	 that	 is,	 either	n	≡	0	 (mod	4)	or	n	≡	1	 (mod	4).	Figure	3.8
shows	four	self-complementary	graphs.

Figure	3.8:	Self-complementary	graphs

Not	only	are	 the	orders	 the	same	and	 the	sizes	 the	same	of	 two	 isomorphic



graphs,	so	too	are	the	degrees	of	their	vertices.

Theorem	 3.2	 If	 G	 and	 H	 are	 isomorphic	 graphs,	 then	 the	 degrees	 of	 the
vertices	of	G	are	the	same	as	the	degrees	of	the	vertices	of	H.

Proof.	Since	G	and	H	 are	 isomorphic,	 there	 is	 an	 isomorphism	 	 :	V(G)	→
V(H).	Let	u	 be	 a	 vertex	 of	G	 and	 suppose	 that	 (u)	 =	 v,	 where	 v	 therefore
belongs	to	H.	We	show	that	degG	u	=	degH	v.	Suppose	that	u	is	adjacent	to	x1,
x2,	…,	xk	in	G	and	not	adjacent	to	w1,	w2,	…,	wl.	Thus	|V(G)|	=	k	+	l	+	1.	Then	
(u)	=	v	is	adjacent	to	 (x1),	 (x2),	…,	 (xk)	in	H	and	not	adjacent	to	 (w1),	
(w2),	…,	 (wl).	Therefore,	degH	v	=	k	=	degG	u.

Theorem	3.2	not	only	tells	us	that	two	isomorphic	graphs	G	and	H	have	the
same	 degree	 sequence	 but	 the	 proof	 of	 this	 theorem	 also	 says	 that	 if	 	 is	 an
isomorphism	from	V(G)	to	V(H)	and	u	is	a	vertex	of	G,	then	degG	u	=	degH	 (u),
that	 is,	 under	 an	 isomorphism	 a	 vertex	 can	 only	map	 into	 a	 vertex	 having	 the
same	degree.

So	now	we	know	that	if	G	and	H	are	isomorphic	graphs,	then	their	orders	are
the	same,	their	sizes	are	the	same	and	the	degrees	of	their	vertices	are	the	same.
On	the	other	hand,	if	the	degrees	of	their	vertices	are	the	same,	then	their	orders
must	be	the	same	and	their	sizes	must	also	be	the	same.	As	with	the	order	and
size,	two	graphs	having	the	same	degree	sequences	is	only	a	necessary	condition,
not	 a	 sufficient	 condition,	 for	 two	 graphs	 to	 be	 isomorphic.	 For	 example,	 the
degree	sequences	of	the	non-isomorphic	graphs	G1	and	G2	of	Figure	3.6	are	both
2,	 2,	 2,	 2,	 2,	 2;	 while	 the	 degree	 sequences	 of	 the	 non-isomorphic	 graphs	 of
Figure	3.7	are	both	3,	3,	3,	3,	3,	3.

Therefore,	the	challenge	for	determining	whether	two	graphs	are	isomorphic
is	 when	 the	 two	 graphs	 have	 the	 same	 degree	 sequence.	 Let’s	 consider	 some
examples	of	this.

Example	 3.3	Determine	 whether	 the	 graphs	 F1	 and	 F2	 of	 Figure	 3.9	 are
isomorphic.



Figure	3.9:	The	two	graphs	in	Example	3.3

Solution.	Since	both	F1	and	F2	have	the	degree	sequence	4,	3,	3,	2,	1,	1,	they
may	be	isomorphic.	But	they	are	not.	Assume,	to	the	contrary,	that	F1	≅	F2.
Then	there	exists	an	isomorphism	 :	V(F1)	→	V(F2).	The	vertex	x1	is	the	only
vertex	of	F1	having	degree	4.	Thus	 (x1)	has	degree	4	in	F2.	Since	x2	 is	 the
only	vertex	of	F2	having	degree	4,	it	follows	that	 (x1)	=	x2.	Since	both	v1	and
z1	are	adjacent	to	x1	in	F1,	both	 (v1)	and	 (z1)	are	adjacent	to	 (x1)	=	x2	 in
F2.	 Because	 ,	 it	 is	 also	 the	 case	 that	

.	But	this	says	that	x2	is	adjacent	to	two
end-vertices	in	F2,	which	is	not	the	case.	This	is	a	contradiction.

The	argument	just	given	to	show	that	the	graphs	F1	and	F2	of	Figure	3.9	are
not	isomorphic	can	be	simplified.	The	vertex	of	degree	4	in	F1	is	adjacent	to	two
end-vertices;	while	the	vertex	of	degree	4	in	F2	is	not.	Therefore,	F1	and	F2	are
not	isomorphic.

Indeed,	let	G1	and	G2	be	two	graphs.	We	might	as	well	assume	that	G1	and
G2	have	the	same	degree	sequence;	otherwise,	we	know	immediately	that	G1	
G2.	If	G1	has	some	property	that	doesn’t	depend	on	how	G1	is	drawn	or	how	G1
is	labeled	and	G2	does	not	have	this	property,	then	G1	=	G2.	For	example,	if	G1
contains	two	vertices	of	degree	3	that	are	mutually	adjacent	to	a	vertex	of	degree
2	 and	G2	 does	 not,	 then	G1	 =	 G2.	 If	 G1	 contains	 two	 triangles	 that	 have	 a
common	vertex	and	G2	doesn’t,	then	G1	 	G2.	If	G1	contains	eight	triangles	and
G2	contains	only	seven	triangles,	then	G1	 	G2.	This	last	statement	brings	up	an
important	point,	however.	If	the	explanation	that	was	given	as	to	why	two	graphs
are	 not	 isomorphic	 is	 that	 one	 has	 eight	 triangles	 and	 the	 other	 has	 seven
triangles,	 then	this	is	probably	not	convincing	since	it	may	not	be	clear	that	all
triangles	in	both	graphs	have	been	accounted	for.	It	would	be	preferable	to	locate



a	property	that	is	easier	to	justify	(assuming	that	the	two	graphs	are	in	fact	not
isomorphic).

Example	 3.4	Determine	whether	 the	 graphs	H1	and	H2	of	Figure	 3.10	are
isomorphic.

Figure	3.10:	The	two	graphs	in	Example	3.4

Solution.	First,	observe	that	H1	and	H2	have	the	degree	sequence	4,	3,	3,	2,	2,
2.	 Hence	 further	 consideration	 is	 needed.	 Because	 these	 two	 graphs	 do	 not
“appear”	 to	be	 isomorphic,	we	seek	some	structural	difference.	Observe	 that
H1	 contains	 two	 adjacent	 vertices	 of	 degree	 2	 (namely	y1	 and	 z1),	while	H2
does	not.	Thus	H1	 	H2.

What	we	are	observing	is	that	if	G	and	H	are	isomorphic	graphs,	 :	V(G)	→
V(H)	is	an	isomorphism	and	the	vertex	u	of	G	is	mapped	by	 	to	the	vertex	v	of
H,	then	any	property	that	u	has	in	G	must	be	a	property	that	v	has	in	H	provided
this	 property	 doesn’t	 depend	 on	 how	 the	 graphs	 are	 drawn	 or	 labeled.	 More
generally,	 any	 structural	 property	 of	 G	 must	 also	 be	 possessed	 by	 H.	 For
example,

(1)	if	G	contains	a	k-cycle	for	some	integer	k	≥	3,	then	so	does	H	and
(2)	if	G	contains	a	u	−	v	path	of	length	k,	then	H	contains	a	 (u)	−	 (v)	path

of	length	k.

These	remarks	give	the	following	theorem.

Theorem	3.5	Let	G	and	H	be	isomorphic	graphs.	Then

(a)	G	is	bipartite	if	and	only	if	H	is	bipartite	and
(b)	G	is	connected	if	and	only	if	H	is	connected.

As	expected,	two	digraphs	D1	and	D2	are	isomorphic	if	there	exists	a	one-to-



one	correspondence	 :	V(D1)	→	V(D2)	such	that	(u1,	v1)	∈	E(D1)	if	and	only	if	(
(u1),	 (v1))	∈	E(D2).	Digraphs	will	be	studied	in	detail	in	Chapter	7.

Exercises	for	Section	3.1

3.1	Give	an	example	of	three	different	(non-isomorphic)	graphs	of	order	5	and
size	5.

3.2	Give	an	example	of	 three	graphs	of	 the	 same	order,	 same	size	and	 same
degree	sequence	such	that	no	two	of	these	graphs	are	isomorphic.

3.3	 For	 each	 of	 the	 pairs	G1,	G2	 of	 graphs	 in	 Figures	 3.11(a)	 and	 3.11(b),
determine	(with	careful	explanation)	whether	G1	and	G2	are	isomorphic.

Figure	3.11:	The	graphs	in	Exercise	3.3

3.4	Which	pairs	of	graphs	in	Figure	3.12	are	isomorphic?	Explain	your	answer.

Figure	3.12:	The	graphs	in	Exercise	3.4

3.5	 Let	G1	 and	G2	 be	 two	 graphs	with	V(G1)	 =	 {u1,	 v1,	w1,	 x1,	 y1,	 z1}	 and
V(G2)	 =	 {u2,	 v2,	w2,	 x2,	 y2,	 z2}.	 If	 v1	 has	 degree	 3	 and	 is	 adjacent	 to	 a
vertex	of	degree	2,	while	v2	has	degree	3	and	is	not	adjacent	to	a	vertex	of
degree	2,	can	we	conclude	that	G1	 	G2	Explain	your	answer.

3.6	 Let	G1	 and	G2	 be	 two	 graphs	 having	 the	 same	 degree	 sequence.	 If	G1
contains	a	vertex	of	degree	2	that	is	adjacent	to	a	vertex	of	degree	3	and	a
vertex	of	degree	4,	while	G2	contains	a	vertex	of	degree	2	that	is	adjacent
to	two	vertices	of	degree	3,	can	we	conclude	that	G1	 	G2	Explain	your



answer.

3.7	Is	the	solution	of	the	following	problem	correct?

Problem:	 Determine	 whether	 the	 graphs	G1	 and	G2	 of	 Figure	 3.13	 are
isomorphic.

Figure	3.13:	The	two	graphs	in	Exercise	3.7

Solution.	The	graph	G1	has	a	5-cycle	C.	Two	vertices	of	C	are	connected
by	a	path	of	length	2,	lying	inside	C.	The	graph	G2	does	not	contain	such	a
5-cycle,	however.	Therefore,	G1	 	G2.

3.8	Which	pairs	of	graphs	in	Figure	3.14	are	isomorphic?	Explain	your	answer.

3.9	Determine	whether	 the	graphs	G1	and	G2	of	Figure	3.15	 are	 isomorphic.
Explain	your	answer.

Figure	3.14:	Graphs	in	Exercise	3.8

Figure	3.15:	Two	graphs	in	Exercise	3.9

3.10	Does	there	exist	a	disconnected	self-complementary	graph?

3.11	Let	G	be	a	self-complementary	graph	of	order	n	=	4k,	where	k	≥	1.	Let	U	=
{v	:	deg	v	≤	n/2}	and	W	=	{v	:	deg	v	≥	n/2}.	Prove	that	if	|U|	=	|W|,	then	G
contains	no	vertex	v	such	that	deg	v	=	n/2.

3.12	Let	G	and	H	be	two	self-complementary	graphs	with	disjoint	vertex	sets,



where	H	has	even	order	n.	Let	F	be	 the	graph	obtained	 from	G	∪	H	 by
joining	each	vertex	of	G	to	every	vertex	of	degree	less	than	n/2	in	H.	Show
that	F	is	self-complementary.

3.13	Suppose	that	there	exist	two	connected	graphs	G	and	H	and	a	one-to-one
function	 	 from	V(G)	 onto	V(H)	 such	 that	dG(u,	v)	=	dH( (u),	 (v))	 for
every	 two	 vertices	 u	 and	 v	 of	 G.	 Prove	 or	 disprove:	 G	 and	 H	 are
isomorphic.

3.14	Prove	or	disprove:	Let	G	and	H	be	two	connected	graphs	of	order	n,	where
V(G)	 =	 {v1,	 v2,	…,	 vn}.	 If	 there	 exists	 a	 one-to-one	 correspondence	 :
V(G)	→	V(H)	such	that	dG(vi,	vi	+	1)	=	dH( (vi),	 (vi	+	1))	for	all	i	(1	≤	i	≤	n
−	1),	then	G	≅	H.

3.15	Prove	or	disprove:	Let	G	and	H	be	two	connected	graphs.	If	there	exists	a
one-to-one	correspondence	 :	V(G)	→	V(H)	and	two	distinct	vertices	u,	v
∈	V(G)	such	that	dG(u,	v)	≠	dH( (u),	 (v)),	then	G	 	H.

3.2	Isomorphism	as	a	Relation

Let	us	state	once	again	that	a	graph	G1	is	isomorphic	to	a	graph	G2	if	there	exists
an	isomorphism	 	:	V(G1)	→	V(G2).	Isomorphism	therefore	produces	a	relation
on	 any	 set	 of	 graphs,	 namely,	 a	 graph	G1	 is	 related	 to	 a	 graph	 G2	 if	G1	 is
isomorphic	 to	 G2.	 This	 relation	 is	 an	 equivalence	 relation.	 This	 says	 that
isomorphism	 is	 reflexive	 (every	 graph	 is	 isomorphic	 to	 itself),	 isomorphism	 is
symmetric	 (if	 G1	 is	 isomorphic	 to	 G2,	 then	 G2	 is	 isomorphic	 to	 G1)	 and
isomorphism	is	transitive	(if	G1	is	isomorphic	to	G2	and	G2	is	isomorphic	to	G3,
then	G1	is	isomorphic	to	G3).

The	 proof	 that	 isomorphism	 is	 an	 equivalence	 relation	 relies	 on	 three
fundamental	properties	of	bijective	functions	(functions	that	are	one-to-one	and
onto):	 (1)	every	 identity	 function	 is	bijective,	 (2)	 the	 inverse	of	every	bijective
function	 is	 also	 bijective,	 (3)	 the	 composition	 of	 two	 bijective	 functions	 is
bijective.	(See	Appendix	2	for	a	review	of	these	terms	and	facts.)

Theorem	3.6	Isomorphism	is	an	equivalence	relation	on	the	set	of	all	graphs.



Proof.	 First,	we	 show	 that	 isomorphism	 is	 reflexive,	 that	 is,	 every	 graph	 is
isomorphic	 to	 itself.	 Let	G	 be	 a	 graph	 and	 consider	 the	 identity	 function	 :
V(G)	→	V(G)	defined	by	 (v)	=	v	for	each	vertex	v	of	G.	Thus	 	is	bijective.
Certainly,	two	vertices	u	and	v	of	G	are	adjacent	if	and	only	if	 (u)	=	u	and	
(v)	=	v	are	adjacent.	Therefore,	 	is	an	isomorphism	and	so	G	is	isomorphic	to
G.

Next,	we	show	that	isomorphism	is	symmetric.	Let	G1	and	G2	be	graphs	and
assume	that	G1	 is	 isomorphic	to	G2.	Therefore,	 there	exists	an	 isomorphism	 :
V(G1)	→	V(G2).	Since	 	is	a	bijective	function,	its	inverse	 −1:	V(G2)	→	V(G1)
exists	 and	 is	 a	bijective	 function.	Let	u2	and	v2	 be	 any	 two	vertices	 in	G2	 and
suppose	that	 −1(u2)	=	u1	and	 −1(v2)	=	v1.	Hence	 (u1)	=	u2	and	 (v1)	=	v2.	If
u2	and	v2	are	adjacent	vertices	in	G2,	then	u1	and	v1	are	adjacent	vertices	in	G1
since	 	is	an	isomorphism.	On	the	other	hand,	if	u2	and	v2	are	not	adjacent,	then
u1	and	v1	are	not	adjacent.	Therefore,	u2	and	v2	are	adjacent	in	G2	if	and	only	if	
−1	(u2)	and	 −1(v2)	are	adjacent	in	G1.	Hence	 −1	is	an	isomorphism	and	so	G2

is	isomorphic	to	G1.
Finally,	we	show	that	 isomorphism	is	 transitive.	For	graphs	G1,	G2	 and	G3,

assume	 that	G1	 is	 isomorphic	 to	G2	 and	G2	 is	 isomorphic	 to	G3.	 Hence	 there
exist	 isomorphisms	 :	V(G1)	→	V(G2)	 and	 :	 V(G2)	 →	 V(G3).	 Consider	 the
composition	 	 	 :	V(G1)	→	V(G3).	 Since	 	 and	 	 are	bijective,	 so	 is	 	 	 .
Since	 	is	an	isomorphism,	vertices	u1	and	v1	of	G1	are	adjacent	if	and	only	if	
(u1)	and	 (v1)	are	adjacent	in	G2.	Because	 	is	an	isomorphism,	 (u1)	and	 ( 1)
are	 adjacent	 in	 G2	 if	 and	 only	 if	 ( (u1))	 and	 ( (v1))	 are	 adjacent	 in	 G3.
Therefore,	u1	and	v1	are	adjacent	in	G1	if	and	only	if	( 	 	 )(u1)	and	( 	 	 )(v1)
are	adjacent	in	G3	and	so	 	 	 	 is	an	isomorphism.	Hence	G1	 is	 isomorphic	 to
G3.

One	 of	 the	 major	 consequences	 of	 knowing	 that	 isomorphism	 is	 an
equivalence	relation	on	a	set	of	graphs	is	that	this	produces	a	partition	of	this	set
into	 equivalence	 classes	 (subsets)	which	 are	 isomorphism	classes	 here.	 Every
two	graphs	in	the	same	isomorphism	class	are	isomorphic	and	every	two	graphs
in	different	isomorphism	classes	are	not	isomorphic.

Suppose	that	we	are	asked	for	all	graphs	with	degree	sequence	s:	2,	2,	2,	2,	2,
2,	 2,	 2,	 2.	What	 we	 are	 clearly	 seeking	 here	 are	 non-isomorphic	 graphs.	 The
answer	to	this	question	is	given	in	Figure	3.16.	(There	are	four	such	graphs!)



Figure	3.16:	All	graphs	with	degree	sequence	s:	2,	2,	2,	2,	2,	2,	2,	2,	2

Consider	the	graphs	H	and	G	of	Figure	3.17.	We	defined	a	graph	H	 to	be	a
subgraph	of	a	graph	G,	written	H	⊆	G,	if	V(H)	⊆	V(G)	and	E(H)	⊆	E(G).	This,
in	fact,	is	the	definition	if	the	graphs	H	and	G	are	labeled	(that	is,	 if	 the	vertex
sets	of	H	and	G	have	been	specified).	The	graphs	H	and	G	of	Figure	3.17	are	not
labeled,	however.	For	unlabeled	graphs	H	and	G,	we	say	that	H	is	isomorphic	to
a	subgraph	of	G	if	for	any	labeling	of	the	vertices	of	H	and	G,	the	labeled	graph
H	 is	 isomorphic	 to	 a	 subgraph	 of	 the	 labeled	 graph	G.	 Consequently,	 for	 the
graphs	H	and	G	of	Figure	3.17,	H	is	isomorphic	to	a	subgraph	of	G.

Figure	3.17:	A	subgraph	H	of	a	graph	G

Exercises	for	Section	3.2

3.16	How	many	(non-isomorphic)	graphs	have	the	degree	sequence	s:	6,	6,	6,	6,
6,	6,	6,	6,	6?

3.17	Consider	the	(unlabeled)	graphs	H1,	H2,	H3	and	G	of	Figure	3.18.

(a)	Is	H1	isomorphic	to	a	subgraph	of	G?

(b)	Is	H2	isomorphic	to	a	subgraph	of	G?

(c)	Is	H3	isomorphic	to	a	subgraph	of	G?

Figure	3.18:	Graphs	in	Exercise	3.17



3.18	Does	 there	 exist	 a	 graph	with	 exactly	 three	 components,	 exactly	 two	 of
which	are	not	isomorphic?

3.19	We	are	given	a	collection	of	n	graphs	G1,	G2,	…,	Gn,	some	pairs	of	which
are	 isomorphic	 and	 some	 pairs	 of	 which	 are	 not.	 Show	 that	 there	 is	 an
even	 number	 of	 these	 graphs	 that	 are	 isomorphic	 to	 an	 odd	 number	 of
graphs.	[Hint:	Construct	a	graph	G	with	V(G)	=	{v1,	v2,	…,	vn},	where	vivj
∈	E(G)	if	and	only	if	Gi	is	isomorphic	to	Gj.]

3.3	Excursion:	Graphs	and	Groups

While	it	may	be	quite	difficult	to	determine	that	two	isomorphic	graphs	G1	and
G2	 are	 in	 fact	 isomorphic	 if	 G1	 and	 G2	 are	 drawn	 differently	 or	 labeled
differently,	 there	 is	 no	 difficulty	 in	 showing	 that	G1	 and	G2	 are	 isomorphic	 if
they	are	drawn	and	labeled	identically.	In	this	case,	we	then	have	a	single	graph,
say	G	and	surely	the	identity	function	 :	V(G)	→	V(G),	where	 (v)	=	v	for	all	v	∈
V(G),	 is	 an	 isomorphism.	 Consequently,	 for	 the	 graph	H	 of	 Figure	 3.19,	 the
function	 1:	V(H)	→	V(H)	defined	by	 1(v)	=	v	 for	every	vertex	v	 of	H	 is	 an
isomorphism.

Figure	3.19:	A	graph	H

There	 are	 other	 isomorphisms	 from	 the	 graph	H	 of	 Figure	 3.19	 to	 itself,
however.	For	example,	the	function	 2:	V(H)	→	V(H)	defined	by

is	an	isomorphism	as	well.	There	are	two	other	isomorphisms	from	the	graph	H
to	itself,	namely	 3	and	 4,	defined	by

and



An	isomorphism	from	a	graph	G	 to	 itself	 is	called	an	automorphism	of	G.
Since	composition	 is	associative,	 the	 identity	 function	 is	an	automorphism,	 the
inverse	 of	 an	 automorphism	 is	 an	 automorphism	 and	 the	 composition	 of	 two
automorphisms	is	an	automorphism,	it	follows	that	the	set	of	all	automorphisms
of	a	graph	G	 forms	a	group	under	 the	operation	of	composition.	This	group	 is
denoted	by	Aut(G)	and	is	called	the	automorphism	group	of	G.	For	example,
for	the	graph	H	of	Figure	3.19,	Aut(H)	=	{ 1,	 2,	 3,	 4}.

Since	 every	 automorphism	 of	 a	 graph	 is	 a	 permutation	 on	 V(G),
automorphisms	can	be	expressed,	more	simply,	 in	terms	of	permutation	cycles.
(See	Appendix	2	for	a	review	of	permutations.)	For	the	graph	H	of	Figure	3.19,
the	elements	of	Aut(H)	can	be	expressed	as

For	 example,	 expressing	 4	 as	 the	 “product”	of	 the	permutation	cycles	 (v1	v2)
and	(v5	v6)	means	that	(1)	 4	maps	v1	into	v2	and	v2	into	v1,	(2)	 4	maps	v5	into
v6	and	v6	 into	v5	and	(3)	 4	 fixes	all	other	vertices	of	H	 (that	 is,	 4	maps	any
other	vertex	of	H	into	itself).

The	group	table	for	the	automorphism	group	of	the	graph	H	of	Figure	3.19	is
shown	 in	Figure	3.20.	The	 reason	 for	 the	 entry	 2	 in	 row	 4,	 column	 3	 of	 the
group	table	is	because	the	“product”	of	 4	and	 3	is	 2.	That	is,	since

it	 follows	 that	 4 3	 =	 2.	 However,	 this	 can	 be	 seen	 more	 easily	 when	 the
automorphisms	are	expressed	in	terms	of	permutation	cycles.	Since



we	can	see,	reading	from	right	to	left,	that	(1)	v1	is	mapped	into	v2	by	 4 3	and
v2	is	mapped	into	v1	by	 4 3,	(2)	both	v3	and	v4	are	fixed	by	 4 3	and	(3)	v5	is
mapped	into	v6	by	 3	and	v6	is	mapped	into	v5	by	 4,	resulting	in	v5	being	fixed
by	 4 3.	Similarly,	(4)	v6	is	fixed	by	 4 3.	That	is,

Figure	3.20:	The	group	table	for	Aut(H)

As	 another	 illustration	 of	 an	 automorphism	 group,	 consider	 the	 graph	F	 of
Figure	3.21.	The	elements	of	Aut(F)	and	the	group	table	are	given	in	that	figure
as	well.	For	example,	the	automorphism	 5	maps	u	to	v,	maps	v	to	w	and	maps	w
to	u,	 leaving	 all	 other	 vertices	 fixed.	 If	we	write	 	 for	 5,	 then	 2	 =	 	 =	 6.
Furthermore,	 if	 we	 write	 	 for	 2,	 then	 3	 =	 5 2	 =	 	 and	 4	 =	 .
Consequently,	each	of	the	elements	of	Aut(F)	can	be	expressed	in	terms	of	 	and
,	namely,

Because	of	this	property,	 	and	 	are	generators	for	the	group	Aut(F)	and	{ ,	
}	is	a	generating	set	for	this	group.



Figure	3.21:	The	graph	F	and	the	group	table	for	Aut(F)

For	a	vertex	v	of	a	graph	G,	the	set	of	all	vertices	into	which	v	can	be	mapped
by	some	automorphism	of	G	is	an	orbit	of	G.	In	fact,	if	a	relation	R	is	defined	on
V(G)	by	x	R	y	if	 (x)	=	y	for	some	 	∈	Aut(G),	then	R	is	an	equivalence	relation
on	V(G).	 The	 distinct	 equivalence	 classes	 resulting	 from	 this	 relation	 are	 the
orbits	of	G.	Two	vertices	u	and	v	are	similar	if	they	belong	to	the	same	orbit.	For
the	graph	H	of	Figure	3.20,	there	are	four	orbits,	namely,	{v1,	v2},	{v3},	{v4}	and
{v5,	v6};	while	for	 the	graph	F	of	Figure	3.21,	 there	are	also	four	orbits:	{u,	v,
w},	{x},	{y},	{z}.	There	can	be	great	advantages	to	knowing	the	orbits	of	a	graph
G.	If	it	is	useful	to	have	some	structural	information	about	each	vertex	of	G,	then
it	may	not	be	necessary	to	consider	all	vertices	of	G	because	of	the	similarity	of
certain	vertices.	In	such	a	case,	we	need	only	consider	one	vertex	from	each	orbit
as	a	representative	of	the	orbit.	If	a	graph	G	of	order	n	has	n	distinct	orbits,	then
Aut(G)	 consists	of	 a	 single	 automorphism,	namely,	 the	 identity	 automorphism.
The	graph	G	of	Figure	3.22	is	one	such	graph.

Figure	3.22:	A	graph	of	order	7	with	seven	distinct	orbits

On	 the	 other	 hand,	 if	 a	 graph	 G	 contains	 a	 single	 orbit,	 then	 every	 two
vertices	 of	G	 are	 similar	 and	G	 is	 called	 vertex-transitive.	 The	 graph	G1	 of
Figure	3.23	 is	vertex-transitive.	Since	an	automorphism	can	only	map	a	vertex
into	 a	 vertex	 of	 the	 same	 degree,	 every	 vertex-transitive	 graph	 is	 regular.	 The
converse	 is	 not	 true,	 however.	 For	 example,	 the	 3-regular	 graph	G2	 of	 Figure
3.23	is	not	vertex-transitive	since,	for	example,	u	belongs	to	a	triangle	of	G2	(in
fact,	 two	 triangles),	 while	 w	 belongs	 to	 no	 triangle	 of	 G2.	 Therefore,	 no
automorphism	 of	G2	maps	 u	 into	w.	 Among	 the	 well-known	 vertex-transitive
graphs	 are	 the	 complete	 graphs,	 the	 cycles,	 the	 complete	 bipartite	 graphs	Ks,	 s
and	the	Petersen	graph.



Figure	3.23:	A	vertex-transitive	graph	and	a	regular	graph	that	is	not	vertex-
transitive

A	few	fundamental	 ideas	from	group	theory	are	useful	 to	review,	beginning
with	 the	 definition	 of	 a	 group	 itself.	 A	 group	 is	 a	 nonempty	 set	A	 (finite	 or
infinite)	 together	 with	 an	 associative	 binary	 operation	 	 on	 A	 containing	 an
identity	 element	e	 (necessarily	 unique)	 such	 that	 e	 	 a	 =	 a	 	 e	 =	 a	 for	 every
element	a	∈	A	and	having	the	added	property	that	for	every	element	a	∈	A,	there
exists	an	inverse	element	b	(necessarily	unique)	in	A	with	b	 	a	=	a	 	b	=	e.	Such
a	group	is	often	denoted	by	(A,	 ).	Because	the	operation	 	is	associative,	(x	 	y)	
	z	=	x	 	(y	 	z)	for	all	x,	y,	z	∈	A.	If	a	 	b	=	b	 	a	for	all	a,	b	∈	A,	then	(A,	 )	is
an	abelian	group.	The	group	Aut(H)	for	the	graph	H	of	Figure	3.20	 is	abelian,
while	Aut(F)	is	a	nonabelian	group	for	the	graph	F	of	Figure	3.21.	(If	the	main
topic	of	this	text	had	been	group	theory,	then	G	would	have	been	used	to	denote
a	group.	However,	graphs	have	the	priority	here!)

If	(A,	 )	is	a	group	and	B	is	a	subset	of	A	such	that	(B,	 )	is	a	group,	then	(B,	
)	is	called	is	a	subgroup	of	A.	Two	groups	(A,	 )	and	(B,	*)	are	isomorphic	if
there	exists	a	bijective	function	 :	A	→	B	such	that	 (x	 	y)	=	 (x)	*	 (y)	for	all
x,	y	∈	A.	 It	 is	 often	 common	 to	 refer	 to	 the	 operation	 	 on	 a	 group	 (A,	 )	 as
multiplication	and	write	a	 	b	as	ab	 instead.	In	 this	case,	we	commonly	denote
the	group	by	A,	with	the	operation	understood.

A	common	type	of	group	 to	consider	 is	a	group	of	permutations,	where	 the
operation	is	composition.	In	fact,	a	well-known	theorem	of	Arthur	Cayley	states
that	 every	 group	 is	 isomorphic	 to	 a	 group	 of	 permutations.	 As	 we	 have
mentioned,	 the	 automorphism	 group	 of	 a	 graph	 is	 a	 permutation	 group.	 The
group	of	all	permutations	on	a	set	of	cardinality	n	is	called	the	symmetric	group
Sn	and	its	order	is	n!.	The	automorphism	group	of	a	graph	G	of	order	n	is	a	group
of	 permutations	 on	 the	 vertex	 set	V(G),	 that	 is,	 the	 automorphism	 group	 of	 a
graph	G	of	order	n	is	a	subgroup	of	Sn.	By	a	theorem	of	Joseph-Louis	Lagrange,
the	order	of	Aut(G)	divides	n!	(the	order	of	Sn).

Since	the	automorphism	group	of	every	graph	has	finite	order,	we	will	only
be	interested	in	finite	groups.	If	a	group	of	order	n	has	a	single	generator,	 then



the	group	is	cyclic	of	order	n.	Neither	Aut(H)	nor	Aut(F)	for	the	graphs	H	and	F
of	Figures	3.20	and	3.21,	respectively,	are	cyclic.	In	particular,	Aut(H)	is	the	so-
called	Klein	four	group	(named	for	Felix	Klein),	while	Aut(F)	is	the	symmetric
group	 S3	 of	 order	 6.	 There	 is	 another	 interesting	 class	 of	 groups	 that	 appears
often	in	group	theory.	First,	we	consider	a	member	of	this	class.

Example	3.7	Determine	Aut(C5).

Solution.	Let	G	=	C5,	where	the	vertices	of	G	are	labeled	as	in	Figure	3.24.

Figure	3.24:	The	graph	G	of	Example	3.7

One	of	the	automorphisms	of	G	is	 	=	(v1	v2	v3	v4	v5),	which	can	be	thought
of	as	a	“rotation”	of	G.	Another	automorphism	of	G	is	 1	=	(v2	v5)(v3	v4),	which
can	be	thought	of	as	a	“reflection”	of	G.	The	automorphism	group	of	G	consists
of	the	identity	 ,	the	four	rotations

and	the	five	reflections

Letting	 	=	 1,	we	see	in	the	group	table	of	Aut(G)	shown	in	Figure	3.25	that	
and	 	are	generators	since

In	general,	the	automorphism	group	of	the	cycle	Cn	has	order	2n.	This	group	is
called	 a	 dihedral	 group	 and	 is	 commonly	 denoted	 by	Dn.	 Thus	 the	 dihedral
group	D5	has	order	10	and	its	group	table	is	shown	in	Figure	3.25.	Furthermore,
D3	=	S3.



A	 finite	 group	 A	 can	 have,	 indeed	 may	 require,	 a	 large	 generating	 set,
although	it	is	customary	not	to	include	the	identity	element	of	A	as	a	generator.
There	is	a	digraph	that	one	commonly	associates	with	a	group	A	=	{a1,	a2,	…,
an}	and	a	generating	set	Δ	for	A.	The	Cayley	color	digraph	DΔ(A),	named	for
the	famous	mathematician	Arthur	Cayley,	has	A	as	its	vertex	set	where	(ai,	aj),	i
≠	 j,	 is	 an	arc	of	DΔ(A)	 if	aj	=	aib	 for	 some	generator	b	∈	Δ.	Furthermore,	we
label	(or	color)	this	arc	by	b.	Consequently,	every	vertex	ai	of	DΔ(A)	is	adjacent
to	the	vertex	aib	for	each	b	∈	Δ.	In	addition,	every

Figure	3.25:	The	group	table	of	Aut(G)	in	Example	3.7

vertex	aj	of	DΔ(A)	 is	adjacent	from	the	vertex	ajb−1	for	each	b	∈	Δ.	That	 is,
the	 outdegree	 and	 the	 indegree	 of	 every	 vertex	 of	 DΔ(A)	 is	 |Δ|.	 We	 now
consider	some	examples	of	Cayley	color	digraphs.

Example	3.8	For	the	Klein	four	group	A	=	{a1,	a2,	a3,	a4},	whose	group	table
is	given	in	Figure	3.26,	the	Cayley	color	digraph	is	shown	in	the	same	figure
for	the	generating	set	Δ	=	{a2,	a4}.



Figure	3.26:	The	group	table	and	the	Cayley	color	digraph	in	Example	3.8

Example	 3.9	 For	 the	 cyclic	 group	 A	 =	 {e,	 a,	 a2,	 a3}	whose	 group	 table	 is
given	in	Figure	3.27,	the	Cayley	color	digraphs	are	shown	in	the	same	figure
for	the	two	generating	sets	Δ1	=	{a}	and	Δ2	=	{a,	a2}.

Just	as	every	graph	has	an	automorphism	group,	so	too	does	every	digraph.	In
the	case	of	a	Cayley	color	digraph	D,	those	automorphisms	 	of	D	that	preserve
colors	 (that	 is,	 such	 that	 the	 arcs	 (u,	 v)	 and	 ( u,	 v)	 have	 the	 same	 color
(generator)	 for	 every	 arc	 (u,	 v)	 of	D)	 form	 a	 subgroup	 of	 the	 automorphism
group	of	the	digraph	D	(whose	arcs	are	not	colored).

The	 topic	 of	 automorphism	groups	 of	 graphs	 appeared	 in	 the	 first	 book	 on
graph	theory,	in	fact,	early	in	the	book.	On	page	5	of	the	first	section	(The	Basic
Concepts)	 of	 the	 first	 chapter	 (Foundations)	 of	 his	 1936	 book,	 Dénes	 König
posed	the	following	question	(translated	from	German):

Figure	3.27:	The	group	table	and	Cayley	color	digraphs	in	Example	3.9

When	can	a	given	abstract	group	be	interpreted	as	the	group	of	a	graph
and	if	this	is	the	case,	how	can	the	corresponding	graph	be	constructed?

In	the	early	1900s,	Germany	was	known	for	its	mathematicians	who	excelled
in	group	theory.	One	of	the	best	known	was	Ferdinand	Georg	Frobenius	(1849-
1917),	 who	 made	 numerous	 important	 contributions	 to	 several	 areas	 of
mathematics,	but	especially	to	group	theory.	One	of	Frobenius’	doctoral	students
was	Issai	Schur	(1875-1941),	who	died	on	his	66th	birthday	(January	10).

Schur,	 a	 gifted	mathematician,	 became	well	 known	 for	 his	work	 in	groups,
particularly	on	representation	theory,	although	Schur	did	research	in	many	areas
of	mathematics.	 Indeed,	 through	Schur’s	 efforts,	Berlin	 became	known	 for	 the



study	of	groups.	Schur	was	very	popular	with	students;	often	his	lectures	at	the
University	of	Berlin	were	given	 to	overflow	audiences.	However,	beginning	 in
1933,	events	in	Germany	made	life	very	difficult	for	Schur,	who	was	Jewish.	In
1935	Schur	was	dismissed	from	his	position	at	the	university	and	the	remainder
of	his	life	was	often	unbearable.

While	at	the	University	of	Berlin,	Schur	supervised	several	doctoral	students,
including	 Richard	 Rado,	 whom	 we	 will	 meet	 in	 Chapter	 11,	 Richard	 Brauer
(1901-1977),	well	known	for	his	work	in	algebra	and	number	theory	and	Helmut
Wielandt	 (1910-2001),	 who	 made	 major	 contributions	 to	 the	 study	 of
permutation	groups	and	linear	algebra.	Another	of	Schur’s	students	was	Roberto
Frucht	(1906-1997).

Roberto	 Frucht	 entered	 the	 University	 of	 Berlin	 in	 1924	 at	 the	 age	 of	 18.
Although	Frucht’s	favorite	mathematical	area	was	tensor	calculus,	he	could	not
find	a	doctoral	advisor	in	that	area.	Being	an	admirer	of	Schur,	Frucht	asked	him
if	he	would	agree	 to	be	his	advisor	and	Schur	agreed	–	provided	Frucht	would
write	his	thesis	in	an	area	of	interest	to	Schur.	Consequently,	Frucht	switched	to
group	theory	and	received	his	Ph.D.	in	1930.

At	 that	 time,	Frucht’s	 father	 lost	his	 job	and	earning	a	 living	became	a	 top
priority	 for	Frucht.	Finding	a	 job	as	a	mathematician	 in	Germany	was	difficult
during	that	period,	except	as	a	high	school	teacher.	However,	German	citizenship
was	required	for	 that	and	Frucht	was	a	Czechoslovakian	citizen.	Consequently,
Frucht	moved	 to	Trieste,	 Italy	 to	work	at	an	Italian	 insurance	company.	Frucht
stayed	 in	 Italy	 until	 1938.	During	 that	 period,	 his	 life	was	 relatively	 inactive,
mathematically	speaking.	However,	one	day	in	1936	he	received	a	catalog	from
Akademische	Verlagsgesellschaft	advertising	a	book	in	graph	theory	(by	Dénes
König).	 Frucht	 immediately	 ordered	 the	 book	 and	 he	 became	 an	 enthusiastic
graph	theorist	the	very	day	that	the	book	arrived.

König’s	 question	 on	 automorphism	 groups	 attracted	 the	 attention	 of	 Frucht
immediately.	 After	 being	 unsuccessful	 for	 several	 months	 trying	 to	 solve	 the
problem,	he	found	a	solution	that	seemed	rather	easy	(after	he	had	found	it).	In
1939	Frucht	escaped	from	Italy	to	South	America	shortly	before	the	outbreak	of
World	War	 II.	 After	 working	 as	 an	 actuary	 in	 Argentina	 for	 a	 while,	 he	 was
successful	in	acquiring	a	position	at	the	Universidad	Santa	Maria	in	Valparaiso,
Chile.	He	continued	his	interest	in	graph	theory	and	remained	in	Chile	the	rest	of
his	life.

Theorem	3.10	 (Frucht’s	Theorem)	For	 every	 finite	 group	A,	 there	 exists	 a
graph	G	such	that	Aut(G)	is	isomorphic	to	A.



To	prove	Theorem	3.10,	Frucht	used	his	 result	 that	 for	every	 finite	abstract
group	 A,	 the	 group	 of	 color-preserving	 automorphisms	 of	 the	 Cayley	 color
digraph	DΔ(A)	is	isomorphic	to	A.	The	next	step	for	Frucht	was	to	convert	DΔ(A)
into	 a	 graph	 G	 so	 that	 the	 automorphisms	 of	 G	 correspond	 to	 the	 color-
preserving	automorphisms	of	DΔ(A)	in	an	appropriate	manner.

Although	 this	 can	 be	 accomplished	 in	 a	 number	 of	 ways,	 one	 way	 is	 to
replace	each	arc	(u,	v)	labeled	b1	∈	Δ	in	DΔ(A)	by	a	path	(u,	u1,	v1,	v)	where	u1
and	v1	are	new	vertices	and	place	a	pendant	edge	at	u1	and	attach	a	path	of	length
2	at	v1.	If	there	is	another	generator,	say	b2,	then	replace	any	arc	(u,	v)	labeled	b2
in	DΔ(A)	by	a	path	(u,	u2,	v2,	v)	and	attach	a	path	of	length	3	at	u2	and	a	path	of
length	4	at	v2.	This	procedure	is	continued	if	there	are	additional	generators.	See
Figure	3.28.

Figure	3.28:	Constructing	a	graph	G	from	DΔ(A)

For	example,	consider	the	Cayley	color	digraph	DΔ(A)	in	Example	3.8,	which
is	redrawn	in	Figure	3.29.	The	associated	graph	G	 is	also	shown	in	that	figure,
where	b1	=	a2	and	b2	=	a4.	By	Frucht’s	theorem,	Aut(G)	is	isomorphic	to	A	(the
Klein	four	group).



Figure	3.29:	Constructing	a	graph	G	from	DΔ(A)

Exercises	for	Section	3.3

3.20	For	the	graph	H	of	Figure	3.19,	give	an	example	of	a	permutation	on	V(H)
that	preserves	degrees	but	which	is	not	an	automorphism	of	H.

3.21	Determine	the	automorphism	group	of	K3.

3.22	Determine	the	automorphism	group	of	K1,	3.

3.23	Determine	the	automorphism	group	of	Pn	for	n	≥	2.

3.24	Determine	the	automorphism	group	of	C4.

3.25	For	each	of	the	graphs	H1	and	H2	in	Figure	3.30,	determine

(a)	the	orbits	of	the	graph.
(b)	the	automorphism	group	of	the	graph.

Figure	3.30:	The	graphs	in	Exercise	3.25

3.26	For	the	graph	G2	in	Figure	3.23,	determine

(a)	the	orbits	of	G2.

(b)	the	automorphism	group	of	G2.

3.27	Prove	that	Aut(G)	and	Aut( )	are	isomorphic	for	every	graph	G.

3.28	For	the	group	A	=	{e,	a,	b}	whose	group	table	is	given	in	Figure	3.31,

(a)	find	a	generating	set	Δ	and	the	corresponding	Cayley	color	digraph.
(b)	use	the	Cayley	color	digraph	in	(a)	 to	construct	a	graph	G	 such	 that

Aut(G)	≅	A.



Figure	3.31:	The	group	table	in	Exercise	3.28

(c)	find	a	graph	H	of	order	12	such	that	Aut(H)	≅	A.

3.29	Consider	the	group	A	=	{e,	a,	b,	c}	whose	group	table	is	given	in	Figure
3.32,	where	a2	=	b2	=	c2	=	e.

(a)	For	Δ	=	{a,	b},	find	the	corresponding	Cayley	color	digraph.
(b)	Use	the	Cayley	color	digraph	in	(a)	to	construct	a	graph	G	such	that

Aut(G)	≅	A.

Figure	3.32:	The	group	table	in	Exercise	3.29

3.30	Consider	the	group	A	=	{e,	a,	b,	c,	d}	whose	group	table	is	given	in	Figure
3.33.

(a)	For	Δ	=	{a},	find	the	corresponding	Cayley	color	digraph.
(b)	Use	the	Cayley	color	digraph	in	(a)	to	construct	a	graph	G	such	that

Aut(G)	≅	A.

Figure	3.33:	The	group	table	in	Exercise	3.30

3.31	Let	A	=	S3	be	 the	symmetric	group	on	 the	set	{1,	2,	3}.	For	Δ	=	{(123),
(12)},



(a)	find	the	corresponding	Cayley	color	digraph,
(b)	use	the	Cayley	color	digraph	in	(a)	 to	construct	a	graph	G	 such	 that

Aut(G)	≅	A.

3.32	Use	each	of	the	Cayley	color	digraphs	in	Example	3.9	to	construct	a	graph
G	such	that	Aut(G)	≅	A.

3.4	Excursion:	Reconstruction	and	Solvability

Figure	3.34	shows	a	deck	of	five	cards,	each	with	a	drawing	of	a	graph.

Figure	3.34:	A	deck	of	cards

Since	 we	 can’t	 see	 the	 graph	 drawn	 on	 each	 card,	 we	 separate	 the	 cards,
which	are	shown	in	Figure	3.35.	We’ve	also	numbered	the	cards	now.	What	do
you	notice	about	the	graphs	on	these	five	cards?	Of	course,	the	graphs	on	cards	1
and	 2	 are	 isomorphic,	 as	 are	 the	 graphs	 on	 cards	 3	 and	 4.	 However,	 the
observation	we	are	looking	for	is	that	all	graphs	have	order	4.

Figure	3.35:	A	deck	of	five	cards

It	turns	out	that	there	exists	a	certain	graph	G	of	some	order	n	such	that	for



each	v	∈	V(G),	the	unlabeled	subgraph	G	−	v	is	drawn	on	one	of	the	cards	in	the
deck	given	in	Figure	3.35.	We	can	see	that	n	=	5	in	two	ways.	First,	n	must	equal
5	since	there	are	five	cards.	Also,	each	subgraph	G	−	v,	v	∈	V(G),	has	order	n	−	1
=	4	and	so	n	=	5.

If	the	value	of	a	parameter	for	a	graph	G	or	whether	a	graph	G	has	a	certain
property	can	be	determined	from	the	(unlabeled)	graphs	G	−	v,	v	∈	V(G),	 then
this	parameter	or	property	is	said	to	be	recognizable	for	G.	The	observations	we
have	made	above	provide	a	proof	in	general	for	the	following.

Theorem	3.11	The	order	of	every	graph	is	recognizable.

Before	continuing,	let’s	look	at	the	(very	small)	deck	of	cards	in	Figure	3.36.
Since	there	are	only	two	cards	in	the	deck	and	each	card	is	the	(trivial)	graph	of
order	 1,	 the	 graph	G	 in	 question	 has	 order	 2.	 Actually,	 there	 are	 two	 (non-
isomorphic)	graphs	of	order	2,	namely	K2	and	K2.	Of	course,	the	size	of	K2	is	1
and	the	size	of	 2	is	0.	But,	whether	G	=	 2	or	G	=	 2,	the	two	graphs	G	−	v	in
each	case	are	K1.	That	is,	if	G	=	K2	or	G	=	 2,	then	there	is	no	way	to	determine
the	size	of	G	from	the	subgraphs	G	−	v,	v	∈	V(G).	Therefore,	the	sizes	of	K2	and	

2	are	not	recognizable.	This	is	the	exception,	however,	rather	than	the	rule.

Figure	3.36:	A	deck	of	two	cards

Theorem	3.12	The	size	of	every	graph	of	order	at	least	3	is	recognizable.

Proof.	Suppose	that	G	is	a	graph	of	order	n	≥	3	and	size	m.	Let	V(G)	=	{v1,	v2,
…,	vn}.	Of	course,	in	the	deck	consisting	of	the	subgraphs	G	−	vi,	1	≤	 i	≤	n,
the	vertices	will	not	be	labeled.	Let	e	be	an	edge	of	G,	say	e	=	v1v2.	The	edge	e
then	 appears	 in	 each	 of	 the	 subgraphs	G	 −	 vi	 for	 3	 ≤	 i	 ≤	 n	 but	 appears	 in
neither	G	−	v1	nor	G	−	v2.	Suppose	that	the	size	of	G	−	vi	is	mi	(1	≤	i	≤	n).	In
the	sum	 ,	every	edge	is	counted	n	−	2	times.	That	is,



Let	card	i	(1	≤	i	≤	5)	in	Figure	3.35	display	the	subgraph	G	−	vi,	which	has
size	mi.	Thus

By	Theorem	3.12,	m	=	15/(5	−	2)	=	5.	Hence	the	size	of	the	graph	G	in	question
described	by	the	deck	in	Figure	3.35	is	5.

Now	 that	 we	 know	 that	 the	 size	 of	 every	 graph	G	 of	 order	 at	 least	 3	 is
recognizable,	we	can	show	that	one	additional	feature	of	G	is	recognizable.

Theorem	 3.13	 A	 degree	 sequence	 of	 every	 graph	 of	 order	 at	 least	 3	 is
recognizable.

Proof.	Let	G	be	a	graph	of	order	n	≥	3	and	size	m,	where	V(G)	=	{v1,	v2,	…,
vn}.	From	Theorem	3.12,	m	can	be	determined	from	the	subgraphs	G	−	vi	(1	≤
i	≤	n).	Suppose	that	the	size	of	G	−	vi	is	mi	for	1	≤	i	≤	n.	That	is,	the	size	of	G
is	m	 but	 when	 the	 vertex	 vi	 is	 removed	 from	G,	 the	 size	 of	 the	 resulting
subgraph	G	−	vi	is	mi.	Consequently,	deg	vi	=	m	−	mi	and	so	m	−	m1,	m	−	m2,
…,	m	−	mn	is	a	degree	sequence	for	G.

Returning	to	the	subgraphs	G	−	vi	(1	≤	i	≤	5)	shown	on	the	deck	of	the	cards
in	Figure	3.35,	we	see	that	m1	=	m2	=	4,	m3	=	m4	=	3	and	m5	=	1.	Since	we	have
already	 seen	 that	 the	 size	m	 of	G	 is	 5,	 it	 follows	 that	 1,	 1,	 2,	 2,	 4	 is	 a	 degree
sequence	of	G.	In	particular,	deg	v5	=	4	so	that	v5	is	adjacent	to	each	of	the	four
vertices	of	the	graph	G	−	v5	given	in	card	5.	Hence	we	now	know	precisely	(up
to	 isomorphism)	what	 the	mystery	 graph	G	 is	 for	 the	 deck	 of	 cards	 in	 Figure
3.35.	The	graph	G	is	shown	in	Figure	3.37.

Figure	3.37:	The	graph	G	for	the	deck	of	cards	in	Figure	3.35



Consequently,	from	the	deck	of	cards	in	Figure	3.35	that	gives	the	subgraphs
G	−	vi	(1	≤	i	≤	5),	we	have	not	only	been	able	to	determine	the	order	of	G,	the
size	of	G	and	a	degree	sequence	for	G,	we	have	been	able	to	determine	G	itself.

A	graph	G	of	order	n	≥	2	is	reconstructible	if	G	can	be	uniquely	determined
(up	to	isomorphism)	from	its	subgraphs	G	−	vi	(1	≤	i	≤	n).	Thus,	the	graph	G	of
Figure	3.37	is	reconstructible.	From	our	earlier	remarks,	neither	graph	of	order	2
is	 reconstructible.	 It	 is	believed	by	many	but	has	not	been	verified	by	any	 that
every	graph	of	order	3	or	more	is	reconstructible.

The	 Reconstruction	 Conjecture	 Every	 graph	 of	 order	 3	 or	 more	 is
reconstructible.

This	conjecture	is	believed	to	have	been	made	in	1941	and	is	often	attributed
jointly	 to	Paul	 J.	Kelly	 (1915-1995)	and	Stanislaw	M.	Ulam.	Kelly,	who	spent
many	years	as	a	faculty	member	at	the	University	of	California	at	Santa	Barbara,
obtained	a	number	of	results	on	this	 topic.	Ulam	was	born	on	April	3,	1909	in
Lemberg,	 Poland	 (now	 Lvov,	 Ukraine)	 and	 became	 interested	 in	 astronomy,
physics	and	mathematics	while	a	teenager	and	learned	calculus	on	his	own.	He
entered	 the	 Polytechnic	 Institute	 in	Lvov	 in	 1927.	One	 of	 his	 professors	 there
was	 Kazimierz	 Kuratowski,	 whom	 we	 will	 visit	 again	 in	 Chapter	 9.	 Ulam
studied	under	Stefan	Banach	and	received	his	Ph.D.	in	1933.

In	1940,	Ulam	acquired	a	position	as	an	assistant	professor	at	the	University
of	Wisconsin	(where	Kelly	was	studying	for	his	Ph.D.).	Three	years	later,	John
von	Neumann	asked	to	meet	Ulam	at	a	railroad	station	in	Chicago.	This	 led	to
Ulam	going	to	the	Los	Alamos	National	Laboratory	in	New	Mexico	to	work	on
the	 hydrogen	 bomb	 with	 the	 physicist	 Edward	 Teller.	 While	 at	 Los	 Alamos,
Ulam	developed	the	well-known	Monte	Carlo	method	for	solving	mathematical
problems	using	a	statistical	sampling	method	with	random	numbers.	Throughout
his	 life,	 he	made	 important	 contributions	 in	many	areas	of	mathematics.	Ulam
died	on	May	13,	1984.

The	 Reconstruction	 Problem	 is	 to	 determine	 whether	 the	 Reconstruction
Conjecture	 is	 true.	 Solving	 the	Reconstruction	Problem	 requires	 verifying	 that
there	 do	 not	 exist	 two	 non-isomorphic	 graphs	G	 and	H	 such	 that	 the	 set	 of
subgraphs	G	−	v,	v	∈	V(G),	and	 the	set	of	subgraphs	H	−	v,	v	∈	V(H),	are	 the
same.	If	 there	are	two	non-isomorphic	graphs	G	and	H	with	 this	property,	 then
these	 graphs	 must	 have	 the	 same	 order,	 the	 same	 size	 and	 the	 same	 degree
sequence,	 as	 all	 of	 these	 parameters	 and	 properties	 are	 recognizable.
Furthermore,	any	two	such	graphs	G	and	H	must	both	be	connected	or	must	both



be	 disconnected.	 This	 is	 a	 consequence	 of	 Theorem	 1.10,	 which	 states	 that	 a
graph	G	of	order	3	or	more	 is	connected	 if	and	only	 if	G	contains	 two	distinct
vertices	u	and	v	such	that	G	−	u	and	G	−	v	are	connected.

Theorem	 3.14	For	 all	 graphs	 of	 order	 at	 least	 3,	 both	 connectedness	 and
disconnectedness	are	recognizable	properties.

Proof.	By	Theorem	1.10,	at	 least	 two	of	the	subgraphs	G	−	v,	v	∈	V(G),	are
connected	if	and	only	if	G	is	connected.

The	 Reconstruction	 Problem	 concerns	 providing	 some	 information	 about	 a
certain	 graph	 (or	 certain	 graphs)	 and	 asks	 us	 to	 show	 that	 only	 one	 graph	G
satisfies	the	given	information,	as	well	as	to	identify	what	this	graph	G	is.	In	this
case,	 the	 given	 information	 is	 a	 collection	 of	 subgraphs	 of	 G,	 namely	 all
subgraphs	of	 the	 type	G	−	v,	where	v	∈	V(G).	However,	we	 could	be	given	 a
wide	 variety	 of	 information	 concerning	 a	 graph.	 Proceeding	 in	 a	 manner	 we
discussed	 earlier,	 let’s	 assume	 that	 we	 are	 given	 pieces	 of	 information
concerning	a	graph	G,	where	each	item	is	written	on	a	card.	The	set	of	all	such
cards	is	our	deck.	Any	graph	G	that	satisfies	all	information	in	the	deck	is	called
a	solution	of	the	deck.	The	question	then	becomes	to	determine	all	solutions	of
the	deck.	A	deck	may	then	have	a	unique	solution,	two	or	more	solutions	or	no
solution	at	 all.	 If,	 for	a	given	graph	G	 of	order	n	≥	3,	 a	deck	consists	of	 all	n
subgraphs	 of	 the	 type	G	 –	 v,	 where	 v	∈	V(G)	 and	 if	 the	 the	 Reconstruction
Conjecture	is	true,	then	the	deck	has	a	unique	solution,	namely	G.

Example	3.15	Find	all	graphs	G	for	which	the	deck	of	cards	shown	in	Figure
3.38	gives	the	subgraphs	G	−	v,	where	v	∈	V(G).

Figure	3.38:	The	deck	of	cards	for	Example	3.15

Solution.	First,	observe	that	the	order	of	any	solution	G	of	this	deck	is	6.	The
sum	of	the	sizes	of	the	graphs	on	the	deck	is	6	+	5	+	5	+	4	+	4	+	6	=	30.	Then
the	 size	 of	 a	 solution	G	 is	 30/(6	 −	 2)	 =	 7.5.	 This	 is	 impossible	 and	 so	 the
graphs	on	the	deck	in	Figure	3.38	are	not	the	subgraphs	G	−	v,	v	∈	V(G),	of



any	graph	G.	Thus	this	deck	has	no	solution.

Example	3.16	Determine	 the	solutions	of	 the	deck	of	cards	shown	in	Figure
3.39.

Figure	3.39:	The	deck	of	cards	for	Example	3.16

Solution.	Suppose	that	G	is	a	solution.	By	Card	#1,	all	subgraphs	G	−	v	of	a
solution	G	contain	at	most	two	triangles	and	by	Card	#2	exactly	one	subgraph
G	−	v,	say	G	−	v1,	contains	exactly	two	triangles.	The	two	triangles	in	G	−	v1
are	either	disjoint,	have	one	vertex	in	common	or	have	an	edge	in	common,	as
in	Figure	3.40.

Figure	3.40:	Possible	subgraphs	of	a	solution

We	can	eliminate	 the	subgraph	 in	Figure	3.40(a)	because	of	Card	#3.	 If	 the
subgraph	in	Figure	3.40(c)	occurs,	then	by	Card	#5,	G	must	contain	at	least	two
additional	vertices	x	and	y.	In	that	case,	both	G	−	x	and	G	−	y	contain	at	least	two
triangles,	 contradicting	 Card	 #2.	 Necessarily	 then	G	 contains	 the	 subgraph	 in
Figure	3.40(b)	with	one	additional	vertex	z.	Furthermore,	this	subgraph	must	be
an	induced	subgraph	since	G	−	v1	has	exactly	two	triangles.	Certainly,	z	must	be
adjacent	 to	 the	 vertex	 of	 degree	 4	 because	 of	Card	 #5.	 If	 z	 is	 adjacent	 to	 any
other	 vertices	 in	 the	 subgraph	 in	 Figure	3.40(b),	 then	Card	 #2	 is	 contradicted.
Hence	we	arrive	at	only	one	graph	G,	namely,	the	graph	G	of	Figure	3.41.	Card
#4	is	not	needed.	(It	was	a	Joker!)



Exercises	for	Section	3.4

3.33	Give	 an	 example	 of	 two	 non-isomorphic	 graphs	G	 and	H	 of	 order	 3	 or
more	containing	vertices	u	and	v,	respectively,	such	that	G	−	u	and	H	−	v
are	isomorphic	or	explain	why	no	such	example	exists.

Figure	3.41:	The	unique	solution	to	the	deck	in	Figure	3.39

3.34	For	 the	deck	D	of	cards	given	 in	Figure	3.42,	where	card	 i	 contains	 the
subgraph	Gi	=	G	−	vi,	vi	∈	V(G),	for	some	graph	G,	answer	the	following
with	explanation.

(a)	What	is	the	order	n	of	G?
(b)	What	is	the	size	m	of	G?
(c)	What	are	the	degrees	of	the	vertices	of	G?
(d)	Is	G	connected?
(e)	What	are	the	solutions	of	D?

Figure	3.42:	The	deck	of	cards	for	Exercise	3.34

3.35	For	a	graph	G	of	order	n	and	size	m,	the	subgraphs	G	−	v	for	v	∈	V(G)	are
given	 on	 the	 deck	 of	 cards	 in	 Figure	 3.43.	 Answer	 the	 following	 with
explanation.



(a)	What	is	n?
(b)	What	is	m?
(c)	Is	G	connected?
(d)	What	is	a	degree	sequence	of	G?
(e)	Find	all	solutions	of	the	deck.

3.36	Determine	the	solutions	G	of	the	deck	of	cards	shown	in	Figure	3.44.

3.37	Determine	the	solutions	of	the	deck	of	cards	shown	in	Figure	3.45.

3.38	Determine	the	solutions	of	the	deck	of	two	cards	shown	in	Figure	3.46.

Figure	3.43:	The	deck	of	cards	for	Exercise	3.35

Figure	3.44:	The	deck	of	cards	for	Exercise	3.36

3.39	Determine	the	solutions	of	the	deck	of	two	cards	shown	in	Figure	3.47.

3.40	Determine	the	solutions	of	the	deck	of	one	card	shown	in	Figure	3.48.

3.41	Determine	the	solutions	of	the	deck	of	two	cards	shown	in	Figure	3.49.

3.42	Let	G	=	3K2	+	K1.



(a)	 Give	 an	 example	 of	 a	 deck	 of	 cards	 for	 which	 G	 is	 the	 unique
solution.	Show	your	work.

(b)	Find	a	deck	with	a	small	number	of	cards	for	which	G	 is	the	unique
solution.	Show	your	work.

(c)	 Give	 an	 example	 of	 a	 deck	D	 of	 cards	 for	which	G	 and	 one	 other
graph	are	the	only	two	solutions	of	D.	Show	your	work.

3.43	Give	an	example	of	a	deck	of	cards	having	exactly	two	solutions	of	order
3	or	more.

3.44	Give	an	example	of	a	deck	of	three	cards	having	no	solution,	where	any
subdeck	consisting	of	two	of	the	three	cards	has	at	least	one	solution.

Figure	3.45:	The	deck	of	cards	for	Exercise	3.37

Figure	3.46:	The	deck	of	cards	for	Exercise	3.38



Figure	3.47:	The	deck	of	cards	for	Exercise	3.39

Figure	3.48:	The	deck	of	cards	for	Exercise	3.40

Figure	3.49:	The	deck	of	cards	for	Exercise	3.41



Chapter	4
Trees

4.1	Bridges

Suppose	 that	 there	 are	 some	 villages	 in	 a	 sparsely	 populated	 region	 where
country	roads	allow	us	to	travel	directly	between	certain	pairs	of	these	villages.
Since	the	traffic	along	these	roads	is	ordinarily	light,	it	is	not	surprising	that	very
few	 roads	 have	 been	 built	 in	 this	 region.	 In	 fact,	 suppose	 that	 we	 have	 the
situation	illustrated	in	Figure	4.1,	where	there	are	seven	villages	denoted	by	v1,
v2,	…,	v7	 and	six	 roads.	Not	only	can	 this	map	be	modeled	by	 the	graph	G	of
Figure	4.1,	the	map	essentially	is	a	graph.

Figure	4.1:	A	graph	model	of	villages	and	roads

There	are	 two	interesting	features	of	 the	map	(and	the	graph)	of	Figure	4.1.
First,	 you	may	have	heard	of	 the	 traveler	who	 stops	 someplace	during	his	 trip
and	 asks	 a	 local	 resident	 for	 directions	 to	 some	 location:	 “How	 do	 you	 get
there?”	 only	 to	 get	 the	 response	 “You	 can’t	 get	 there	 from	 here.”	 Well,



fortunately,	we	don’t	have	that	situation	with	the	villages	in	Figure	4.1.	Indeed,	it
is	possible	 to	 travel	 along	country	 roads	 from	each	of	 the	 seven	villages	 to	all
other	villages.	In	other	words,	the	graph	G	of	Figure	4.1	is	connected.	Although
this	is	a	very	positive	feature	(an	essential	feature,	one	might	say),	the	map	and
graph	also	have	a	negative	feature.	Namely,	if	it	ever	became	necessary	to	close
any	of	the	roads	due	to	road	construction,	flooding	or	a	major	snowstorm,	then	it
would	no	longer	be	possible	to	travel	between	every	two	villages.	In	terms	of	the
graph	G	of	Figure	4.1,	this	says	that	if	we	were	to	remove	any	edge	of	G,	then
the	 resulting	graph	would	no	 longer	be	 connected.	An	edge	with	 this	property
plays	an	important	role	in	graph	theory.

Recall	 that	 if	 e	 is	 an	 edge	 of	 a	 graph	G,	 then	G	 −	 e	 is	 the	 subgraph	 of	G
having	the	same	vertex	set	as	G	and	whose	edge	set	consists	of	all	edges	of	G
except	e.	Also,	if	X	is	a	set	of	edges	of	G,	then	G	−	X	is	the	subgraph	possessing
the	same	vertex	set	as	G	and	all	edges	of	G	except	those	in	X.	If	G	has	order	n,
then	G	−	E(G)	is	the	empty	graph	 .

An	edge	e	=	uv	of	a	connected	graph	G	 is	called	a	bridge	of	G	 if	G	−	e	 is
disconnected.	In	this	case,	G	−	e	necessarily	contains	exactly	 two	components,
one	containing	u	and	 the	other	containing	v.	 If	 the	vertex	v,	 say,	has	degree	1,
then	the	component	of	G	−	e	containing	v	is	a	single	vertex,	in	which	case	G	−	v
has	only	one	component;	 that	 is,	 if	v	 is	an	end-vertex	of	a	connected	graph	G,
then	G	−	v	is	connected.	An	edge	e	is	a	bridge	of	a	disconnected	graph	if	e	is	a
bridge	of	some	component	of	G.	Recall	that	k(G)	is	the	number	of	components
of	a	graph	G.	Thus	an	edge	e	is	a	bridge	of	a	graph	G	if	and	only	if	k(G	−	e)	=
k(G)	+	1.	In	the	disconnected	graph	G	of	Figure	4.2,	 the	edges	u2u5,	v3v4,	v4v5
and	w1w2	 are	 bridges	 (which	 are	 indicated	 in	 bold).	 No	 other	 edges	 of	G	 are
bridges.

Figure	4.2:	A	disconnected	graph	with	four	bridges

The	following	theorem	makes	it	easy	to	determine	which	edges	in	a	graph	are
bridges.



Theorem	4.1	An	edge	e	of	a	graph	G	is	a	bridge	 if	and	only	 if	e	 lies	on	no
cycle	of	G.

Proof.	First,	suppose	that	e	=	uv	is	an	edge	of	G	that	is	not	a	bridge	and	that	e
lies	in	the	component	G1	of	G.	(Of	course	G1	=	G	if	G	is	connected.)	Then	G1
−	e	 is	 connected.	Hence	 there	 exists	 a	u	 −	v	 path	P	 in	G1	 −	e.	However,	P
together	with	e	form	a	cycle	containing	e	in	G1	and	therefore	in	G	as	well.

We	now	verify	the	converse.	Suppose	that	e	=	uv	lies	on	a	cycle	C	of	G	and
that	e	(and	C)	belong	to	the	component	G1	of	G.	Then	there	is	a	u	−	v	path	P′	in
G1	not	containing	e.	We	show	that	G1	−	e	is	connected.	Let	x	and	y	be	any	two
vertices	of	G1	−	e.	We	show	that	x	and	y	are	connected	 in	G1	−	e.	Since	G1	 is
connected,	G1	contains	an	x	−	y	path	Q.	If	e	is	not	on	Q,	then	Q	is	an	x	−	y	path
in	G1	−	e	as	well.	On	the	other	hand,	if	e	lies	on	Q,	then	replacing	e	in	Q	by	the	u
−	v	path	P′	produces	an	x	−	y	walk.	By	Theorem	1.6,	G1	−	e	contains	an	x	−	y
path.

The	graph	G	of	Figure	4.1	is	connected	and	has	no	cycles.	Therefore,	every
edge	of	G	is	a	bridge.	Graphs	with	these	two	properties	are	especially	important
and	will	be	the	main	subject	of	this	chapter.

Exercises	for	Section	4.1

4.1	Give	an	example	of	a	nontrivial	connected	graph	G	with	the	properties	that
(1)	every	bridge	of	G	is	adjacent	to	an	edge	that	is	not	a	bridge,	(2)	every
edge	of	G	 that	 is	not	a	bridge	is	adjacent	to	a	bridge,	(3)	G	contains	two
nonadjacent	bridges	and	(4)	every	two	edges	of	G	that	are	not	bridges	are
adjacent.

4.2	Prove	that	every	connected	graph	all	of	whose	vertices	have	even	degrees
contains	no	bridges.

4.3	Prove	that	if	uv	is	a	bridge	in	a	graph	G,	then	there	is	a	unique	u	−	v	path	in
G.

4.4	Let	G	be	a	connected	graph	and	let	e1	and	e2	be	two	edges	of	G.	Prove	that
G	−	e1	−	e2	has	three	components	if	and	only	if	both	e1	and	e2	are	bridges
in	G.



4.5	 (a)	Let	G	 be	 a	 connected	 graph	 of	 order	n,	where	 every	 edge	 of	G	 is	 a
bridge.	What	is	the	size	of	G?

(b)	Let	G	be	a	disconnected	graph	of	order	n	having	k	components,	where
every	edge	of	G	is	a	bridge.	What	is	the	size	of	G?

4.6	Let	G	be	a	connected	graph	of	order	n	≥	3	without	bridges.	Suppose	that	for
every	edge	e	of	G,	each	edge	of	G	−	e	is	a	bridge.	What	is	G?	Justify	your
answer.

4.2	Trees

A	graph	G	 is	 called	acyclic	 if	 it	has	no	cycles.	A	 tree	 is	 an	acyclic	connected
graph.	Therefore,	 the	graph	G	of	Figure	4.1	 is	a	 tree.	When	dealing	with	 trees,
we	often	use	T	rather	than	G	to	denote	a	tree.	By	Theorem	4.1,	every	edge	in	a
tree	is	a	bridge.	Indeed,	we	could	define	a	tree	as	a	connected	graph,	every	edge
of	which	is	a	bridge.	Figure	4.3	shows	all	six	trees	of	order	6.	The	tree	T1	=	K1,5
is	a	star	and	T6	=	P6	is	a	path.	The	number	of	end-vertices	in	the	trees	of	Figure
4.3	 ranges	 from	 2	 to	 5.	 We’ll	 have	 more	 to	 say	 about	 this	 shortly.	 A	 tree
containing	exactly	 two	vertices	 that	are	not	end-vertices	(which	are	necessarily
adjacent)	 is	called	a	double	star.	The	 trees	T2	and	T3	 in	Figure	4.3	are	double
stars.

Figure	4.3:	The	trees	of	order	6

Another	common	class	of	trees	consists	of	the	“caterpillars.”	A	caterpillar	is
a	 tree	 of	 order	 3	 or	more,	 the	 removal	 of	whose	 end-vertices	 produces	 a	 path
called	the	spine	of	the	caterpillar.	Thus	every	path	and	star	(of	order	at	least	3)
and	every	double	star	is	a	caterpillar,	as	is	every	tree	shown	in	Figure	4.3.	The



trees	T′	and	T″	of	Figure	4.4	are	also	caterpillars	but	T′″	is	not.

Figure	4.4:	Two	caterpillars	and	a	tree	that	is	not	a	caterpillar

There	are	occasions	when	it	is	convenient	to	select	a	vertex	of	a	tree	T	under
discussion	and	designate	this	vertex	as	the	root	of	T.	The	tree	T	then	becomes	a
rooted	tree.	Often	the	rooted	tree	T	 is	drawn	with	the	root	r	at	 the	top	and	the
other	vertices	of	T	drawn	below,	 in	 levels,	 according	 to	 their	distances	 from	r.
An	example	is	given	in	Figure	4.5.

Acyclic	graphs	are	also	referred	to	as	forests.	Therefore,	each	component	of	a
forest	is	(not	surprisingly)	a	tree.	Of	course,	the	one	fact	that	distinguishes	trees
from	 forests	 is	 that	 a	 tree	 is	 required	 to	 be	 connected,	 while	 a	 forest	 is	 not
required	to	be	connected.	Since	a	tree	is	connected,	every	two	vertices	in	a	tree
are	connected	by	a	path.	In	fact,	we	can	say	more.

Theorem	4.2	A	graph	G	 is	a	 tree	 if	and	only	 if	 every	 two	vertices	of	G	are
connected	by	a	unique	path.

Figure	4.5:	A	rooted	tree

Proof.	First,	 let	G	be	a	 tree.	Then	G	 is	 connected	by	definition.	Thus	every
two	vertices	of	G	are	connected	by	a	path.	Assume,	to	the	contrary,	that	there
are	two	vertices	of	G	that	are	connected	by	two	distinct	paths.	Then	a	cycle	is
produced	 from	 some	 or	 all	 of	 the	 edges	 of	 these	 two	 paths.	 This	 is	 a
contradiction.



For	the	converse,	suppose	that	every	two	distinct	vertices	of	G	are	connected
by	a	unique	path.	Certainly	then,	G	is	connected.	Assume,	to	the	contrary,	that	G
has	a	cycle	C.	Let	u	and	v	be	two	distinct	vertices	of	C.	Then	C	determines	two
distinct	u	−	v	paths,	producing	a	contradiction.	Thus	G	 is	acyclic	and	so	G	is	a
tree.

As	we	have	 already	observed,	 each	 tree	 in	Figures	4.3	 and	4.4	 has	 two	 or
more	end-vertices.	All	nontrivial	trees	have	this	property.

Theorem	4.3	Every	nontrivial	tree	has	at	least	two	end-vertices.

Proof.	Let	T	be	a	nontrivial	tree	and	among	all	paths	in	T,	let	P	be	a	path	of
greatest	length.	Suppose	that	P	is	a	u	−	v	path,	say	P	=	(u	=	u0,	u1,	…,	uk	=	v),
where	k	≥	1.	We	show	that	u	and	v	are	end-vertices	of	G.	Necessarily,	neither
u	 nor	v	 is	 adjacent	 to	 any	 vertex	 not	 on	P,	 for	 otherwise,	 a	 path	 of	 greater
length	would	be	produced.	Certainly,	u	is	adjacent	to	u1	on	P	and	v	is	adjacent
to	uk	−1	on	P.	Moreover,	since	T	contains	no	cycles,	neither	u	nor	v	is	adjacent
to	any	other	vertices	in	P.	Therefore,	deg	u	=	deg	v	=	1.

One	major	consequence	of	this	result	is	that	if	T	is	a	tree	of	order	k	+	1	≥	2,
then	for	each	end-vertex	v	of	T,	the	subgraph	T	−	v	is	a	tree	of	order	k.	This	fact
is	useful	for	induction	proofs	of	results	concerning	trees.	We	illustrate	this	idea
now	 by	 showing	 that	 the	 size	 of	 every	 tree	 is	 one	 less	 than	 its	 order,	 another
useful	property	of	trees.

Theorem	4.4	Every	tree	of	order	n	has	size	n	−	1.

Proof.	 We	 proceed	 by	 induction	 on	 n.	 There	 is	 only	 one	 tree	 of	 order	 1,
namely	K1,	which	has	size	0.	Thus	the	result	 is	 true	for	n	=	1.	Assume	for	a
positive	integer	k	that	the	size	of	every	tree	of	order	k	is	k	−	1.	Let	T	be	a	tree
of	order	k	+	1.	By	Theorem	4.3,	T	contains	at	least	two	end-vertices.	Let	v	be
one	of	them.	Then	T′	=	T	−	v	is	a	tree	of	order	k.	By	the	induction	hypothesis,
the	size	of	T′	is	m	=	k	−	1.	Since	T	has	exactly	one	more	edge	than	T′,	the	size
of	T	is	m	+	1	=	(k	−	1)	+	1	=	(k	+	1)	−	1,	as	desired.

Let’s	illustrate	some	of	the	ideas	that	we’ve	just	discussed.

Example	4.5	The	degrees	of	the	vertices	of	a	certain	tree	T	of	order	13	are	1,
2	and	 5.	 If	 T	 has	 exactly	 three	 vertices	 of	 degree	 2,	how	many	 end-vertices



does	it	have?

Solution.	Since	T	has	three	vertices	of	degree	2,	it	has	ten	vertices	of	degree	1
or	5.	Let	x	denote	the	number	of	end-vertices	of	T.	So	T	has	10	−	x	vertices	of
degree	5.	Since	T	has	13	vertices,	T	has	12	edges	by	Theorem	4.4.	Summing
the	 degrees	 of	 the	 vertices	 of	 T	 and	 applying	 the	 First	 Theorem	 of	 Graph
Theory,	we	obtain

Note	 that	 drawing	 a	 tree	 of	 order	 13	 with	 three	 vertices	 of	 degree	 2,	 two
vertices	of	degree	5	and	eight	end-vertices	does	not	answer	the	question.	It	only
says	that	the	tree	we	drew	has	eight	end-vertices,	not	necessarily	that	the	tree	T
in	Example	4.5	has	eight	end-vertices.	Of	course,	our	solution	tells	us	that	every
tree	with	the	property	described	in	Example	4.5	has	eight	end-vertices.

We	 can	 now	 determine	 the	 size	 of	 a	 forest	 in	 terms	 of	 its	 order	 and	 the
number	of	components	it	has.

Corollary	4.6	Every	forest	of	order	n	with	k	components	has	size	n	−	k.

Proof.	 Suppose	 that	 the	 size	 of	 a	 forest	F	 is	m.	 Let	G1,	G2,	…,	Gk	 be	 the
components	of	F,	where	k	≥	1.	Furthermore,	suppose	that	Gi	has	order	ni	and
size	mi	 for	1	≤	 i	≤	k.	Then	 	 and	 .	Since	 each
component	Gi	(1	≤	i	≤	k)	is	a	tree,	it	follows	by	Theorem	4.4	that	mi	=	ni	−	1.
Therefore,

Again	by	Theorem	4.4,	a	tree	of	order	n	is	a	connected	graph	containing	n	−	1
edges.	 Indeed,	every	connected	graph	of	order	n	 contains	at	 least	n	−	1	edges.
Although	this	can	be	verified	in	several	ways,	we	establish	this	fact	using	a	proof
by	minimum	counterexample	 in	order	 to	 illustrate	 this	useful	method	of	proof.
(Proof	by	minimum	counterexample	is	reviewed	in	Appendix	3.)

Theorem	4.7	The	size	of	every	connected	graph	of	order	n	is	at	least	n	−	1.



Proof.	It	is	not	difficult	to	see	that	the	theorem	is	true	for	connected	graphs	of
order	1,	2	or	3.	Assume	that	the	theorem	is	false	however.	Then	there	exists	a
connected	 graph	 G	 of	 smallest	 order	 n	 whose	 size	 m	 is	 at	 most	 n	 −	 2.
Necessarily,	n	 ≥	 4.	 Since	G	 is	 a	 nontrivial	 connected	 graph,	G	 contains	 no
isolated	vertices.

We	claim	that	G	contains	an	end-vertex;	for	assume,	to	the	contrary,	that	the
degree	 of	 every	 vertex	 of	G	 is	 at	 least	 2.	 Then	 the	 sum	 of	 the	 degrees	 of	 the
vertices	 of	G	 is	 2m	 ≥	 2n;	 so	m	 ≥	 n	 ≥	m	 +	 2,	which	 is	 impossible.	 So,	 as	we
claimed,	G	contains	an	end-vertex.

Let	v	be	an	end-vertex	of	G.	Since	G	is	connected,	has	order	n	and	size	m	≤	n
−	2,	it	follows	that	G	−	v	is	connected	and	has	order	n	−	1	and	size	m	−	1	≤	n	−	3,
contradicting	the	assumption	that	G	is	a	connected	graph	of	smallest	order	whose
size	is	at	least	2	less	than	its	order.

Let	G	be	a	tree	of	order	n	and	size	m.	By	the	definition	of	a	tree	and	Theorem
4.4,	G	has	the	following	three	properties:	(1)	G	is	connected,	(2)	G	is	acyclic,	(3)
m	=	n	−	1.	In	fact,	if	G	is	a	graph	of	order	n	and	size	m	that	satisfies	any	two	of
these	three	properties,	then	G	is	a	tree.

Theorem	4.8	Let	G	be	a	graph	of	order	n	and	size	m.	If	G	satisfies	any	two	of
the	properties:

(1)	G	is	connected,						(2)	G	is	acyclic,						(3)	m	=	n	−	1,

then	G	is	a	tree.

Proof.	First,	if	G	satisfies	(1)	and	(2),	then	G	is	a	tree	by	definition.	Thus,	we
may	assume	that	G	satisfies	(1)	and	(3)	or	G	satisfies	(2)	and	(3).	We	consider
these	two	cases.

Case	1.	G	satisfies	(1)	and	(3).	Since	G	is	connected,	it	suffices	to	show	that
G	is	acyclic.	Assume,	to	the	contrary,	that	G	contains	a	cycle	C.	Let	e	be	an	edge
of	C.	Then	e	is	not	a	bridge	of	G	by	Theorem	4.1.	So	G	−	e	is	a	connected	graph
of	order	n	and	size	n	−	2,	which	contradicts	Theorem	4.7.	Therefore,	G	is	acyclic
and	so	is	a	tree.

Case	2.	G	satisfies	(2)	and	(3).	Since	G	is	acyclic,	it	suffices	to	show	that	G
is	connected.	Since	G	satisfies	(2)	and	(3),	it	follows	that	G	is	a	forest	of	order	n
and	 size	m	 =	n	 −	 1.	 By	Corollary	 4.6,	 the	 size	 of	G	 is	n	 −	 k,	 where	 k	 is	 the
number	of	components	of	G.	Hence	n	−	1	=	n	−	k	and	so	k	=	1.	Therefore,	G	 is



connected.

If	T	 is	 a	 tree	 of	 order	 k,	 then	 it	 should	 be	 clear	 that	T	 is	 isomorphic	 to	 a
subgraph	of	Kk.	Of	course,	 (Kk)	=	k	−	1.	Not	only	is	T	isomorphic	to	a	subgraph
of	Kk,	 the	 tree	T	 is	 isomorphic	 to	 a	 subgraph	of	every	 graph	 having	minimum
degree	at	least	k	−	1.

Theorem	4.9	Let	T	be	a	tree	of	order	k.	If	G	is	a	graph	with	 (G)	≥	k	−	1,	then
T	is	isomorphic	to	some	subgraph	of	G.

Proof.	We	 proceed	 by	 induction	 on	 k.	 The	 result	 is	 certainly	 true	 for	 k	 =	 1
since	every	graph	contains	a	vertex.	It	is	also	true	for	k	=	2	since	every	graph
without	isolated	vertices	contains	edges.

Assume	for	every	tree	T′	of	order	k	−	1,	where	k	≥	3,	and	for	every	graph	H
with	minimum	degree	 at	 least	k	 −	 2	 that	T′	 is	 isomorphic	 to	 a	 subgraph	of	H.
Now,	let	T	be	a	tree	of	order	k	and	let	G	be	a	graph	with	 (G)	≥	k	−	1.	We	show
that	T	is	isomorphic	to	a	subgraph	of	G.

Let	v	be	an	end-vertex	of	T	and	u	the	vertex	of	T	adjacent	to	v.	Then	T	−	v	is	a
tree	 of	 order	 k	 −	 1.	 Since	 (G)	 ≤	 k	 −	 1	 >	 k	 −	 2,	 it	 follows	 by	 the	 induction
hypothesis	that	T	−	v	is	isomorphic	to	a	subgraph	F	of	G.	Let	u′	denote	the	vertex
of	F	corresponding	to	u	in	T.	Since	degG	u′	≤	k	−	1	and	the	order	of	F	is	k	−	1,
the	vertex	u′	is	adjacent	to	a	vertex	w	of	G	that	does	not	belong	to	F	(see	Figure
4.6).	Therefore,	T	 is	 isomorphic	 to	 the	 subgraph	 of	G	 obtained	 by	 adding	 the
vertex	w	and	the	edge	u′w	to	F.

Figure	4.6:	The	subgraph	T	−	v	of	G	in	the	proof	of	Theorem	4.9

Exercises	for	Section	4.2

4.7	(a)	Draw	all	trees	of	order	5.	(b)	Draw	all	forests	of	order	6.



4.8	 Prove	 that	 if	 every	 vertex	 of	 a	 graph	G	 has	 degree	 at	 least	 2,	 then	G
contains	a	cycle.

4.9	Show	that	a	graph	of	order	n	and	size	n	−	1	need	not	be	a	tree.

4.10	Give	an	example	of	each	of	the	following	or	explain	why	no	such	example
exists.

(a)	A	graph	that	is	not	a	tree	in	which	every	edge	is	a	bridge.
(b)	A	tree	of	order	4	whose	complement	is	not	a	tree.
(c)	A	tree	T	containing	exactly	three	vertices	that	are	not	end-vertices	and

such	that	T	is	not	a	caterpiller.

4.11	For	k	=	2,	3,	4,	give	an	example	of	a	tree	Tk	with	Δ(Tk)	=	k	 such	 that	no
two	vertices	of	the	same	degree	are	adjacent	to	the	same	vertex.

4.12	 (a)	 Give	 an	 example	 of	 a	 tree	T	 and	 an	 edge	 e	 of	T	 such	 that	 the	 two
components	of	T	−	e	are	isomorphic.

(b)	Show	that	there	exists	no	tree	T	containing	two	distinct	edges	e1	and
e2	such	that	the	two	components	of	T	−	e1	are	isomorphic	and	the	two
components	of	T	−	e2	are	isomorphic.

(c)	Show	that	there	exists	a	tree	T	containing	two	distinct	edges	e1	and	e2
such	 that	 (1)	 	and	 (2)	 for	 the	 two	components	T1
and	T′1	of	T′e1	and	the	two	components	T2	and	T′2	of	T	−	e2,	we	have	

	and	 .

4.13	A	certain	tree	T	of	order	21	has	only	vertices	of	degree	1,	3,	5	and	6.	If	T
has	exactly	15	end-vertices	and	one	vertex	of	degree	6,	how	many	vertices
of	T	have	degree	5?

4.14	A	certain	tree	T	of	order	35	is	known	to	have	25	vertices	of	degree	1,	two
vertices	of	degree	2,	three	vertices	of	degree	4,	one	vertex	of	degree	5	and
two	 vertices	 of	 degree	 6.	 It	 also	 contains	 two	 vertices	 of	 the	 same
(unknown)	degree	x.	What	is	x?

4.15	A	tree	T	with	50	end-vertices	has	an	equal	number	of	vertices	of	degree	2,
3,	4	and	5	and	no	vertices	of	degree	greater	than	5.	What	is	the	order	of	T?

4.16	(a)	Give	an	example	of	a	tree	of	order	6	containing	four	vertices	of	degree
1	and	two	vertices	of	degree	3.	(Only	one	tree	has	these	properties.)

(b)	Find	all	 trees	T	where	 two-thirds	of	 the	vertices	of	T	 have	degree	1



and	the	remaining	one-third	of	the	vertices	have	degree	3.

4.17	(a)	Give	an	example	of	a	tree	of	order	8	containing	six	vertices	of	degree	1
and	two	vertices	of	degree	4.	(Only	one	tree	has	these	properties.)

(b)	Find	all	trees	T	where	75%	of	the	vertices	of	T	have	degree	1	and	the
remaining	25%	of	the	vertices	have	degree	4.

(c)	Find	all	trees	T	where	75%	of	the	vertices	of	T	have	degree	1	and	the
remaining	25%	of	the	vertices	have	another	degree	(a	fixed	degree).

(d)	Find	all	trees	T	where	25%	of	the	vertices	of	T	have	degree	1	and	the
remaining	 75%	 of	 the	 vertices	 of	 T	 have	 another	 degree	 (a	 fixed
degree).

4.18	A	certain	tree	T	of	order	n	contains	only	vertices	of	degree	1	and	3.	Show
that	T	contains	(n	−	2)/2	vertices	of	degree	3.

4.19	Let	T	be	a	tree	of	order	n	and	size	m	having	ni	vertices	of	degree	i	for	i	≥	1.
Then	 	and	 .

(a)	Prove	that	n1	=	2	+	n3	+	2n4	+	3n5	+	4n6	+	….

(b)	A	tree	T	has	three	vertices	of	degree	2,	five	vertices	of	degree	3,	two
vertices	of	degree	4	and	no	vertices	of	degree	5	or	more.	According	to
the	formula	in	(a),	how	many	end-vertices	does	T	have?

4.20	Prove	or	disprove:

(a)	If	G	is	a	graph	of	order	n	and	size	m	with	three	cycles,	then	m	≥	n	+	2.
(b)	There	exist	exactly	two	regular	trees.

4.21	Let	T	 be	 a	 tree	of	order	n.	Prove	 that	T	 is	 isomorphic	 to	 a	 subgraph	of	
.

4.22	Let	T	be	a	tree	of	order	n.	Show	that	the	size	of	the	complement	 	of	T	is
the	same	as	the	size	of	Kn	−	1.

4.23	Find	all	trees	T	such	that	 	is	also	a	tree.

4.24	(a)	Find	all	those	graphs	G	of	order	n	≥	4	such	that	the	subgraph	induced
by	every	three	vertices	of	G	is	a	tree	or	show	that	no	such	graph	exists.

(b)	State	and	solve	a	generalization	of	the	problem	in	(a).



4.3	The	Minimum	Spanning	Tree	Problem

If	the	seven	villages	illustrated	in	Figure	4.1	really	did	exist,	quite	possibly	the
villages	developed	one	by	one;	and	as	a	new	village	developed,	a	new	road	was
constructed	that	connected	this	village	to	the	previously	developed	villages.	For
example,	suppose	that	the	three	villages	v1,	v2	and	v3	already	existed	with	a	road
between	v1	and	v2	and	a	road	between	v2	and	v3.	Furthermore,	suppose	that	 the
settlement	v4	 developed	 into	 a	village.	Then	 it	would	be	 logical	 to	 construct	 a
paved	road	between	v4	and	one	of	v1,	v2	and	v3.	Of	course,	it	might	be	preferable
to	 construct	 a	 road	 between	 v4	 and	 an	 intermediate	 location	 along	 an	 existing
road,	which	 in	 turn	may	 lead	 to	 a	 new	development	 at	 this	 junction.	But	 let’s
assume	that	this	doesn’t	occur.	However,	just	as	with	many	decisions	in	life,	the
decision	as	to	which	road	should	be	built	would	most	likely	be	a	financial	one.

On	the	other	hand,	suppose	that	initially	no	roads	existed	between	any	pair	of
the	villages	v1,	v2,	…,	v7	 (as	might	be	 the	case	 if	 these	are	 the	 seven	Olympic
dormitories	 that	 are	 to	 be	 constructed	 to	 house	 the	 athletes	 at	 a	 forthcoming
Olympic	Games).	Then	we	need	to	construct	roads	between	pairs	of	dormitories.
Which	 roads	will	 be	 constructed	 is	 quite	 possibly	 a	 financial	 decision	 here	 as
well.	Before	proceeding	further,	let	us	consider	a	new	concept.

If	a	connected	graph	G	of	order	n	has	no	cycles,	then,	of	course,	G	is	a	tree.
On	the	other	hand,	suppose	that	G	contains	cycles.	Let	e1	be	an	edge	lying	on	a
cycle	of	G.	By	Theorem	4.1,	e1	is	not	a	bridge	and	G	−	e1	is	connected.	If	G	−	e1
contains	cycles,	then	let	e2	be	an	edge	lying	on	a	cycle	of	G	−	e1.	Then	G	−	e1	−
e2	is	connected.	Eventually,	we	arrive	at	a	set	X	=	{e1,	e2,	…,	ek}	of	edges	of	G
such	that	G	−	X	is	a	tree.	The	tree	G	−	X	just	constructed	is	a	subgraph	of	G	that
has	the	same	vertex	set	as	G.

We	 can	 look	 at	 the	 observation	 we	 just	 made	 in	 another	 way.	 Let	G	 be	 a
connected	graph.	Consider	the	empty	graph	H	with	vertex	set	V(G).	Add	an	edge
f1	of	G	to	H.	Then	add	another	edge	f2	of	G	to	H.	Next,	add	another	edge	f3	of	G
to	H,	where	 f3	 	{f1,	 f2}	and	 such	 that	 no	 cycle	 is	 produced.	We	continue	 this
until	we	have	added	edges	 f1,	 f2,	…,	 fn	 −	 1	 of	G	 to	H,	 producing	 a	 graph	F	 of
order	n,	size	n	−	1	and	no	cycles.	By	Theorem	4.8,	F	is	a	tree	with	V(F)	=	V(G).
We	know	it’s	possible	to	construct	a	tree	in	this	manner	as	we	can	always	choose
the	edges	of	G	−	X	mentioned	above.

We	have	just	described	two	ways	of	producing	trees	T	that	are	subgraphs	of	a



given	connected	graph	G	such	that	V(T)	=	V(G).	Recall	 that	a	subgraph	H	of	a
graph	G	is	a	spanning	subgraph	of	G	if	H	contains	every	vertex	of	G.	A	spanning
subgraph	H	of	a	connected	graph	G	 such	 that	H	 is	 a	 tree	 is	 called	a	spanning
tree	of	G.	For	the	connected	graph	G	of	Figure	4.7,	two	different	spanning	trees
T1	 and	 T2	 of	 G	 are	 also	 shown	 in	 Figure	 4.7.	 We	 have	 now	 observed	 the
following.

Figure	4.7:	Two	spanning	trees	in	a	graph

Theorem	4.10	Every	connected	graph	contains	a	spanning	tree.

Once	again,	 let’s	 return	 to	 the	example	we	considered	 in	Figure	4.1,	where
there	 are	 seven	villages	 and	 six	 roads.	The	graph	describing	 this	 situation	 is	 a
tree.	Hence	it	is	possible	to	travel	between	every	two	villages.	Indeed,	there	is	a
unique	path	between	every	two	villages.	To	travel	between	villages	v1	and	v6,	we
are	forced	to	pass	through	v2,	v3	and	v4,	even	if	we	didn’t	want	to.	Therefore,	the
trip	between	v1	and	v6	may	be	inconvenient.	Of	course,	to	make	the	trip	between
pairs	 of	 the	 villages	 more	 convenient,	 we	 could	 always	 build	 a	 new	 road
(between	v1	and	v6,	say).	However,	this	would	cost	more	money	(possibly	a	great
deal	of	money).	But	how	was	it	decided	initially	that	the	six	roads	in	Figure	4.1
were	the	ones	to	be	constructed?	Certainly,	whichever	roads	were	chosen	should
produce	a	connected	graph.	If	the	resulting	graph	contains	a	cycle,	then	there	are
edges	in	the	graph	that	are	not	bridges.	That	is,	if	producing	a	connected	graph
was	our	primary	goal,	then	we	could	have	accomplished	this	for	less	money	by
constructing	roads	so	that	 the	resulting	graph	is	a	 tree.	But	how	did	we	choose
those	particular	six	roads	to	build?

Suppose	that	we	have	a	number	of	villages	(such	as	the	villages	v1,	v2,	…,	v7)
and	 we	 would	 like	 to	 build	 roads	 as	 cheaply	 as	 possible	 so	 that,	 at	 the
conclusion,	 the	resulting	graph	 is	connected.	How	do	we	do	 this?	Assume	that
we	have	an	accurate	estimate	of	the	cost	of	building	a	road	between	each	pair	of
villages.	If	the	cost	of	building	a	road	between	some	pair	of	villages	is	exorbitant



(because	any	such	road	would	have	to	pass	through	quicksand,	private	property
or	 through	 or	 over	 a	 mountain,	 for	 example),	 then	 we	 do	 not	 even	 consider
building	such	a	road.	This	problem	can	be	stated	in	terms	of	graphs.

Let	G	be	a	connected	graph	each	of	whose	edges	is	assigned	a	number	(called
the	cost	or	weight	of	the	edge).	We	denote	the	weight	of	an	edge	e	of	G	by	w(e).
Recall	that	such	a	graph	is	called	a	weighted	graph.	For	each	subgraph	H	of	G,
the	weight	w(H)	of	H	is	defined	as	the	sum	of	the	weights	of	its	edges,	that	is,

We	 seek	 a	 spanning	 tree	 of	G	 whose	weight	 is	minimum	 among	 all	 spanning
trees	 of	 G.	 Such	 a	 spanning	 tree	 is	 called	 a	minimum	 spanning	 tree.	 The
problem	of	finding	a	minimum	spanning	tree	in	a	connected	weighted	graph	is
called	the	Minimum	Spanning	Tree	Problem.

The	 importance	 of	 the	 Minimum	 Spanning	 Tree	 Problem	 is	 due	 to	 its
applications	 in	 the	 design	 of	 computer,	 communications	 and	 transportation
networks.	The	history	of	this	problem	was	researched	by	Ronald	L.	Graham	and
Pavol	 Hell	 in	 1985.	 (We	 will	 encounter	 Graham	 again	 in	 Chapter	 11.)	 They
concluded	that	the	Minimum	Spanning	Tree	Problem	was	initially	formulated	by
Otakar	 	 in	 1926	 because	 of	 his	 interest	 in	 the	 most	 economical	 layout	 of	 a
power-line	network.	He	also	gave	 the	 first	 solution	of	 the	problem.	Prior	 to	 ,
however,	 the	anthropologist	Jan	Czekanowski’s	work	on	classification	schemes
led	 him	 to	 consider	 ideas	 closely	 related	 to	 the	 Minimum	 Spanning	 Tree
Problem.

Over	 the	 years,	 this	 problem	 has	 been	 solved	 in	 a	 variety	 of	ways	 using	 a
number	of	algorithms.	One	of	the	best	known	was	discovered	by	Joseph	Bernard
Kruskal	(1928-2010).	Kruskal	was	from	a	family	of	five	children,	three	boys	and
two	 girls.	 All	 boys	 became	 mathematicians.	 Kruskal	 received	 his	 Ph.D.	 from
Princeton	in	1954.	His	advisors	were	Paul	Erd s	and	Roger	Lyndon.	Throughout
his	life	he	was	an	active	researcher,	with	much	of	his	work	in	mathematics	and
linguistics.	He	spent	much	of	his	life	working	at	Bell	Laboratories.	However,	it
was	 only	 two	 years	 after	 completing	 his	 doctoral	 degree	 that	 the	 paper	 was
published	containing	the	algorithm	that	bears	his	name.

Kruskal’s	Algorithm:	For	a	connected	weighted	graph	G,	a	spanning	tree	T
of	G	is	constructed	as	follows:	For	the	first	edge	e1	of	T,	we	select	any	edge	of	G
of	minimum	weight	 and	 for	 the	 second	edge	e2	of	T,	we	 select	 any	 remaining
edge	 of	 G	 of	 minimum	 weight.	 For	 the	 third	 edge	 e3	 of	 T,	 we	 choose	 any



remaining	edge	of	G	of	minimum	weight	that	does	not	produce	a	cycle	with	the
previously	 selected	 edges.	We	continue	 in	 this	manner	 until	 a	 spanning	 tree	 is
produced.

Figure	 4.8	 shows	 how	 a	 spanning	 tree	 of	 a	 connected	 weighted	 graph	 is
constructed	using	Kruskal’s	Algorithm.	We	now	show	that	Kruskal’s	Algorithm
produces	a	minimum	spanning	tree	in	every	connected	weighted	graph.

Figure	4.8:	Constructing	a	spanning	tree	by	Kruskal’s	Algorithm

Theorem	4.11	Kruskal’s	Algorithm	 produces	 a	minimum	 spanning	 tree	 in	 a
connected	weighted	graph.

Proof.	Let	G	be	a	connected	weighted	graph	of	order	n	and	let	T	be	a	spanning
tree	obtained	by	Kruskal’s	Algorithm,	where	the	edges	of	T	are	selected	in	the
order	e1,	e2,	…,	en	−1.	Necessarily	then,	w(e1)	≤	w(e2)	≤	…	≤	w(en	−	1)	and	the
weight	of	T	is

We	show	that	T	 is	a	minimum	spanning	tree	of	G.	Assume,	 to	 the	contrary,
that	T	is	not	a	minimum	spanning	tree.	Among	all	minimum	spanning	trees	of	G,
let	H	be	one	that	has	a	maximum	number	of	edges	in	common	with	T.	Since	H



and	T	are	not	identical,	there	is	at	least	one	edge	of	T	that	is	not	in	H.	Let	ei	be
the	first	edge	of	T	that	is	not	in	H.	Therefore,	if	i	>	1,	then	the	edges	e1,	e2,	…,	ei
−1	 belong	 to	 both	H	 and	T.	Now	define	G0	 =	H	 +	ei.	Then	G0	 has	 a	 cycle	C.
Since	T	has	no	cycle,	there	is	an	edge	e0	on	C	that	is	not	in	T.	The	graph	T0	=	G0
−	e0	is	therefore	a	spanning	tree	of	G	and

Since	 H	 is	 a	 minimum	 spanning	 tree	 of	 G,	 it	 follows	 that	 w(H)	 ≤	 w(T0).
Consequently,	w(H)	≤	w(H)	+	w(ei)	−	w(e0)	and	so	w(e0)	≤	w(ei).	By	Kruskal’s
Algorithm,	certainly	w(e0)	=	w(ei)	if	i	=	1.	Suppose	then	that	i	>	1.	By	Kruskal’s
Algorithm,	ei	is	an	edge	of	minimum	weight	that	can	be	added	to	the	edges	e1,
e2,	…,	ei	−	1	without	producing	a	cycle.	However,	e0	can	also	be	added	to	e1,	e2,
…,	ei	−	1	without	producing	a	cycle.	Thus	w(ei)	≤	w(e0),	which	implies	that	w(ei)
=	w(e0)	when	i	>	1	as	well.	Therefore,	w(T0)	=	w(H)	and	so	T0	is	also	a	minimum
spanning	tree	of	G.	However,	T0	has	more	edges	in	common	with	T	than	H	does,
which	is	a	contradiction.

Another	 well-known	 algorithm	 for	 finding	 a	 minimum	 spanning	 tree	 in	 a
connected	weighted	graph	was	developed	by	Robert	Clay	Prim	(born	in	1921).
Like	 Kruskal,	 he	 received	 his	 Ph.D.	 from	 Princeton	 (in	 1949).	 He	 was	 vice
president	 of	 research	 at	 the	 Sandia	 Corporation.	 The	 paper	 containing	 the
algorithm	 that	 bears	 his	 name	 was	 published	 in	 1957.	 This	 algorithm	 was
originally	discovered	by	the	Czech	mathematician	Vojt ch	Jarnik	in	1930	but	the
algorithm	is	named	for	Prim.

Prim’s	Algorithm:	For	a	connected	weighted	graph	G,	a	spanning	tree	T	of
G	is	constructed	as	follows:	For	an	arbitrary	vertex	u	for	G,	an	edge	of	minimum
weight	incident	with	u	is	selected	as	the	first	edge	e1	of	T.	For	subsequent	edges
e2,	 e3,	…,	 en	 −	 1,	 we	 select	 an	 edge	 of	 minimum	 weight	 among	 those	 edges
having	exactly	one	of	its	vertices	incident	with	an	edge	already	selected.

Figure	 4.9	 illustrates	 how	 to	 construct	 a	 spanning	 tree	 of	 a	 connected
weighted	 graph	 by	 Prim’s	 Algorithm.	 Again,	 a	 tree	 obtained	 by	 Prim’s
Algorithm	is	also	a	minimum	spanning	tree,	as	we	show	next.



Figure	4.9:	Constructing	a	spanning	tree	by	Prim’s	Algorithm

Theorem	 4.12	 Prim’s	 Algorithm	 produces	 a	 minimum	 spanning	 tree	 in	 a
connected	weighted	graph.

Proof.	Let	G	be	a	nontrivial	connected	weighted	graph	of	order	n	and	let	T	be
a	 spanning	 tree	 obtained	 by	 Prim’s	 Algorithm,	 where	 the	 edges	 of	 T	 are
selected	 in	 the	order	e1,	e2,	…,	en	 −	 1	 and	where	e1	 is	 incident	with	 a	 given
vertex	u.	Thus	the	weight	of	T	is

Assume,	to	the	contrary,	that	T	is	not	a	minimum	spanning	tree.	Let	 	be	the	set
of	 all	 minimum	 spanning	 trees	 of	G	 having	 a	 maximum	 number	 of	 edges	 in
common	with	T.	If	no	tree	in	 	contains	e1,	then	let	k	=	0	and	let	H	be	any	tree
in	 ;	otherwise,	let	k	be	the	maximum	positive	integer	for	which	there	is	a	tree
H	 	 	such	that	H	contains	e1,	e2,	…,	ek.	Hence	no	tree	in	 	contains	all	of	the
edges	e1,	e2,	…,	ek	+	1,	where	0	≤	k	<	n	−	1.	If	H	does	not	contain	e1	and	so	k	=	0,
then	let	U	=	{u}.	If	k	≤	1,	let	U	be	the	vertex	set	of	the	tree	with	edge	set	{e1,	e2,
…,	ek}.	So	U	consists	of	the	k	+	1	vertices	that	are	incident	with	one	or	more	of
the	 edges	 e1,	 e2,	…,	 ek.	 By	 Prim’s	Algorithm,	 ek+1	 joins	 a	 vertex	 of	U	 and	 a
vertex	of	V(T)	−	U.



The	 subgraph	H	 +	 ek	 +	 1	 therefore	 contains	 a	 cycle	C	 and	 ek	 +	 1	 is	 on	C.
Necessarily,	C	contains	an	edge	e0	distinct	 from	ek	 +	 1	 such	 that	e0	also	 joins	a
vertex	 of	U	 and	 a	 vertex	 of	V(T)	 −	U.	 By	 the	 construction	 of	 T	 from	 Prim’s
Algorithm,	w(ek	+	1)	≤	w(e0).	Now	T′	=	H	+	ek	 +	 1	−	e0	 is	a	spanning	 tree	of	G
whose	weight	is	w(T′)	=	w(H)+w(ek+1)	−	w(e0).	Since	H	is	a	minimum	spanning
tree,	w(H)	≤	w(T′)	 and	 so	w(H)	≤	w(H)	+	w(ek+1)	−	w(e0),	 which	 implies	 that
w(e0)	≤	w(ek	+	1).	Consequently,	w(e0)	=	w(ek	+	1)	and	w(H)	=	w(T′).	Therefore,	T′
is	also	a	minimum	spanning	 tree	of	G.	 If	e0	does	not	belong	 to	T,	 then	T′	 is	 a
minimum	 spanning	 tree	 having	 more	 edges	 in	 common	 with	 T	 than	H	 does,
which	is	impossible	since	H	 	 .	Hence	e0	belongs	to	T,	which	implies	that	T′
has	 the	same	number	of	edges	 in	common	with	T	 that	H	does	and	so	T′	 	 .
Necessarily,	e0	=	ej	for	some	j	>	k	+	1.	Since	T′	contains	all	of	the	edges	e1,	e2,
…,	ek	+	1,	this	contradicts	the	defining	property	of	H.

Exercises	for	Section	4.3

4.25	Determine	all	spanning	trees	for	the	graphs	G	and	H	in	Figure	4.10.	Which
of	these	spanning	trees	are	isomorphic?

Figure	4.10:	The	graphs	in	Exercise	4.25

4.26	 Prove	 that	 an	 edge	 e	 of	 a	 connected	 graph	 is	 a	 bridge	 if	 and	 only	 if	 e
belongs	to	every	spanning	tree	of	G.

4.27	Apply	both	Kruskal’s	and	Prim’s	Algorithms	to	find	a	minimum	spanning
tree	in	the	weighted	graph	in	Figure	4.11.	In	each	case,	show	how	this	tree
is	constructed,	as	in	Figures	4.8	and	4.9.



Figure	4.11:	The	weighted	graph	in	Exercise	4.27

4.28	Apply	both	Kruskal’s	and	Prim’s	Algorithms	to	find	a	minimum	spanning
tree	in	the	weighted	graph	in	Figure	4.12.	In	each	case,	show	how	this	tree
is	constructed,	as	in	Figures	4.8	and	4.9.

Figure	4.12:	The	weighted	graph	in	Exercise	4.28

4.29	Let	G	be	a	connected	weighted	graph	whose	edges	have	distinct	weights.
Prove	that	G	has	a	unique	minimum	spanning	tree.

4.30	Let	G	be	a	connected	weighted	graph	and	T	a	minimum	spanning	tree	of
G.	Show	that	T	is	a	unique	minimum	spanning	tree	of	G	if	and	only	if	the
weight	of	each	edge	e	of	G	 that	 is	not	 in	T	 exceeds	 the	weight	of	 every
other	edge	on	the	cycle	in	T	+	e.

4.31	Show,	for	each	integer	k	≥	2,	that	there	exists	a	connected	weighted	graph
containing	exactly	k	unequal	minimum	spanning	trees.

4.4	Excursion:	The	Number	of	Spanning	Trees

We	have	already	mentioned	 that	 every	connected	graph	G	contains	a	spanning
tree.	 It	 is	 essential,	 of	 course,	 that	 G	 is	 connected,	 for	 otherwise	 G	 has	 no
spanning	trees.	Also,	if	G	 is	itself	a	tree,	then	G	contains	exactly	one	spanning



tree,	namely	G	itself.	On	the	other	hand,	if	G	is	a	connected	labeled	graph	that	is
not	a	tree,	then	G	contains	more	than	one	spanning	tree.	But	how	many?	In	this
section,	we	are	concerned	with	counting	the	number	of	(unequal)	spanning	trees
of	 a	 labeled	 connected	 graph.	 To	 simplify	 the	 consideration	 of	 a	 number	 of
graphs,	 we	 intend	 that	 vertex	 labels	 are	 present	 even	 if	 none	 are	 shown.
Spanning	trees	with	different	edge	sets	are	therefore	different.	We	now	consider
two	examples.

Example	 4.13	Determine	 the	 number	 of	 spanning	 trees	 of	 the	 graph	 G	 of
Figure	4.13.

Figure	4.13:	The	graph	in	Example	4.13

Solution.	Observe	 that	 at	 least	one	edge	of	 each	cycle	of	G	must	 be	 absent
from	every	spanning	tree	of	G.	We	consider	the	number	of	spanning	trees	of	G
that	(1)	do	not	contain	e4	and	(2)	contain	e4.	First,	any	spanning	tree	that	does
not	contain	e4	must	contain	exactly	five	of	the	six	edges	e1,	e2,	e3,	e5,	e6,	e7.
Hence	 there	are	six	spanning	 trees	of	G	 that	do	not	contain	e4.	 Second,	 any
spanning	 tree	 that	contains	e4	must	not	contain	exactly	one	of	e1,	e3,	e6	 and
must	 not	 contain	 exactly	 one	 of	 e2,	 e5,	 e7.	 Therefore,	 there	 are	 3	 ·	 3	 =	 9
spanning	trees	that	contain	e4.	So	there	are	6	+	9	=	15	spanning	trees	of	G.

Example	 4.14	Determine	 the	 number	 of	 spanning	 trees	 of	 the	 graph	 G	 of
Figure	4.14.



Figure	4.14:	The	graph	in	Example	4.14

Solution.	At	least	one	of	the	edges	e3,	e5,	e6	is	absent	in	each	spanning	tree	of
G.	This	divides	the	spanning	trees	of	G	into	three	mutually	disjoint	categories.

Category	1	consists	of	those	spanning	trees	containing	none	of	the	edges	e3,
e5,	 e6.	 Then	 a	 spanning	 tree	 is	 obtained	 by	 deleting	 any	 of	 the	 remaining	 six
edges	e1,	e2,	e4,	e7,	e8,	e9.	Hence	there	are	6	such	spanning	trees.

Category	 2	 consists	 of	 those	 spanning	 trees	 containing	 exactly	 one	 of	 the
edges	e3,	e5,	e6.	Suppose	first	that	e3	belongs	to	a	spanning	tree	but	e5	and	e6	do
not.	Then	exactly	one	of	e1	or	e2	does	not	belong	to	a	spanning	tree	and	exactly
one	of	e4,	e7,	e8,	e9	does	not	belong	to	a	spanning	tree.	Therefore,	the	number	of
spanning	 trees	 of	G	 containing	 e3	 but	 neither	 e5	 nor	 e6	 is	 2	 ·	 4	 =	 8.	 By	 the
symmetry	of	G,	the	number	of	spanning	trees	of	G	containing	exactly	one	of	the
edges	e3,	e5,	e6	is	3	·	8	=	24.

Category	 3	 consists	 of	 those	 spanning	 trees	 containing	 exactly	 two	 of	 the
edges	e3,	e5,	e6.	Suppose	first	that	e3	and	e5	belong	to	a	spanning	tree	but	e6	does
not.	Then	such	a	spanning	tree	is	obtained	by	deleting	exactly	one	edge	in	each
of	the	following	three	pairs	of	edges:	(1)	e1,	e2;	(2)	e4,	e8;	(3)	e7,	e9.	Therefore,
the	 number	 of	 spanning	 trees	 of	G	 containing	 e3	 and	 e5	 but	 not	 e6	 is	 23	 =	 8.
Again,	by	symmetry,	the	number	of	spanning	trees	of	G	containing	exactly	two
of	the	three	edges	e3,	e5,	e6	is	3	·	8	=	24.

Therefore,	the	total	number	of	spanning	trees	of	G	is	6	+	24	+	24	=	54.

We	now	turn	to	the	problem	of	determining	the	number	of	spanning	trees	in	a
complete	graph	Kn.	Since	Kn	is	a	tree	for	n	=	1	or	n	=	2,	we	need	only	consider	n
≥	3.	Since	K3	 is	a	cycle	of	length	3,	each	spanning	tree	is	obtained	by	deleting
one	 of	 the	 three	 edges,	 that	 is,	 the	 number	 of	 spanning	 trees	 of	K3	 is	 3	 (see
Figure	4.15).



Figure	4.15:	The	spanning	trees	of	K3

Determining	 the	 number	 of	 spanning	 trees	 of	K4	 (see	Figure	4.16)	 is	more
troublesome,	but	one	way	of	computing	 this	 is	by	observing	 that	any	spanning
tree	of	K4	contains	(1)	none,	(2)	exactly	one	or	(3)	exactly	two	of	the	edges	v1v2,
v1v3	and	v2v3.	Since	the	number	of	spanning	trees	in	each	of	these	three	cases	is
1,	6	and	9,	respectively,	the	number	of	spanning	trees	of	K4	is	1	+	6	+	9	=	16.

Figure	4.16:	The	complete	graph	K4

Actually,	computing	the	total	number	of	of	spanning	trees	of	 the	graph	G	=
Kn,	 where	V(G)	 =	 {v1,	 v2,	 …,	 vn},	 is	 the	 same	 as	 computing	 the	 number	 of
distinct	 trees	 with	 vertex	 set	 {v1,	 v2,	 …,	 vn}.	 The	 following	 formula	 was
established	in	1889	by	Arthur	Cayley	and	is	often	referred	to	as	the	Cayley	Tree
Formula.	As	a	consequence	of	this	formula,	it	becomes	clear	why	there	are	16
spanning	trees	of	K4.

Theorem	4.15	The	number	of	distinct	trees	of	order	n	with	a	specified	vertex
set	is	nn	−	2.

We	have	encountered	Cayley	several	times	already.	Arthur	Cayley	was	born
on	August	16,	1821	in	Richmond,	Surrey,	England.	He	showed	great	skill	with
numerical	 calculations	 as	 a	 youngster.	 In	 1838	 he	 entered	 Trinity	 College,
Cambridge	 and	 had	 three	 papers	 published	 while	 still	 an	 undergraduate.	 He
graduated	in	1842	and	then	spent	four	years	teaching	as	a	Cambridge	fellow,	at



which	time	he	continued	to	publish	at	a	high	rate.	When	his	fellowship	expired,
Cayley	 found	 himself	 without	 a	 position.	 He	 then	 studied	 law	 and	 became	 a
lawyer	 in	1849,	 an	occupation	he	 continued	 for	 the	next	 14	years.	Although	 a
skilled	lawyer,	Cayley	considered	this	as	a	way	to	make	money	so	that	he	could
do	what	he	really	enjoyed:	mathematics.	During	his	14	years	as	a	lawyer,	Cayley
authored	more	than	200	mathematical	papers.

In	 1849	 Cayley	 wrote	 a	 paper	 on	 permutations	 connecting	 his	 ideas	 with
those	 of	Augustin	 Louis	Cauchy.	 In	 1854	 he	wrote	 two	 remarkable	 papers	 on
abstract	groups.	At	 that	 time	 the	only	known	groups	were	permutation	groups.
Cayley	defined	an	abstract	group	and	gave	a	table	to	display	the	multiplication	in
the	group.	He	also	recognized	that	matrices	formed	groups.

In	 1863	 Cayley	 was	 appointed	 a	 professor	 of	 Pure	 Mathematics	 at
Cambridge.	Although	Cayley	was	earning	only	a	fraction	of	what	he	earned	as	a
lawyer,	he	was	happier	as	he	was	able	to	work	on	mathematics	full-time.	He	was
a	 prolific	 researcher	 his	 entire	 life	 and	 when	 he	 died	 on	 January	 26,	 1895	 in
Cambridge,	 he	 had	 published	 over	 900	 papers,	 a	 number	 exceeded	 only	 by
Leonhard	Euler,	Paul	Erd s	and	Cauchy.

Although	 we	 will	 not	 be	 presenting	 a	 proof	 of	 Theorem	 4.15,	 there	 are
several	 quite	 different	 proofs	 of	 this	 formula.	 In	 fact,	 John	W.	Moon	wrote	 a
paper	in	1967	in	which	he	describes	ten	different	proofs	of	this	famous	theorem
(and	 even	 more	 proofs	 have	 been	 found	 since).	 Moon,	 a	 professor	 at	 the
University	of	Alberta	in	Canada	throughout	much	of	his	academic	career,	did	a
great	deal	of	 research	on	 trees	 (and	on	a	class	of	digraphs	 that	we	will	visit	 in
Chapter	7).	With	 an	 interest	 in	music,	 as	 has	 been	 the	 case	with	 a	 number	 of
mathematicians,	 Moon	 has	 a	 philosophy	 about	 the	 creative	 aspect	 of
mathematics	that	is	no	doubt	not	unlike	that	of	many	mathematicians:

The	 sense	 of	 pleasure	 and	 satisfaction	 that	 comes	 when	 one	 has
discovered	 something	 new	 is	 hard	 to	 describe	 to	 non-mathematicians;
and	 sometimes	 there	 is	 almost	 a	 sense	 of	 awe,	 that	 one	 has	 been
privileged	to	have	a	peek	at	what	lies	behind	the	mystery	of	things.

And	when	you	can	 share	 the	experience	with	a	 co-worker,	 so	much	 the
better.

There	is	a	method	of	determining	the	number	of	spanning	trees	of	any	graph.
The	next	theorem	is	implicit	in	the	work	of	Gustav	Kirchhoff	who	was	born	in
Königberg,	 Prussia	 in	 1824.	 (We	 will	 visit	 that	 city	 again	 in	 Chapter	 6.)
Kirchhoff	 is	 well	 known	 for	 his	 research	 on	 electrical	 currents,	 which	 he
announced	in	1845.	This	led	to	Kirchhoff’s	laws,	the	first	of	which	states	that	the



sum	of	the	currents	into	a	vertex	equals	the	sum	of	the	currents	out	of	the	vertex.
Two	years	later,	in	1847,	he	graduated	from	the	University	of	Königberg.	It	was
during	that	year	that	he	published	the	paper	that	led	to	his	theorem	on	counting
spanning	 trees.	 Kirchhoff	 spent	 much	 of	 his	 life	 working	 on	 experimental
physics.	 When	 his	 health	 began	 to	 fail,	 he	 accepted	 a	 position	 as	 chair	 of
mathematical	physics	in	1875	(12	years	before	he	died)	in	Berlin	as	this	did	not
present	 the	 problems	 his	 poor	 health	 was	 causing	 him	 in	 carrying	 out
experiments.	 Since	 the	 proof	 of	 the	 theorem	 on	 counting	 spanning	 trees	 is
complex,	we	will	not	include	it.

By	a	cofactor	of	an	n	×	n	matrix	M	=	[mij],	we	mean	(−1)i+j	det(Mij),	where
det(Mij)	 indicates	 the	determinant	of	 the	(n	−	1)	×	(n	−	1)	submatrix	Mij	of	M,
obtained	 by	 deleting	 row	 i	 and	 column	 j	 of	M.	 The	 following	 result	 is	 often
called	the	Matrix	Tree	Theorem.

Theorem	4.16	Let	G	be	a	graph	with	V(G)	=	{v1,	v2,	…,	vn},	let	A	=	 [aij]	be
the	adjacency	matrix	of	G	and	let	C	=	[cij]	be	the	n	×	n	matrix,	where

Then	the	number	of	spanning	trees	of	G	is	the	value	of	any	cofactor	of	C.

We	illustrate	the	Matrix	Tree	Theorem	with	a	simple	example.	The	graph	G
of	Figure	4.17	clearly	contains	three	spanning	trees.	The	adjacency	matrix	A	and
the	matrix	C	are	also	shown	in	Figure	4.17.

Figure	4.17:	Illustrating	the	Matrix	Tree

The	(3,	3)-cofactor	of	C	is	expanded	along	the	3rd	row,	obtaining



Exercises	for	Section	4.4

4.32	Show	that	there	is	only	one	positive	integer	k	such	that	no	graph	contains
exactly	k	spanning	trees.

4.33	Let	F	be	a	subgraph	of	a	connected	graph	G.	Prove	that	F	is	a	subgraph	of
some	spanning	tree	of	G	if	and	only	if	F	contains	no	cycles.

4.34	(a)	Find	the	number	of	spanning	trees	in	the	graph	G	of	Figure	4.18.

(b)	Find	the	number	of	spanning	trees	in	the	graph	Gk	for	k	≥	5	of	Figure
4.18.	[Note	that	(a)	is	the	case	where	k	=	4.]

Figure	4.18:	The	graphs	in	Exercise	4.34

4.35	(a)	Find	the	number	of	spanning	trees	in	the	graph	G	of	Figure	4.19.

(b)	Find	the	number	of	spanning	trees	in	the	graph	Gk	for	k	≥	6	of	Figure
4.19.	[Note	that	(a)	is	the	case	where	k	=	5.]



Figure	4.19:	The	graphs	in	Exercise	4.35

4.36	Find	the	number	of	spanning	trees	in	the	graph	G	of	Figure	4.20.

4.37	 (a)	According	 to	 the	Cayley	 Tree	 Formula,	 how	many	 distinct	 trees	 are
there	with	vertex	set	S	=	{u,	v,	w,	x,	y}?

(b)	Divide	 the	 trees	 in	 (a)	 into	classes	so	 that	 two	 trees	are	 in	 the	same
class	 if	 and	 only	 if	 they	 are	 isomorphic.	 Determine	 the	 number	 of
such	classes	and	the	number	of	trees	in	each	class	by	considering	the
number	of	ways	each	can	be	labeled	with	the	elements	of	S.

Figure	4.20:	The	graph	in	Exercise	4.36

4.38	Use	the	Matrix	Tree	Theorem	to	confirm	the	number	of	distinct	trees	with
vertex	set	{v1,	v2,	v3,	v4}.

4.39	 (a)	Use	 the	Matrix	 Tree	 Theorem	 to	 determine	 the	 number	 of	 spanning
trees	of	the	graph	of	Figure	4.21.

(b)	Draw	all	spanning	trees	in	the	graph	G	of	Figure	4.21.



Figure	4.21:	The	graph	in	Exercise	4.39

4.40	Let	T	 and	T′	 be	 two	 spanning	 trees	 of	 a	 connected	 graph	G	 of	 order	n.
Show	that	there	exists	a	sequence	T	=	T0,	T1,	…,	Tk	=	T′	of	spanning	trees
of	G	such	that	Ti	and	Ti	+	1	have	n	−	2	edges	in	common	for	each	i	with	1≤
i	≤	k	−	1.



Chapter	5
Connectivity

5.1	Cut-Vertices

It	is	probably	clear	by	now	that	one	of	the	most	important	properties	that	a	graph
can	possess	is	that	of	being	connected.	Figure	5.1	shows	seven	graphs	of	order	7.
The	graph	G1	is	a	tree,	G4	=	C7	and	G7	=	K7.	Obviously,	all	of	these	graphs	are
connected.	However,	some	appear	 to	be	“more	connected”	 than	others.	 Indeed,
the	main	goal	of	this	chapter	is	the	introduction	of	measures	of	how	connected	a
graph	is.

Figure	5.1:	Connected	graphs

Some	 graphs	 are	 so	 slightly	 connected	 that	 the	 removal	 of	 a	 single	 edge
results	in	a	disconnected	graph.	We	have	already	seen	this	and	an	edge	with	this
property	is	a	bridge.	The	graph	G2	has	a	bridge.	So	does	G1.	In	fact,	every	edge
of	 G1	 is	 a	 bridge	 since	 G1	 is	 a	 tree.	 We	 now	 turn	 from	 connected	 graphs
containing	an	edge	whose	removal	results	in	a	disconnected	graph	to	connected
graphs	containing	a	vertex	whose	removal	results	in	a	disconnected	graph.



Recall	that	if	v	is	a	vertex	of	a	nontrivial	graph	G,	then	by	G	−	v	we	mean	the
(induced)	subgraph	of	G	whose	vertex	set	consists	of	all	vertices	of	G	except	v
and	whose	edge	set	consists	of	all	edges	of	G	except	those	incident	with	v.	This
concept	is	illustrated	in	Figure	5.2.	In	fact,	if	U	is	a	proper	subset	of	the	vertex
set	of	G,	then	G	−	U	is	the	(induced)	subgraph	of	G	whose	vertex	set	is	V(G)	−	U
and	whose	edge	set	consists	of	all	edges	of	G	joining	two	vertices	in	V(G)	−	U.	A
vertex	v	 in	a	connected	graph	G	 is	a	cut-vertex	of	G	 if	G	−	v	 is	disconnected.
More	generally,	a	vertex	v	 is	a	cut-vertex	in	a	graph	G	if	v	 is	a	cut-vertex	of	a
component	of	G.	In	the	graph	G	of	Figure	5.2,	v	and	x	are	the	only	cut-vertices.
In	the	graph	G	−	v,	the	vertex	x	is	not	a	cut-vertex;	however,	s	is	a	cut-vertex	of
G	 −	 v.	 Consequently,	 for	U	 =	 {s,	 v},	 the	 graph	G	 −	U	 is	 disconnected.	 The
graphs	G1,	G2	and	G3	of	Figure	5.1	also	contain	cut-vertices	but	no	other	graphs
in	Figure	5.1	contain	cut-vertices.

Figure	5.2:	The	graphs	G	and	G	−	v

Notice	 that	 the	graph	G	 of	Figure	5.2	not	 only	 contains	 the	 cut-vertex	v,	 it
contains	 three	 bridges,	 two	 of	 which	 are	 incident	 with	 v.	 We	 have	 already
noticed	 that	 the	 two	 graphs	 of	 Figure	 5.1	 with	 bridges,	 namely	 G1	 and	 G2,
contain	cut-vertices	as	well	(although	G3	contains	a	cut-vertex	but	no	bridges).
In	 fact,	 except	 for	 the	 graph	K2,	 every	 connected	 graph	with	 bridges	 contains
cut-vertices	 as	well.	 Recall	 by	 Theorem	 4.1	 that	 an	 edge	 e	 in	 a	 graph	G	 is	 a
bridge	if	and	only	if	e	lies	on	no	cycle	of	G.

We	now	establish	some	facts	about	cut-vertices.	Since	a	cut-vertex	in	a	graph
G	is	a	cut-vertex	of	a	component	of	G,	we	restrict	ourselves	to	connected	graphs.

Theorem	5.1	Let	v	be	a	vertex	incident	with	a	bridge	in	a	connected	graph	G.
Then	v	is	a	cut-vertex	of	G	if	and	only	if	deg	v	≥	2.



Proof.	Suppose	that	uv	is	a	bridge	of	G.	Then	deg	v	≥	1.	Assume	that	deg	v	=
1.	Since	v	is	an	end-vertex	of	G,	the	graph	G	−	v	is	connected	and	so	v	is	not	a
cut-vertex	of	G.

For	 the	converse,	assume	 that	deg	v	≥	2.	Then	 there	 is	a	vertex	w	 different
from	u	 that	 is	adjacent	 to	v.	Assume,	 to	 the	contrary,	 that	v	 is	not	a	cut-vertex.
Thus	G	−	v	is	connected	and	so	there	is	a	u	−	w	path	P	in	G	−	v.	However	then,	P
together	with	v	and	the	two	edges	uv	and	vw	form	a	cycle	containing	the	bridge
uv.	This	contradicts	Theorem	4.1.

One	 immediate	 consequence	 of	 Theorem	 5.1	 is	 that	 if	 a	 vertex	 v	 of	 a
nontrivial	tree	T	 is	not	an	end-vertex	of	T,	 then	v	 is	a	cut-vertex	of	T.	Another
immediate	consequence	of	Theorem	5.1	is	stated	next.

Corollary	5.2	Let	G	be	a	connected	graph	of	order	3	or	more.	If	G	contains	a
bridge,	then	G	contains	a	cut-vertex.

If	v	 is	a	cut-vertex	 in	a	connected	graph	G,	 then,	of	course,	G	 −	v	contains
two	or	more	components.	If	u	and	w	are	vertices	in	distinct	components	of	G	−	v,
then	 u	 and	w	 are	 not	 connected	 in	G	 −	 v.	 On	 the	 other	 hand,	 u	 and	 w	 are
necessarily	connected	in	G.	These	observations	lead	us	to	the	following	theorem.

Theorem	5.3	Let	v	be	a	cut-vertex	in	a	connected	graph	G	and	let	u	and	w	be
vertices	in	distinct	components	of	G	−	v.	Then	v	lies	on	every	u	−	w	path	in	G.

We	can	now	present	a	characterization	of	vertices	in	a	connected	graph	G	that
are	cut-vertices	of	G.

Corollary	5.4	A	vertex	v	of	a	connected	graph	G	is	a	cut-vertex	of	G	 if	and
only	if	there	exist	vertices	u	and	w	distinct	from	v	such	that	v	lies	on	every	u	−
w	path	of	G.

Proof.	Suppose	that	v	is	a	cut-vertex	of	G.	Then	G	−	v	is	disconnected.	Let	u
and	 w	 be	 vertices	 in	 different	 components	 of	 G	 −	 v.	 It	 then	 follows	 by
Theorem	5.3	that	every	u	−	w	path	in	G	contains	v.

On	the	other	hand,	if	G	contains	two	vertices	u	and	w	such	that	every	u	−	w
path	in	G	contains	v,	then	there	is	no	u	−	w	path	in	G	−	v.	Thus	u	and	w	are	not
connected	in	G	−	v	and	so	G	−	v	is	disconnected.	Therefore,	v	is	a	cut-vertex	of
G.

By	Corollary	5.4,	 if	v	 is	 a	 vertex	 in	 a	 connected	graph	G	 that	 is	 not	 a	 cut-



vertex	of	G,	 then	for	every	 two	vertices	u	and	w	of	G	 that	 are	distinct	 from	v,
there	is	a	u	−	w	path	that	does	not	contain	v.

While	the	concepts	of	bridges	and	cut-vertices	are	parallel	concepts	and	have
a	 number	 of	 similarities,	 they	 have	 some	major	 differences	 as	 well.	We	 have
seen	that	it’s	possible	for	every	edge	of	a	connected	graph	G	to	be	a	bridge.	Of
course,	G	must	 then	 be	 a	 tree.	 On	 the	 other	 hand,	 every	 nontrivial	 connected
graph	must	contain	vertices	that	are	not	cut-vertices.

Theorem	5.5	Let	G	be	a	nontrivial	connected	graph	and	let	u	 	V(G).	If	v	is	a
vertex	that	is	farthest	from	u	in	G,	then	v	is	not	a	cut-vertex	of	G.

Proof.	Assume,	to	the	contrary,	that	v	is	a	cut-vertex	of	G.	Let	w	be	a	vertex
belonging	to	a	component	of	G	−	v	that	does	not	contain	u.	Since	every	u	−	w
path	contains	v,	it	follows	that	d(u,	w)	>	d(u,	v),	which	is	a	contradiction.

It	 is	 now	 immediate	 that	 every	 nontrivial	 connected	graph	 contains	 at	 least
two	vertices	that	are	not	cut-vertices.

Corollary	5.6	Every	nontrivial	connected	graph	contains	at	least	two	vertices
that	are	not	cut-vertices.

Proof.	Let	u	and	v	be	vertices	of	a	nontrivial	connected	graph	G	such	that	d(u,
v)	=	diam(G).	Since	each	of	u	and	v	 is	 farthest	 from	the	other,	 it	 follows	by
Theorem	5.5	that	both	u	and	v	are	not	cut-vertices	of	G.

Exercises	for	Section	5.1

5.1	Give	an	example	of	a	graph	that

(a)	contains	more	bridges	than	cut-vertices.
(b)	contains	more	cut-vertices	than	bridges.

5.2	 (a)	 For	 each	 integer	 k	 ≥	 2,	 give	 an	 example	 of	 a	 connected	 graph	 G
containing	a	vertex	v	such	that	G	−	v	has	k	components.

(b)	Give	an	example	of	a	connected	graph	G	of	order	3	or	more	containing
vertices	u	and	v	such	that	G	−	u	−	v	has	fewer	components	than	G	−	u.

5.3	Prove	or	disprove:



(a)	 If	 a	vertex	v	of	 a	graph	G	 lies	on	a	 cycle	of	G,	 then	v	 is	 not	 a	 cut-
vertex.

(b)	If	a	vertex	v	of	a	graph	G	does	not	lie	on	any	cycle	of	G,	then	v	is	a
cut-vertex.

(c)	A	tree	of	order	3	or	more	has	more	cut-vertices	than	end-vertices.
(d)	A	tree	of	order	3	or	more	has	more	cut-vertices	than	bridges.

5.4	Prove	that	if	v	is	a	cut-vertex	of	a	graph	G,	then	v	is	not	a	cut-vertex	of	the
complement	 	of	G.

5.5	Find	a	counterexample	to	each	of	the	following	statements.

(a)	If	G	is	a	connected	graph	of	order	13	and	v	is	a	cut-vertex	of	G,	then
there	exists	a	component	of	G	−	v	containing	at	least	7	vertices.

(b)	 If	 G	 is	 a	 connected	 graph	 containing	 only	 even	 vertices,	 then	 G
contains	no	cut-vertices.

(c)	If	G	is	a	connected	graph	with	a	cut-vertex,	then	G	contains	a	bridge.
(d)	If	G	is	a	connected	graph	with	a	bridge,	then	G	contains	a	cut-vertex.

5.6	 Prove	 that	 a	 3-regular	 graph	G	 has	 a	 cut-vertex	 if	 and	 only	 if	G	 has	 a
bridge.

5.7	Prove	that	if	T	 is	a	tree	of	order	at	least	3,	 then	T	contains	a	cut-vertex	v
such	that	every	vertex	adjacent	to	v,	with	at	most	one	exception,	is	an	end-
vertex.

5.8	(a)	Let	G	be	a	nontrivial	connected	graph.	Prove	that	if	v	is	an	end-vertex
of	a	spanning	tree	of	G,	then	v	is	not	a	cut-vertex	of	G.

(b)	Use	 (a)	 to	 give	 an	 alternative	 proof	 of	 the	 fact	 that	 every	 nontrivial
connected	graph	contains	at	least	two	vertices	that	are	not	cut-vertices.

(c)	Let	v	be	a	vertex	 in	a	nontrivial	 connected	graph	G.	Show	that	 there
exists	a	spanning	tree	of	G	that	contains	all	edges	of	G	that	are	incident
with	v.

(d)	Prove	that	if	a	connected	graph	G	has	exactly	two	vertices	that	are	not
cut-vertices,	then	G	is	a	path.	[Recall	that	if	a	tree	contains	a	vertex	of
degree	exceeding	2,	then	T	has	more	than	two	end-vertices.]

5.2	Blocks



We	 now	 turn	 our	 attention	 from	 connected	 graphs	 containing	 cut-vertices	 to
connected	graphs	that	contain	no	cut-vertices.	A	nontrivial	connected	graph	with
no	cut-vertices	is	called	a	nonseparable	graph.	Hence	all	of	the	graphs	G4,	G5,
G6	 and	G7	 of	 Figure	 5.1	 are	 nonseparable.	 In	 addition,	K2	 is	 a	 nonseparable
graph;	indeed,	K2	is	the	only	nonseparable	graph	of	order	2.	Since	nonseparable
graphs	of	order	3	or	more	contain	no	cut-vertices,	they	contain	no	bridges;	that
is,	every	edge	lies	on	a	cycle.	In	fact,	more	can	be	said.

Theorem	5.7	A	graph	of	order	at	least	3	is	nonseparable	if	and	only	if	every
two	vertices	lie	on	a	common	cycle.

Proof.	First,	suppose	that	G	is	a	graph	of	order	at	least	3	such	that	every	two
vertices	of	G	 lie	on	a	common	cycle.	Assume,	 to	 the	contrary,	 that	G	 is	not
nonseparable.	 Since	 every	 two	 vertices	 lie	 on	 a	 common	 cycle,	 every	 two
vertices	are	connected	and	so	G	is	connected.	Because	G	is	not	nonseparable,
G	must	contain	a	cut-vertex,	say	v.	Let	u	and	w	be	two	vertices	that	belong	to
different	components	of	G	−	v.	By	assumption,	u	and	w	lie	on	a	common	cycle
C	on	G.	However	then,	C	determines	 two	distinct	u	−	w	paths	of	G,	at	 least
one	 of	 which	 does	 not	 contain	 v,	 contradicting	 Theorem	 5.3.	 Therefore,	G
contains	no	cut-vertices	and	so	G	is	nonseparable.

We	now	verify	the	converse.	Let	G	be	a	nonseparable	graph	of	order	at	least
3.	Since	G	contains	no	cut-vertices,	 it	follows	by	Corollary	5.2	that	G	contains
no	bridges.	Assume,	to	the	contrary,	that	there	are	pairs	of	vertices	of	G	that	do
not	lie	on	a	common	cycle.	Among	all	such	pairs,	let	u,	v	be	a	pair	for	which	d(u,
v)	is	minimum.	If	d(u,	v)	=	1,	then	uv	 	E(G)	and	uv	must	lie	on	a	cycle,	as	we
observed	earlier.	Therefore,	d(u,	v)	=	k	≥	2.

Let	P	=	(u	=	v0,	v1,	…,	vk	−1,	vk	=	v)	be	a	u	−	v	path	of	length	k	in	G.	Since
d(u,	vk	−	1)	=	k	−	1	<	k,	there	is	a	cycle	C	containing	u	and	vk	−1.	By	assumption,
v	is	not	on	C.	Since	vk	−	1	is	not	a	cut-vertex	of	G	and	u	and	v	are	distinct	from	vk
−	1,	it	follows	that	there	is	a	v	−	u	path	Q	that	does	not	contain	vk	−1.	Since	u	is	on
C,	there	is	a	first	vertex	x	of	Q	that	is	on	C.	Let	Q′	be	the	v	−	x	subpath	of	Q	(see
Figure	5.3)	and	let	P′	be	a	vk	−	1	−	x	path	on	C	that	contains	u.	(If	x	≠	u,	then	the
path	P′	is	unique.)	However,	the	cycle	C′	produced	by	proceeding	from	v	 to	 its
neighbor	vk	 −	 1,	 along	P′	 to	x	 and	 then	 along	Q′	 to	v	 contains	 both	u	 and	 v,	 a
contradiction.



Figure	5.3:	The	cycle	C	and	paths	P′,	Q′	in	the	proof	of	Theorem	5.7

If	a	nontrivial	connected	graph	is	not	nonseparable,	then	it	must	contain	cut-
vertices	as	well	as	certain	nonseparable	subgraphs	that	are	of	special	interest.	A
maximal	nonseparable	subgraph	of	a	graph	G	is	called	a	block	of	G.	That	 is,	a
block	of	G	is	a	nonseparable	subgraph	of	a	graph	G	that	is	not	a	proper	subgraph
of	 any	 other	 nonseparable	 subgraph	 in	 G.	 Each	 block	 of	 G	 is	 an	 induced
subgraph	of	G.	Therefore,	if	G	itself	is	nonseparable,	then	G	has	only	one	block,
namely	the	graph	G.	On	the	other	hand,	if	G	 is	connected	and	has	cut-vertices,
then	G	has	two	or	more	blocks.	Figure	5.4	shows	a	connected	graph	G	with	two
cut-vertices	u	and	v	and	four	blocks	B1,	B2,	B3	and	B4.	So,	just	as	a	disconnected
graph	 has	 special	 connected	 subgraphs	 called	 components,	 a	 connected	 graph
with	cut-vertices	contains	special	nonseparable	subgraphs	called	blocks.

There	 is	 another	 way	 to	 look	 at	 blocks.	 First,	 we	 describe	 an	 equivalence
relation	that	is	defined	on	the	edge	set	of	a	nontrivial	connected	graph.	(Again,
recall	that	equivalence	relations	are	reviewed	in	Appendix	2.)

Theorem	 5.8	Let	 R	 be	 the	 relation	 defined	 on	 the	 edge	 set	 of	 a	 nontrivial
connected	graph	G	by	e	R	 f,	where	e,	 f	 	E(G),	 if	e	 =	 f	 or	 e	 and	 f	 lie	 on	 a
common	cycle	of	G.	Then	R	is	an	equivalence	relation.

Proof.	 It	 is	 immediate	 that	R	 is	 reflexive	 and	 symmetric,	 so	 we	 need	 only
show	that	R	is	transitive.	Let	e,	f,	g	 	E(G)	such	that	e	R	f	and	f	R	g.	If	e	=	f	or
f	=	g,	 then	it	follows	that	e	R	g.	Hence	we	may	assume	that	e	and	 f	 lie	on	a
cycle	C	and	that	f	and	g	lie	on	a	cycle	C′.	If	e	lies	on	C′	or	g	lies	on	C,	then	e	R
g.	Thus	we	may	assume	that	this	does	not	occur.



Figure	5.4:	A	connected	graph	and	its	blocks

Let	e	=	uv	and	suppose	that	P	is	the	u	−	v	path	on	C	not	containing	e.	Let	x	be
the	first	vertex	of	P	belonging	to	C′	and	y	 the	last	vertex	of	P	belonging	 to	C′.
Furthermore,	let	P′	be	the	x	−	y	path	on	C′	that	contains	g	and	let	P″	be	the	x	−	y
path	on	C	that	contains	e.	Then	P′	and	P″	produce	a	cycle	C″	containing	both	e
and	g.	Therefore,	e	R	g.

The	equivalence	relation	R	described	in	Theorem	5.8	produces	a	partition	of
the	 edge	 set	 of	 every	 nontrivial	 connected	 graph	G	 into	 equivalence	 classes.
Each	 subgraph	 of	G	 induced	 by	 the	 edges	 in	 an	 equivalence	 class	 is	 in	 fact	 a
block	 of	 G.	 The	 following	 corollary	 of	 Theorem	 5.8	 provides	 properties	 of
blocks	in	a	nontrivial	connected	graph.

Corollary	5.9	Every	two	distinct	blocks	B1	and	B2	 in	a	nontrivial	connected
graph	G	have	the	following	properties:

(a)	The	blocks	B1	and	B2	are	edge-disjoint.

(b)	The	blocks	B1	and	B2	have	at	most	one	vertex	in	common.

(c)	If	B1	and	B2	have	a	vertex	v	in	common,	then	v	is	a	cut-vertex	of	G.

Proof.	 That	 every	 two	 distinct	 blocks	 are	 edge-disjoint	 is	 an	 immediate
consequence	of	Theorem	5.8.	We	now	verify	(b).	Assume,	to	the	contrary,	that
B1	and	B2	have	two	distinct	vertices	u	and	v	in	common.	Since	B1	and	B2	are
connected	subgraphs	of	G,	there	is	a	u	−	v	path	P−	in	B1	and	a	u	−	v	path	P″	in



B2.	Furthermore,	since	B1	and	B2	are	edge-disjoint,	so	too	are	P′	and	P″.	Let	w
be	the	first	vertex	that	P′	and	P″	have	in	common	after	u	(possibly	w	=	v).	The
u	 −	w	 subpath	Q′	 of	 P′	 and	 u	 −	w	 subpath	 Q″	 of	 P″	 form	 a	 cycle	 in	 G
containing	an	edge	e1	of	B1	and	an	edge	e2	of	B2.	Hence	e1	and	e2	belong	to
the	same	block	of	G,	which	is	impossible.	This	verifies	(b).

It	 remains	 to	 verify	 (c).	 Suppose	 that	 two	 blocks	B1	 and	B2	 of	G	 have	 a
vertex	v	in	common.	Then	v	is	incident	with	an	edge	e1	=	vv1	in	B1	and	an	edge
e2	 =	 vv2	 in	B2.	 Assume,	 to	 the	 contrary,	 that	 v	 is	 not	 a	 cut-vertex	 of	G.	 By
Corollary	5.4,	G	has	a	v1	−	v2	path	P	not	containing	v.	Then	P	 together	with	v
and	the	edges	e1	and	e2	produce	a	cycle	containing	e1	and	e2.	This	is	impossible,
however,	since	e1	and	e2	belong	to	distinct	blocks	of	G.

We	have	indicated	two	ways	that	blocks	can	be	described.	Exercise	5.15	asks
you	to	show	that	these	two	interpretations	of	blocks	are	equivalent.

Exercises	for	Section	5.2

5.9	 For	 the	 graph	G	 of	 Figure	 5.5,	 determine	 the	 cut-vertices,	 bridges	 and
blocks	of	G.

Figure	5.5:	The	graph	G	in	Exercise	5.9

5.10	Prove	 that	a	connected	graph	G	 of	 size	 at	 least	2	 is	nonseparable	 if	 and
only	if	any	two	adjacent	edges	of	G	lie	on	a	common	cycle	of	G.

5.11	Prove	that	 if	G	 is	a	graph	of	order	n	≥	3	such	that	deg	v	≥	n/2	 for	every
vertex	v	of	G,	then	G	is	nonseparable.

5.12	If	a	connected	graph	G	contains	three	blocks	and	k	cut-vertices,	what	are
the	possible	values	for	k?	Explain	your	answer.

5.13	Prove	or	disprove:	If	G	is	a	connected	graph	with	cut-vertices	and	u	and	v



are	vertices	of	G	such	that	d(u,	v)	=	diam(G),	then	no	block	of	G	contains
both	u	and	v.

5.14	 Let	G	 be	 a	 connected	 graph	 containing	 a	 cut-vertex	 v	 and	 let	G1	 be	 a
component	of	G	−	v.

(a)	Show	that	the	induced	subgraph	G[V(G1)	 	{v}]	of	G	is	connected.

(b)	Show	that	the	induced	subgraph	G[V(G1)	 	{v}]	of	G	need	not	be	a
block	of	G.

5.15	For	a	nontrivial	connected	graph	G,	a	block	of	G	has	been	defined	as	(1)	a
nonseparable	 subgraph	 of	G	 that	 is	 not	 a	 proper	 subgraph	 of	 any	 other
nonseparable	subgraph	of	G	and	has	been	described	as	(2)	a	subgraph	of	G
induced	 by	 the	 edges	 in	 an	 equivalence	 class	 resulting	 from	 the
equivalence	 relation	 defined	 in	 Theorem	 5.8.	 Show	 that	 these	 two
interpretations	of	blocks	are	equivalent.

5.16	Give	an	example	of	a	graph	G	with	the	following	properties:

(a)	every	two	adjacent	vertices	lie	on	a	common	cycle,
(b)	there	exist	two	adjacent	edges	that	do	not	lie	on	a	common	cycle.

5.3	Connectivity

A	 connected	 graph	 G	 with	 cut-vertices	 has	 the	 property	 that	 G	 can	 be
disconnected	by	the	removal	of	a	single	vertex.	On	the	other	hand,	nonseparable
graphs	 contain	 no	 cut-vertices.	 In	 a	 sense	 then,	 nonseparable	 graphs	 are	more
highly	connected	 than	connected	graphs	with	cut-vertices.	This	suggests	a	way
of	measuring	 the	 connectedness	 of	 graphs.	By	 a	vertex-cut	 in	 a	 graph	G,	 we
mean	a	set	U	of	vertices	of	G	such	that	G	−	U	 is	disconnected.	A	vertex-cut	of
minimum	cardinality	in	G	is	called	a	minimum	vertex-cut.	If	G	is	not	complete,
then	G	 contains	 two	 nonadjacent	 vertices.	 The	 removal	 of	 all	 vertices	 of	 G
except	 these	 two	nonadjacent	vertices	produces	 a	disconnected	graph.	 In	other
words,	every	graph	that	is	not	complete	has	a	vertex-cut.	On	the	other	hand,	the
removal	of	any	proper	subset	of	vertices	of	a	complete	graph	results	in	another
complete	graph.	Therefore,	a	connected	graph	contains	a	vertex-cut	if	and	only	if
G	is	not	complete.

If	U	is	a	minimum	vertex-cut	in	a	noncomplete	connected	graph	G,	then	G	−



U	is	disconnected	and	contains	components	G1,	G2,	…,	Gk,	where	k	≥	2.	Every
vertex	u	 	U	 is	adjacent	 to	at	 least	one	vertex	 in	Gi	 for	each	 i	 (1	≤	 i	≤	k);	 for
otherwise	U	 −	 {u}	 is	 also	 a	 vertex-cut,	 which	 is	 impossible.	 The	 structure	 of
such	a	graph	G	is	indicated	in	Figure	5.6,	where	there	are	no	edges	between	any
two	distinct	components	of	G	−	U.

Figure	5.6:	A	minimum	vertex-cut	in	a	graph

For	a	graph	G	 that	 is	 not	 complete,	 the	vertex-connectivity	 (or	 simply	 the
connectivity)	 (G)	of	G	is	defined	as	the	cardinality	of	a	minimum	vertex-cut	of
G;	if	G	=	Kn	for	some	positive	integer	n,	then	 (G)	is	defined	to	be	n	−	1.	(The
symbol	 	is	the	Greek	letter	kappa.)	In	general	then,	the	connectivity	 (G)	of	a
graph	G	is	the	minimum	value	of	|U|	among	all	subsets	U	of	V(G)	such	that	G	−
U	is	either	disconnected	or	trivial.	Therefore,	for	every	graph	G	of	order	n,

Thus	a	nontrivial	graph	G	has	connectivity	0	if	and	only	if	G	is	disconnected;	a
graph	G	has	connectivity	1	if	and	only	if	G	=	K2	or	G	is	a	connected	graph	with
cut-vertices;	 and	 a	 graph	G	 has	 connectivity	 2	 or	 more	 if	 and	 only	 if	G	 is	 a
nonseparable	graph	of	order	3	or	more.	For	the	graphs	of	Figure	5.1,	 (G1)	=	
(G2)	=	 (G3)	=	1,	 (G4)	=	 (G5)	=	2,	 (G6)	=	4	and	 (G7)	=	6.

As	 it	 turns	 out,	 we	 will	 often	 be	more	 interested	 in	 graphs	 that	 cannot	 be
disconnected	 by	 removing	 some	 prescribed	 number	 of	 vertices.	 For	 a
nonnegative	 integer	 k,	 a	 graph	 G	 is	 said	 to	 be	 k-connected	 if	 (G)	 ≥	 k.
Therefore,	a	k-connected	graph	is	also	 -connected	for	every	integer	 	with	0	≤	
	 ≤	 k.	 In	 particular,	 the	 graphs	G4,	G5,	G6	 and	G7	 of	 Figure	 5.1	 are	 all	 2-
connected.	The	graphs	G6	and	G7	are	also	3-connected,	although	neither	G4	nor
G5	 is	 3-connected.	 Thus	G	 is	 1-connected	 if	 and	 only	 if	G	 is	 nontrivial	 and
connected,	while	G	is	2-connected	if	and	only	if	G	is	nonseparable	and	has	order
at	 least	 3.	 In	 general,	 a	 graph	G	 is	 k-connected	 if	 and	 only	 if	 the	 removal	 of



fewer	than	k	vertices	does	not	result	in	a	disconnected	or	trivial	graph.
The	connectivity	of	a	graph	G	provides	a	measure	of	“how	connected”	G	is.

There	are	other	measures,	including	a	common	one	involving	the	edges	of	G.	An
edge-cut	 in	 a	 nontrivial	 graph	G	 is	 a	 set	X	 of	 edges	 of	G	 such	 that	G	 −	X	 is
disconnected.	An	 edge-cut	X	 of	 a	 connected	 graph	G	 is	minimal	 if	 no	 proper
subset	of	X	is	an	edge-cut	of	G.	If	X	is	a	minimal	edge-cut	of	a	connected	graph
G,	then	G	−	X	contains	exactly	two	components	G1	and	G2.	Necessarily	then,	X
consists	of	all	those	edges	of	G	joining	G1	and	G2.

If	X	is	an	edge-cut	of	a	connected	graph	G	that	is	not	minimal,	then	there	is	a
proper	 subset	 Y	 of	 X	 that	 is	 a	 minimal	 edge-cut.	 An	 edge-cut	 of	 minimum
cardinality	is	called	a	minimum	edge-cut.	While	every	minimum	edge-cut	is	a
minimal	 edge-cut,	 the	 converse	 is	 not	 true.	 For	 the	 graph	 H	 of	 Figure	 5.7,
consider	the	sets	X1	=	{e3,	e4,	e5},	X2	=	{e1,	e2,	e6}	and	X3	=	{e1,	e6}	of	edges	of
H.	All	three	of	these	sets	are	edge-cuts	because	all	of	the	graphs	H	−	X1,	H	−	X2
and	H	−	X3	are	disconnected.	Both	X1	and	X3	are	minimal	edge-cuts,	while	X2	is
not	a	minimal	edge-cut	as	X3	is	a	proper	subset	of	X2.	The	set	X3	is	a	minimum
edge-cut,	while	X1	and	X2	are	not.

Figure	5.7:	Illustrating	edge-cuts	in	a	graph

The	edge-connectivity	 λ(G)	 of	 a	 nontrivial	 graph	G	 is	 the	 cardinality	 of	 a
minimum	edge-cut	of	G,	while	we	define	λ(K1)	=	0.	(The	symbol	λ	is	the	Greek
letter	 lambda.)	Thus	λ(G)	 is	 the	minimum	value	of	 |X|	 among	 all	 subsets	X	 of
E(G)	such	that	G	−	X	is	either	a	disconnected	or	trivial	graph.	For	every	graph	G
of	order	n,

Note	that	λ(G)	=	0	if	and	only	if	G	is	disconnected	or	G	is	trivial,	while	λ(G)	=	1
if	and	only	if	G	 is	connected	and	contains	a	bridge.	For	 the	graph	H	of	Figure
5.7,	λ(G)	=	2	since	X3	=	{e1,	e6}	is	a	minimum	edge-cut	in	H.

For	 a	 nonnegative	 integer	 k,	 a	 graph	G	 is	 k-edge-connected	 if	 λ(G)	 ≥	 k.



Consequently,	 every	 k-edge-connected	 graph	 is	 -edge-connected	 for	 every
integer	 	with	0	≤	 	≤	k.	Therefore,	every	1-edge-connected	graph	is	nontrivial
and	connected	and	every	2-edge-connected	graph	is	a	connected	graph	of	order	3
or	more	 that	 contains	 no	 bridges.	 For	 example,	 the	 graphs	G3,	G4	 and	G5	 of
Figure	5.1	are	2-edge-connected	graphs	that	are	not	3-edge-connected.

Theorem	5.10	For	every	positive	integer	n,	λ(Kn)	=	n	−	1.

Proof.	By	definition,	λ(K1)	=	0.	Let	G	=	Kn	for	n	≥	2.	Since	every	vertex	of	G
has	degree	n	−	1,	if	we	remove	the	n	−	1	edges	incident	with	a	vertex,	then	a
disconnected	graph	results.	Thus	λ(G)	≤	n	−	1.	Now	let	X	be	a	minimum	edge-
cut	of	G.	So	|X|	=	λ(G).	Then	G	−	X	has	exactly	two	components	G1	and	G2,
where	G1	has	order	k,	say,	and	G2	has	order	n	−	k.	Since	(1)	X	consists	of	all
edges	joining	G1	and	G2	and	(2)	G	is	complete,	it	follows	that	|X|	=	k(n	−	k).
Because	k	≥	1	and	n	−	k	≥	1,	we	have	(k	−	1)(n	−	k	−	1)	≥	0	and	so

Hence	λ(G)	=	|X|	=	k(n	−	k)	≥	n	−	1.	Therefore,	λ(Kn)	=	n	−	1.

As	we	 noted	 earlier,	 complete	 graphs	 do	 not	 contain	 vertex-cuts.	But	 for	 a
graph	G	that	is	not	complete,	the	cardinality	of	a	minimum	vertex-cut	in	G	can
never	exceed	the	cardinality	of	any	edge-cut	in	G.	Indeed,	the	following	theorem
provides	us	with	inequalities	concerning	the	connectivity,	edge-connectivity	and
minimum	degree	of	a	graph.	The	proof	is	similar,	in	part,	to	the	argument	we	just
used	to	show	that	λ(Kn)	=	n	−	1	in	Theorem	5.10.

Theorem	5.11	For	every	graph	G,

Proof.	 If	 G	 is	 disconnected	 or	 trivial,	 then	 (G)	 =	 λ(G)	 =	 0	 and	 the
inequalities	hold;	while	if	G	=	Kn	for	some	integer	n	≥	2,	then	 (G)	=	λ(G)	=	
(G)	=	n	−	1.	Thus	we	may	assume	that	G	is	a	connected	graph	of	order	n	≥	3
that	is	not	complete.	Hence	 (G)	≤	n	−	2.

First,	we	show	that	λ(G)	≤	 (G).	Let	v	be	a	vertex	of	G	with	deg	v	=	 (G).
Since	 the	 set	 of	 the	 (G)	 edges	 incident	 with	 v	 in	G	 is	 an	 edge-cut	 of	G,	 it
follows	that



It	 remains	 to	 show	 that	 (G)	≤	 λ(G).	Let	X	 be	 a	minimum	 edge-cut	 of	G.
Then	|X|	=	λ(G)	≤	n	−	2.	Necessarily,	G	−	X	contains	exactly	two	components	G1
and	G2.	Suppose	that	the	order	of	G1	is	k.	Thus	the	order	of	G2	is	n	−	k,	where	k
≥	1	 and	n	 −	k	 ≥	 1.	Consequently,	 every	 edge	 in	X	 joins	 a	 vertex	 of	G1	 and	 a
vertex	of	G2.	We	consider	two	cases.

Case	1.	Every	vertex	of	G1	is	adjacent	in	G	to	every	vertex	of	G2.	Thus	|X|	=
k(n	−	k).	Since	(k	−	1)(n	−	k	−	1)	≥	0,	it	follows	that

and	so	λ(G)	=	|X|	=	k(n	−	k)	≥	n	−	1.	However,	λ(G)	≤	n	−	2;	so	this	case	cannot
occur.

Case	2.	There	exist	vertices	u	 in	G1	and	v	 in	G2	such	 that	u	and	v	 are	not
adjacent	in	G.	We	now	define	a	set	U	of	vertices	of	G.	For	each	e	 	X,	we	select
a	vertex	for	U	in	the	following	way.	If	u	is	incident	with	e,	then	choose	the	other
vertex	 in	G2	 that	 is	 incident	with	 e	 as	 an	 element	 of	U;	 otherwise,	 select	 the
vertex	that	is	incident	with	e	and	belongs	to	G1	as	an	element	of	U.	Then	|U|	≤
|X|.	Since	u,	v	 	U	and	there	is	no	u	−	v	path	in	G	−	U,	it	follows	that	G	−	U	 is
disconnected	and	so	U	is	a	vertex-cut.	Hence

as	desired.

Theorem	 5.11	 is	 due	 to	 Hassler	 Whitney.	 Although	 a	 mathematician	 who
made	 a	 number	 of	 important	 contributions	 to	 graph	 theory,	 Whitney	 was
primarily	interested	in	topology.	Whitney	was	born	in	New	York	on	March	23,
1907	and	received	his	Ph.D.	from	Harvard	in	1932	under	the	direction	of	George
David	Birkhoff.	Whitney’s	doctoral	dissertation	was	written	in	graph	theory.	He
stayed	on	at	Harvard	until	1952,	when	he	accepted	an	offer	from	the	Institute	for
Advanced	Study	at	Princeton.	He	remained	there	until	he	retired	in	1977.	During
his	life	he	was	the	recipient	of	many	mathematical	awards:	the	National	Medal
of	Science	(1976),	the	Wolf	Prize	(1983)	and	the	Steel	Prize	(1985).

Although	 research	 was	 a	 large	 part	 of	 Whitney’s	 professional	 life,	 he
contributed	 to	 mathematics	 in	 many	 ways.	 During	 1944-1949	 he	 edited	 the
American	 Journal	 of	 Mathematics	 and	 during	 1949–1954	 he	 edited



Mathematical	 Reviews.	 During	 1953-1956,	 he	 chaired	 the	 National	 Science
Foundation	 mathematical	 panel.	 On	 the	 personal	 side,	 Whitney	 was	 an	 avid
mountain	 climber.	 In	 fact,	 the	 Whitney-Gilman	 Ridge	 on	 Cannon	 Cliff	 in
Franconia,	New	Hampshire	was	 named	 for	 him	 and	 his	 cousin,	who	were	 the
first	to	climb	it	(on	August	3,	1939).	Whitney	died	on	May	10,	1989.

Both	inequalities	in	Theorem	5.11	can	be	strict	as	the	graph	G	in	Figure	5.8
shows,	where	 (G)	=	1,	λ(G)	=	2	and	 (G)	=	3.	For	cubic	graphs,	however,	the
connectivity	and	edge-connectivity	are	always	equal.

Theorem	5.12	If	G	is	a	cubic	graph,	then	 (G)	=	λ(G).

Figure	5.8:	A	graph	G	with	λ(G)	=	1,	 (G)	=	2	and	 (G)	=	3

Proof.	For	a	cubic	graph	G,	it	follows	that	 (G)	=	λ(G)	=	0	if	and	only	if	G	is
disconnected.	 If	 (G)	 =	 3,	 then	 λ(G)	 =	 3	 by	 Theorem	 5.11.	 So	 two	 cases
remain,	namely	 (G)	=	1	or	 (G)	=	2.	Let	U	be	a	minimum	vertex-cut	of	G.
Then	 |U|	 =	 1	 or	 |U|	 =	 2.	 So	G	 −	U	 is	 disconnected.	 Let	G1	 and	G2	 be	 two
components	of	G	−	U.	Since	G	is	cubic,	for	each	u	 	U,	at	least	one	of	G1	and
G2	contains	exactly	one	neighbor	of	u.

Case	1.	 (G)	=	|U|	=	1.	Thus	U	consists	of	a	cut-vertex	u	of	G.	Since	some
component	 of	G	 −	U	 contains	 exactly	 one	 neighbor	w	 of	 u,	 the	 edge	 uw	 is	 a
bridge	of	G	and	so	λ(G)	=	 (G)	=	1.

Case	2.	 (G)	=	 |U|	 =	 2.	Let	U	 =	 {u,	v}.	Assume	 that	 each	 of	u	 and	v	has
exactly	one	neighbor,	say	u′	and	v′,	respectively,	in	the	same	component	of	G	−
U.	(This	is	the	case	that	holds	if	uv	 	E(G).)	Then	X	=	{uu′,	vv′}	is	an	edge-cut	of
G	and	λ(G)	=	 (G)	=	2.	(See	Figure	5.9(a)	for	the	situation	when	u	and	v	are	not
adjacent.)



Figure	5.9:	A	step	in	the	proof	of	Case	2

Hence	we	may	assume	that	u	has	one	neighbor	u′	in	G1	and	two	neighbors	in
G2;	 while	 v	 has	 two	 neighbors	 in	G1	 and	 one	 neighbor	 v′	 in	G2	 (see	 Figure
5.9(b)).	Therefore,	uv	 	E(G)	and	X	=	{uu′,	vv′}	is	an	edge-cut	of	G;	so	λ(G)	=	
(G)	=	2.

The	connectivity	of	a	graph	G	of	a	given	order	n	and	size	m	can	only	be	so
large.	For	example,	if	m	<	n	−	1,	then	G	is	disconnected	by	Theorem	4.7	and	so	
(G)	=	0.	If	m	≥	n	−	1,	 then	 there	 is	a	sharp	upper	bound	for	 (G),	which	we

present	 next.	 (See	Appendix	 1	 for	 a	 review	 of	 the	 floor	 and	 ceiling	 of	 a	 real
number.)

Theorem	5.13	If	G	is	a	graph	of	order	n	and	size	m	≥	n	−	1,	then

Proof.	Since	 the	 sum	of	 the	degrees	of	 the	vertices	of	G	 is	2m,	 the	 average
degree	 of	 the	 vertices	 of	G	 is	 2m/n	 and	 so	 (G)	 ≤	 2m/n.	 Since	 (G)	 is	 an
integer,	 (G)	≤	 2m/n .	By	Theorem	5.11,	 (G)	≤	 2m/n .

The	bound	given	 in	Theorem	5.13	 is	 sharp	 in	 the	 sense	 that	 for	 every	 two
integers	n	and	m	with	 ,	there	exists	a	graph	G	of	order	n
and	size	m	such	that	 (G)	=	 2m/n .	If	m	=	n	−	1,	then	every	tree	T	of	order	n	has
the	desired	property	as

Hence	we	may	assume	that	 .
It	is	useful	to	describe	a	class	of	graphs	Hr,n	for	integers	r	and	n	with	2	≤	r	<	n

such	that	Hr,n	has	order	n,	 is	“nearly”	r-regular,	has	size	m	and	 (Hr,n)	=	r	=	
2m/n .	 These	 graphs	 are	 referred	 to	 as	 the	Harary	 graphs,	 named	 for	 Frank
Harary.	(We	will	visit	Harary	again	in	Chapter	6).	For	the	purpose	of	describing
these	graphs,	we	introduce	a	new	concept.

Let	G	be	a	connected	graph	of	diameter	d.	For	an	integer	k	with	1	≤	k	≤	d,	the
kth	power	Gk	of	G	is	the	graph	with	V(Gk)	=	V(G)	such	that	uv	is	an	edge	of	Gk



if	1	≤	dG(u,	v)	≤	k.	The	graphs	G2	and	G3	are	referred	to	as	the	square	and	cube,
respectively,	 of	G.	 The	 square	 	 of	C8	 and	 the	 cube	 	 of	P6	 are	 shown	 in
Figure	5.10.

Figure	5.10:	The	square	and	cube	of	two	graphs

If	G	is	a	connected	graph,	then	not	only	is	G2	connected,	it	is	2-connected.

Theorem	5.14	If	G	is	a	connected	graph	of	order	at	least	3,	then	its	square	G2

is	2-connected.

We	are	now	prepared	to	describe	the	Harary	graphs	Hr,	n	for	integers	r	and	n
with	 2	 ≤	 r	 <	 n.	 First,	 let	 V(Hr,n)	 =	 {v1,	 v2,	 …,	 vn};	 in	 fact,	 each	 graph	Hr,n
contains	the	n-cycle	C	=	(v1,	v2,	…,	vn,	v1).	Suppose	first	that	r	is	even,	say	r	=
2k.	Then	Hr,n	 =	Ck.	 In	 fact,	 the	 graph	 	 shown	 in	 Figure	5.10	 is	 the	Harary
graph	H4,8.	Hence	for	r	is	even,	Hr,n	is	an	r-regular	graph	of	order	n.

Suppose	next	that	r	is	odd,	say	r	=	2k	+	1	≥	3.	First	assume	that	n	is	even,	say
n	=	2 .	Then	Hr,n	consists	of	the	graph	Hr−1,	n	=	Ck	together	with	all	edges	vivi	+	
	for	1	≤	i	≤	 .	Hence	for	r	odd	and	n	even,	the	Harary	graph	Hr,n	 is	also	an	r-
regular	graph	of	order	n.	The	graph	H5,8	 is	shown	in	Figure	5.11.	Next	assume
that	n	is	odd,	say	n	=	2 	+	1,	where	then	 	>	k.	In	this	case,	Hr,n	is	obtained	from
Hr	−1,	n	=	Ck	by	adding	the	edges	vivi+ +1	for	1	≤	i	≤	 	together	with	the	edge	v1v1
+	 .	 Hence	 for	 r	 odd	 and	 n	 odd,	 the	 Harary	 graph	Hr,n	 is	 a	 graph	 of	 order	 n
containing	n	−	1	vertices	of	degree	r	and	one	vertex	of	degree	r	+	1.	The	graph
H5,9	is	shown	in	Figure	5.11.	Our	interest	in	the	Harary	graphs	comes	from	the



following	fact.

Figure	5.11:	The	Harary	graphs	H5,8	and	H5,9

Theorem	5.15	For	every	two	integers	r	and	n	with	2	≤	r	<	n,

If	r	 is	 even	or	 if	r	 is	odd	and	n	 is	 even,	 then	Hr,	n	 is	 an	 r-regular	 graph	of
order	n	and	so	has	size	m	=	rn/2.	Thus	 2m/n 	=	r.	On	the	other	hand,	if	r	and	n
are	 both	odd,	 then	Hr,	n	 contains	n	 −	 1	 vertices	 of	 degree	 r	 and	 one	 vertex	 of
degree	r	+	1	and	so	m	=	 (rn	+	1)/2.	 In	 this	case	as	well,	 2m/n 	=	r	and	so	by
Theorem	5.13	 (Hr,	n)	≤	r.	In	fact,	 (Hr,n)	≤	 (Hr,n)	=	r.	While	it	is	a	bit	tedious
to	show	that	 (Hr,n)	=	r	in	general	at	this	point,	we	will	discuss	this	further	in	the
next	section.

Exercises	for	Section	5.3

5.17	 Does	 it	 make	 sense	 to	 define	 the	 concept	 of	 a	 minimal	 vertex-cut	 in	 a
graph?	 If	 so,	 how	 would	 this	 be	 defined	 and	 what	 would	 be	 a	 natural
question	to	ask?	If	not,	why	is	this	the	case?

5.18	Let	PG	be	the	Petersen	graph.	Give	an	example	of

(a)	a	minimum	vertex-cut	in	PG.
(b)	a	vertex-cut	U	in	PG	such	that	U	is	not	a	minimum	vertex-cut	of	PG

and	no	proper	subset	of	U	is	a	vertex-cut	of	PG.

5.19	Prove	or	disprove:	Let	G	be	a	nontrivial	graph.	For	every	vertex	v	of	G,	
(G	−	v)	=	 (G)	or	 (G	−	v)	=	 (G)	−	1.



5.20	Let	G	be	a	connected	graph	of	order	n	=	4	and	let	k	be	an	integer	with	2	≤
k	≤	n	−	2.

(a)	Prove	that	if	G	is	not	k-connected,	then	G	contains	a	vertex-cut	U	with
|U|	=	k	−	1.

(b)	Prove	that	if	G	is	not	k-edge-connected,	then	G	contains	an	edge-cut	X
with	|X|	=	k	−	1.

5.21	Give	an	example	of	a	graph	with	the	following	properties	or	explain	why
no	such	example	exists.

(a)	a	2-connected	graph	that	is	not	3-connected.
(b)	a	3-connected	graph	that	is	not	2-connected.
(c)	a	2-edge-connected	graph	that	is	not	3-edge-connected.
(d)	a	3-edge-connected	graph	that	is	not	2-edge-connected.

5.22	(a)	Prove	that	if	G	is	a	k-connected	graph	and	e	is	an	edge	of	G,	then	G	−	e
is	(k	−	1)-connected.

(b)	Prove	 that	 if	G	 is	 a	k-edge-connected	graph	and	e	 is	 an	 edge	 of	G,
then	G	−	e	is	(k	−	1)-edge-connected.

5.23	 (a)	 Prove	 that	 if	 G	 is	 a	 k-connected	 graph,	 then	 G	 +	 K1	 is	 (k	 +	 1)-
connected.

(b)	Prove	that	if	G	 is	a	k-edge-connected	graph,	then	G	+	K1	 is	 (k	+	1)-
edge-connected.

5.24	Let	G	be	a	graph	of	order	n	and	 let	k	 be	an	 integer	with	1	≤	k	≤	n	 −	 1.
Prove	that	if	 (G)	≥	(n	+	k	−	2)/2,	then	G	is	k-connected.

5.25	Give	 an	 example	 of	 a	 graph	G	with	 the	 following	 properties	 or	 explain
why	no	such	example	exists.

(a)	 (G)	=	2,	λ(G)	=	3	and	 (G)	=	4
(b)	 (G)	=	3,	λ(G)	=	2	and	 (G)	=	4
(c)	 (G)	=	3,	λ(G)	=	3	and	 (G)	=	2
(d)	 (G)	=	2,	λ(G)	=	2	and	 (G)	=	3

5.26	Prove	that	if	G	is	a	graph	of	order	n	such	that	 (G)	≥	(n	−	1)/2,	then	λ(G)	=
(G).

5.27	Prove	or	disprove:



(a)	 If	G	 is	 a	graph	with	 (G)	=	k	 ≥	 1,	 then	G	 −	U	 is	 disconnected	 for
every	set	U	of	k	vertices	of	G.

(b)	If	G	is	a	graph	with	λ(G)	=	k	≥	1,	then	G	−	X	is	disconnected	for	every
set	X	of	k	edges	of	G.

(c)	If	G	is	a	connected	graph	and	U	is	a	minimum	vertex-cut,	then	G	−	U
contains	exactly	two	components.

(d)	If	G	is	a	graph	of	order	n	that	is	not	complete	and	contains	a	vertex	v
of	degree	n	−	1,	then	v	belongs	to	every	vertex-cut	of	G.

(e)	If	G	is	a	graph	of	order	n	that	contains	a	vertex	v	of	degree	n	−	1,	then
every	edge-cut	of	G	contains	an	edge	incident	with	v.

5.28	(a)	Show	that	if	G	is	a	0-regular	graph,	then	 (G)	=	λ(G).

(b)	Show	that	if	G	is	a	1-regular	graph,	then	 (G)	=	λ(G).
(c)	Show	that	if	G	is	a	2-regular	graph,	then	 (G)	=	λ(G).
(d)	By	(a)	−	(c)	and	Theorem	5.12,	if	G	is	r-regular,	where	0	≤	r	≤	3,	then	

(G)	 =	 λ(G).	 Find	 the	minimum	 positive	 integer	 r	 for	 which	 there
exists	 an	 r-regular	 graph	 G	 such	 that	 (G)	 ≠	 λ(G).	 Verify	 your
answer.

(e)	 Find	 the	 minimum	 positive	 integer	 r	 for	 which	 there	 exists	 an	 r-
regular	graph	G	such	that	λ(G)	≥	 (G)	+	2.

(f)	The	problem	in	(e)	should	suggest	another	question	 to	you.	Ask	and
answer	such	a	question.

5.29	Give	an	example	of

(a)	 a	 connected	 graph	 G	 such	 that	 every	 vertex	 of	 G	 belongs	 to	 a
minimum	 vertex-cut	 but	 some	 edge	 of	G	 belongs	 to	 no	 minimum
edge-cut.

(b)	a	connected	graph	H	such	that	every	edge	of	H	belongs	to	a	minimum
edge-cut	but	some	vertex	of	H	belongs	to	no	minimum	vertex-cut.

5.30	For	a	graph	G,	define	 	and	 ,
each	 maximized	 over	 all	 subgraphs	H	 of	G.	 How	 are	 	 and	
related	to	 	and	λ(G),	respectively,	and	to	each	other?

5.31	 In	 the	graph	G	 of	Figure	5.12,	 the	 vertices	 represent	 street	 intersections
and	the	edges	represent	roads.



Figure	5.12:	The	graph	in	Exercise	5.31

(a)	What	is	the	maximum	number	k	such	that	if	road	repairs	are	done	at
the	same	time	to	any	k	roads	(making	use	of	these	roads	impossible),
then	it	is	still	possible	to	travel	between	every	two	intersections?

(b)	What	 is	 the	maximum	number	k	 such	 that	 if	 intersection	 repairs	are
done	 at	 the	 same	 time	 to	 any	 k	 intersections	 (making	 use	 of	 these
intersections	 impossible),	 then	 it	 is	 still	 possible	 to	 travel	 between
every	two	intersections	that	are	not	under	repair?

5.32	Verify	Theorem	5.14:	If	G	is	a	connected	graph	of	order	at	least	3,	then	its
square	G2	is	2-connected.

5.4	Menger’s	Theorem

We	 have	 now	 seen	 that	 one	 measure	 of	 the	 connectedness	 of	 a	 graph	 is	 its
vertex-connectivity	 which,	 depends	 on	 the	 minimum	 number	 of	 vertices	 that
must	 be	 removed	 to	 result	 in	 a	 disconnected	or	 trivial	 graph.	We	will	 see	 that
connectivity	can	be	looked	at	in	another	manner.

A	set	S	of	vertices	of	a	graph	G	is	said	to	separate	two	vertices	u	and	v	of	G
if	G	−	S	 is	disconnected	and	u	and	v	belong	 to	different	components	of	G	−	S.
Thus,	if	S	separates	u	and	v,	then	surely	u	and	v	are	nonadjacent	vertices	and	S	is
a	vertex-cut	of	G.	Certainly,	the	cardinality	of	S	must	be	at	least	as	large	as	 (G).
Such	a	set	S	is	called	a	u	−	v	separating	set.	A	u	−	v	separating	set	of	minimum
cardinality	is	called	a	minimum	u	−	v	separating	set.	An	internal	vertex	of	a	u
−	v	path	P	is	a	vertex	of	P	different	from	u	and	v.	A	collection	{P1,	P2,	…,	Pk}	of
u	 −	 v	 paths	 is	 called	 internally	 disjoint	 if	 every	 two	 of	 these	 paths	 have	 no
vertices	in	common	other	than	u	and	v.

There	 are	 many	 theorems	 in	 mathematics	 which	 state	 that	 the	 minimum
number	 of	 elements	 in	 some	 set	 equals	 the	maximum	 number	 of	 elements	 in
some	 other	 set.	 The	 following	 theorem	 is	 such	 a	 “min-max”	 theorem.	 It	 is
referred	to	as	Menger’s	theorem.



Theorem	5.16	(Menger′s	Theorem)	Let	u	and	v	be	nonadjacent	vertices	in	a
graph	G.	The	minimum	number	of	vertices	in	a	u	−	v	separating	set	equals	the
maximum	number	of	internally	disjoint	u	−	v	paths	in	G.

Proof.	We	proceed	by	induction	on	the	size	of	the	graph.	Certainly,	the	result
is	 true	vacuously	 for	 all	 empty	graphs.	Assume	 that	 the	 result	 is	 true	 for	 all
graphs	of	size	less	than	m,	where	m	is	a	positive	integer,	and	let	G	be	a	graph
of	size	m.	Let	u	and	v	be	two	nonadjacent	vertices	of	G.	Suppose	that	there	are
k	vertices	in	a	minimum	u	−	v	separating	set.	Certainly,	G	can	contain	no	more
than	 k	 internally	 disjoint	 u	 −	 v	 paths.	 We	 show,	 in	 fact,	 that	G	 contains	 k
internally	disjoint	u	−	v	paths.	Since	the	result	is	true	for	k	=	0	and	k	=	1,	we
may	assume	that	k	≥	2.	We	consider	three	cases.

Case	1.	There	 exists	 a	minimum	u	 −	v	 separating	 set	U	 in	G	 containing	 a
vertex	x	that	is	adjacent	to	both	u	and	v.	Then	the	size	of	the	subgraph	G	−	x	 is
less	than	m	and	U	−	{x}	is	a	minimum	u	−	v	separating	set	in	G	−	x	consisting	of
k	−	1	vertices.	By	the	induction	hypothesis,	there	are	k	−	1	internally	disjoint	u	−
v	 paths	 in	 G	 −	 x.	 These	 paths	 together	 with	 the	 path	 (u,	 x,	 v)	 constitute	 k
internally	disjoint	u	−	v	paths	in	G.

Case	2.	There	exists	a	minimum	u	−	v	 separating	 set	W	 in	G	 containing	 a
vertex	in	W	that	is	not	adjacent	to	u	and	a	vertex	in	W	that	is	not	adjacent	to	v.
Let	W	=	{w1,	w2,	…,	wk}.	Let	Gu	be	the	subgraph	of	G	consisting	of	all	u	−	wi
paths	 in	G,	where	only	wi	 	W	 for	 each	 i	 (1	≤	 i	 ≤	k)	 and	 let	G′u	 be	 the	 graph
obtained	from	Gu	by	adding	a	new	vertex	v′	and	joining	v′	to	each	vertex	wi	for	1
≤	i	≤	k.	Let	Gv	and	G′v	be	defined	similarly,	where	G′v	 is	obtained	from	Gv	by
adding	the	new	vertex	u′.	Representations	of	the	graphs	Gu,	G′u,	Gv	and	Gvv	are
shown	in	Figure	5.13.

Figure	5.13:	The	graphs	Gu,	G′u,	Gv	and	G′v	in	Case	2



Since	W	 contains	 a	vertex	 that	 is	 not	 adjacent	 to	u	 and	 a	 vertex	 that	 is	 not
adjacent	to	v,	the	size	of	each	of	the	graphs	G′u	and	G′v	is	less	than	m.	Since	W	is
a	minimum	u	−	v	separating	set	in	G′u,	it	follows	by	the	induction	hypothesis	that
G′u	contains	k	internally	disjoint	u	−	v′	paths,	each	consisting	of	a	u	−	wi	path	Pi
followed	by	the	edge	wiv′.	Similarly,	there	are	k	internally	disjoint	u′	−	v	paths	in
G′v,	each	consisting	of	a	wi	−	v	path	Qi	preceded	by	the	edge	u′wi.	Since	W	is	a	u
−	v	separating	set	in	G,	the	two	graphs	Gu	and	Gv	have	only	the	vertices	of	W	in
common.	Therefore,	the	k	paths	obtained	by	following	Pi	by	Qi	for	each	i	(1	≤	i
≤	k)	are	internally	disjoint	u	−	v	paths	in	G.

Case	3.	For	each	minimum	u	−	v	separating	set	S	in	G,	either	every	vertex	of
S	is	adjacent	to	u	and	not	adjacent	to	v	or	every	vertex	of	S	is	adjacent	to	v	and
not	adjacent	to	u.	Let	P	=	(u,	x,	y,...,	v)	be	a	u	−	v	geodesic	in	G	and	let	e	=	xy.
Consider	the	subgraph	G	−	e	in	G.	Certainly,	every	minimum	u	−	v	separating	set
in	G	−	e	contains	at	least	k	−	1	vertices.	We	claim,	in	fact,	that	a	minimum	u	−	v
separating	set	in	G	−	e	contains	k	vertices,	for	assume,	to	the	contrary,	that	G	−	e
contains	a	minimum	u	−	v	separating	set	Z	=	{z1,	z2,	…,	zk	−	1}.	Then	Z	 	{x}	is	a
minimum	u	−	v	separating	set	in	G.	Since	x	is	adjacent	to	u,	each	vertex	zi	(1	≤	i
≤	k	−	1)	is	also	adjacent	to	u	and	not	adjacent	to	v.	On	the	other	hand,	Z	 	{y}	is
a	minimum	u	−	v	separating	set	in	G	and	each	zi	(1	≤	i	≤	k	−	1)	is	adjacent	to	u.
This	implies	that	y	is	also	adjacent	to	u,	which	contradicts	the	fact	that	P	is	a	u	−
v	geodesic.	Therefore,	as	claimed,	k	is	the	minimum	number	of	vertices	in	a	u	−
v	 separating	 set	 in	G	 −	 e.	 By	 the	 induction	 hypothesis,	 there	 are	 k	 internally
disjoint	u	−	v	paths	in	G	−	e.	Hence	there	are	k	internally	disjoint	u	−	v	paths	in
G	as	well.

In	 the	graph	G	 of	Figure	5.14,	U	 =	 {w1,	w2,	w3}	 is	 a	u	 −	 v	 separating	 set.
Since	 there	 is	 no	 u	 −	 v	 separating	 set	 with	 fewer	 than	 three	 vertices,	U	 is	 a
minimum	 u	 −	 v	 separating	 set.	 By	 Theorem	 5.16,	 there	 are	 three	 internally
disjoint	u	−	v	paths	in	G	(as	indicated	in	bold	in	Figure	5.14).



Figure	5.14:	Illustrating	Menger’s	Theorem

As	we	mentioned	above,	Theorem	5.16	is	referred	to	as	Menger’s	Theorem,
named	for	Karl	Menger	who	was	born	in	Vienna,	Austria	on	January	13,	1902.
Menger	 developed	 a	 talent	 for	 mathematics	 and	 physics	 at	 an	 early	 age	 and
entered	the	University	of	Vienna	in	1920	to	study	physics.	The	following	year	he
attended	 a	 lecture	 by	 Hans	 Hahn	 on	Neueres	 über	 den	 Kurvenbegriff	 (What’s
new	concerning	 the	concept	of	a	curve)	and	Menger’s	 interests	 turned	 towards
mathematics.	 In	 the	 lecture	 it	 was	 mentioned	 that	 there	 was	 no	 satisfactory
definition	of	a	curve	(at	 that	 time),	despite	unsuccessful	attempts	to	do	so	by	a
number	 of	 distinguished	 mathematicians,	 including	 Georg	 Cantor,	 Camille
Jordan	 and	 Giuseppe	 Peano.	 Some	 mathematicians	 including	 Felix	 Hausdorff
and	Ludwig	Bieberbach	felt	that	it	was	unlikely	that	this	problem	would	ever	be
solved.	Despite	being	an	undergraduate	with	 limited	mathematical	background,
Menger	solved	the	problem	and	presented	his	solution	to	Hahn.	This	led	Menger
to	work	on	curve	and	dimension	theory.

Menger	 became	 quite	 ill	 while	 a	 student	 and	 his	 studies	 were	 interrupted.
During	 this	 time	 both	 of	 his	 parents	 died.	 He	 eventually	 returned	 to	 the
university	where	he	 completed	his	 studies	 under	Hahn	 in	 1924.	The	next	 year
Menger	 went	 to	 Amsterdam	 to	 work	 with	 Luitzen	 Brouwer	 and	 Menger
broadened	his	mathematical	interests.	In	1927	Menger	returned	to	the	University
of	Vienna	 to	accept	 the	position	of	Chair	of	Geometry.	 It	was	during	 that	year
that	 he	 published	 the	 paper	 “Zur	 allgemeinen	 Kurventheorie”	 (Menger’s
theorem).	 Menger	 himself	 referred	 to	 this	 result	 as	 the	 “n-arc	 theorem”	 and
proved	it	as	a	lemma	for	a	theorem	in	curve	theory.

In	 the	 spring	 of	 1930,	 Karl	 Menger	 traveled	 to	 Budapest	 and	 met	 many
Hungarian	mathematicians,	 including	Dénes	König.	Menger	 had	 read	 some	 of
König’s	papers.	During	his	visit,	Menger	 learned	that	König	was	working	on	a
book	 that	 would	 contain	 what	 was	 known	 at	 that	 time	 about	 graph	 theory.
Menger	was	pleased	to	hear	this	and	mentioned	his	theorem	to	König,	which	had



only	been	published	three	years	earlier.	König	was	not	aware	of	Menger’s	work
and,	in	fact,	didn’t	believe	that	the	theorem	was	true.	Indeed,	the	very	evening	of
their	meeting,	König	set	out	 to	construct	a	counterexample.	When	the	 two	met
again	the	next	day,	König	greeted	Menger	with	“A	sleepless	night!”.	König	then
asked	Menger	to	describe	his	proof,	which	he	did.	After	that,	König	said	that	he
would	add	a	final	section	to	his	book	on	the	theorem,	which	he	did.	This	was	a
major	 reason	 why	 Menger’s	 theorem	 became	 so	 widely	 known	 among	 those
interested	in	graph	theory.

Because	 of	 the	 political	 situation	 in	 Austria	 in	 1938,	 Menger	 left	 for	 a
position	in	the	United	States	at	 the	University	of	Notre	Dame.	While	there,	his
work	 emphasized	 geometry,	 which	 didn’t	 have	 the	 impact	 of	 his	 earlier	 work
since	 geometry	 was	 not	 a	 subject	 of	 great	 interest	 to	 many,	 especially	 in	 the
United	States.	Menger	went	 to	 the	Illinois	 Institute	of	Technology	 in	1948	and
spent	the	rest	of	his	life	in	the	Chicago	area.	Menger	was	considered	one	of	the
leading	mathematicians	of	the	20th	century.	He	died	on	October	5,	1985.

With	 the	 aid	 of	Menger’s	 theorem,	Hassler	Whitney	was	 able	 to	 present	 a
characterization	of	k-connected	graphs.

Theorem	5.17	A	nontrivial	graph	G	is	k-connected	for	some	integer	k	≥	2	 if
and	 only	 if	 for	 each	 pair	 u,	 v	 of	 distinct	 vertices	 of	 G	 there	 are	 at	 least	 k
internally	disjoint	u	−	v	paths	in	G.

Proof.	Since	the	result	holds	 if	G	 is	complete,	we	may	assume	that	G	is	not
complete.	Assume	that	G	is	a	k-connected	graph,	where	k	≥	2.	Let	u	and	v	be
two	distinct	vertices	of	G.	Suppose	first	that	u	and	v	are	not	adjacent	and	let	U
be	a	minimum	u	−	v	separating	set.	Then	|U|	≥	 (G)	≥	k.	By	Theorem	5.16,	G
contains	at	least	k	 internally	disjoint	u	−	v	paths.	Next,	suppose	 that	u	and	v
are	 adjacent,	where	 e	 =	uv.	 Then	G	 −	 e	 is	 (k	 −	 1)-connected	 (see	 Exercise
5.22).	Let	W	be	a	minimum	u	−	v	separating	set	in	G	−	e.	Thus

By	Theorem	5.16,	G	−	e	contains	at	 least	k	−	1	 internally	disjoint	u	−	v	paths,
and	so	G	contains	at	least	k	internally	disjoint	u	−	v	paths.

For	 the	 converse,	 assume	 that	G	 is	 a	 graph	 containing	 at	 least	 k	 internally
disjoint	 u	 −	 v	 paths	 for	 every	 pair	 u,	 v	 of	 distinct	 vertices	 of	G.	 Let	U	 be	 a
minimum	vertex-cut	of	G.	Then	 |U|	=	 (G).	Let	x	and	y	be	vertices	 in	distinct
components	of	G	−	U.	Thus	U	is	an	x	−	y	separating	set	of	G.	Since	there	are	at
least	k	internally	disjoint	x	−	y	paths	in	G,	it	follows	by	Theorem	5.16	that	 (G)
=	|U|	≥	k.	Therefore,	G	is	k-connected.



Whitney’s	 theorem	(Theorem	5.17)	 then	 gives	 us	 an	 alternative	method	 for
determining	 the	 connectivity	 of	 a	 graph	 G.	 Not	 only	 is	 (G)	 the	 minimum
number	 of	 vertices	whose	 removal	 from	G	 results	 in	 a	 disconnected	 or	 trivial
graph	but	 (G)	is	the	maximum	positive	integer	k	for	which	every	two	vertices	u
and	v	in	G	are	connected	by	k	internally	disjoint	u	−	v	paths	in	G.

In	 the	preceding	section	we	described	for	 integers	r	and	n	with	2	≤	r	<	n	a
class	 of	 graphs	 Hr,n	 of	 order	 n	 called	 the	 Harary	 graphs.	 Each	 such	 graph
contains	a	n-cycle	C	=	(v1,	v2,	…,	vn,	v1).	If	r	=	2k	 is	even,	 then	Hr,n	 is	 the	kth
power	Ck	of	C.	If	r	=	2k	+	1	is	odd	and	n	=	2 	is	even,	then	Hr,n	consists	of	Hr	−
1,	n	=	Ck	together	with	the	edges	vivi	+	 	for	1	≤	i	≤	 ;	while	if	r	=	2k	+	1	and	n	=
2 	+	1	are	both	odd,	then	Hr,n	consists	of	Hr	−1,	n	=	Ck	 together	with	 the	edges
vivi+	 	for	1	≤	i	≤	 	and	the	additional	edge	v1v1	+	 .	We	saw	that	 (Hr,n)	=	r	 in
each	 case	 and	 that	 2m/n 	 =	 r;	 thus	 (Hr,n)	 ≤	 r.	 Theorem	 5.15	 states	 that	 the
connectivity	of	Hr,n	is,	in	fact,	r	for	all	such	r	and	n.	To	verify	that	 (Hr,n)	=	r,
we	need	only	show	that	(1)	the	removal	of	fewer	than	r	vertices	from	Hr,n	results
in	 a	 nontrivial	 connected	 graph	 or	 (2)	 every	 two	 vertices	u	 and	v	 in	Hr,	 n	 are
connected	by	r	internally	disjoint	u	−	v	paths	(see	Exercise	5.38).

The	following	result	 indicates	one	way	of	constructing	a	k-connected	 graph
from	a	given	k-connected	graph.	With	 the	 aid	of	Whitney’s	 theorem,	Theorem
5.18	 can	 then	 be	 used	 to	 provide	 a	 proof	 of	 Corollary	 5.19.	 Proofs	 of	 both
Theorem	5.18	and	Corollary	5.19	are	left	as	exercises.

Theorem	5.18	Let	G	be	a	k-connected	graph	and	let	S	be	any	set	of	k	vertices.
If	a	graph	H	is	obtained	from	G	by	adding	a	new	vertex	w	and	joining	w	to	the
vertices	of	S,	then	H	is	also	k-connected.

We	 have	 mentioned	 that	 a	 collection	 {P1,	P2,	 …,	 Pk}	 of	 u	 −	 v	 paths	 are
internally	disjoint	if	every	two	distinct	paths	in	the	collection	have	only	u	and	v
in	common,	that	is,	each	internal	vertex	in	one	of	the	paths	lies	on	no	other	path
in	 the	collection.	More	generally,	 for	k	+	1	distinct	 vertices	u,	v1,	v2,	…,	vk,	 a
collection	{P1,	P2,	…,	Pk}	of	k	paths,	where	Pi	 is	a	u	−	vi	path	(1	≤	 i	≤	k),	are
internally	disjoint	 if	 every	 two	distinct	 paths	 in	 the	 collection	have	only	u	 in
common.	For	2k	distinct	vertices	u1,	u2,	…,	uk,	v1,	v2,	…,	vk,	a	collection	{P1,	P2,
…,	Pk}	of	k	paths,	where	Pi	 is	a	ui	−	vi	path	(1	≤	 i	≤	k),	are	disjoint	 if	no	 two
distinct	paths	in	the	collection	have	a	vertex	in	common.



Corollary	5.19	 If	G	 is	 a	 k-connected	 graph	 and	 u,	 v1,	 v2,	…,	 vk	are	 k	 +	 1
distinct	vertices	of	G,	then	there	exist	internally	disjoint	u	−	vi	paths	(1	≤	i	≤	k)
in	G.

We	saw	in	Theorem	5.7	 that	 if	a	graph	G	 is	a	2-connected	graph	 (that	 is,	a
nonseparable	 graph	 of	 order	 at	 least	 3),	 then	 every	 two	 vertices	 of	G	 lie	 on	 a
common	 cycle.	 Gabriel	 Dirac	 obtained	 a	 generalization	 of	 this	 result	 for	 k-
connected	graphs.

Theorem	5.20	If	G	is	a	k-connected	graph,	k	≥	2,	 then	every	k	vertices	of	G
lie	on	a	common	cycle	of	G.

Proof.	Let	S	=	{v1,	v2,	…,	vk}	be	a	set	of	k	vertices	of	G.	We	show	that	there
exists	a	cycle	in	G	containing	every	vertex	of	S.	Among	all	cycles	in	G,	let	C
be	one	containing	a	maximum	number	 	of	vertices	of	S.	We	claim	that	 	=	k.
Assume,	to	the	contrary,	that	 	<	k.	Since	G	is	k-connected,	k	≥	2,	 it	follows
that	G	is	2-connected	and	so	2	≤	 	<	k	by	Theorem	5.7.	We	may	assume	that	C
contains	the	vertices	v1,	v2,	…,	vl	of	S	and	that	the	vertices	of	S	on	C	appear	in
the	order	v1,	v2,	…,	v 	as	we	proceed	cyclically	about	C.

Since	 	<	k,	there	is	a	vertex	u	 	S	 that	does	not	belong	to	C.	Furthermore,
since	2	≤	 	<	k,	the	graph	G	is	 -connected	as	well.	Suppose	first	that	the	order
of	C	is	 .	Applying	Corollary	5.19	to	the	vertices	u,	v1,	v2,	…,	v ,	we	see	that	G
contains	internally	disjoint	u	−	vi	paths	Pi	(1	≤	i	≤	 ).	Replacing	the	edge	v1	v2	by
P1	and	P2	produces	a	cycle	containing	the	vertices	u,	v1,	v2,	…,	v ,	which	gives
a	contradiction.

Hence	we	may	assume	that	C	contains	a	vertex	v0	 	S.	Since	2	≤	 	+	1	≤	k,
the	graph	G	is	( 	+	1)-connected.	Applying	Corollary	5.19	to	the	vertices	u,	v0,
v1,	v2,	…,	v ,	we	see	that	G	contains	internally	disjoint	u	−	vi	paths	Pi	(0	≤	i	≤	 ).
Let	v′i	(0	≤	i	≤	 )	be	the	first	vertex	of	Pi	that	belongs	to	C	(possibly	v′i	=	vi)	and
let	P′i	be	the	u	−	v′i	subpath	of	Pi.	Since	there	are	 	+	1	paths	P′i	and	v	vertices	of
C	that	belong	to	S,	 there	are	distinct	vertices	v′r	and	v′t,	where	0	≤	r,	 t	≤	 ,	 for
which	there	is	a	v′r	−	v′t	path	P′	on	C	having	no	interior	vertices	belonging	to	S.
Deleting	 the	 interior	 vertices	 of	 P′	 from	C	 and	 adding	 the	 paths	 P′r	 and	 P′t
produces	 a	 cycle	 containing	 the	 vertices	 u,	 v1,	 v2,	 …,	 v ,	 which	 is	 a
contradiction.

All	 of	 the	 results	mentioned	 in	 this	 section	 concern	 connectivity.	There	 are



also	 edge-connectivity	 analogues	 of	 both	 Theorems	 5.16	 and	 5.17.	 We	 state
these	next.

Theorem	 5.21	 For	 distinct	 vertices	 u	 and	 v	 in	 a	 graph	 G,	 the	 minimum
number	of	edges	of	G	 that	separate	u	and	v	equals	 the	maximum	number	of
pairwise	edge-disjoint	u	−	v	paths	in	G.

Theorem	 5.22	 A	 nontrivial	 graph	 G	 is	 k-edge-connected	 if	 and	 only	 if	 G
contains	 k	 pairwise	 edge-disjoint	 u	−	 v	 paths	 for	 each	 pair	 u,	 v	 of	 distinct
vertices	of	G.

Exercises	for	Section	5.4

5.33	Let	G	be	a	5-connected	graph	and	let	u,	v	and	w	be	three	distinct	vertices
of	G.	Prove	that	G	contains	two	cycles	C	and	C′	that	have	only	u	and	v	in
common	but	neither	of	which	contains	w.

5.34	Prove	Theorem	5.18:	Let	G	be	a	k-connected	graph	and	let	S	be	any	set	of
k	vertices.	If	a	graph	H	is	obtained	from	G	by	adding	a	new	vertex	w	and
joining	w	to	the	vertices	of	S,	then	H	is	also	k-connected.

5.35	Prove	Corollary	5.19:	If	G	is	a	k-connected	graph	and	u,	v1,	v2,	…,	vk	are
k	+	1	distinct	vertices	of	G,	then	there	exist	internally	disjoint	u	−	vi	paths
(1	≤	i	≤	k)	in	G.

5.36	Let	G	 be	 a	 k-connected	graph	of	 order	n	 ≥	 2k	 and	 let	U	 and	W	 be	 two
disjoint	 sets	 of	 k	 vertices	 of	 G.	 Prove	 that	 there	 exist	 k	 disjoint	 paths
connecting	U	and	W.

5.37	Determine	the	connectivity	and	edge-connectivity	of	the	n-cube	Qn.

5.38	Verify	that	 (Hr,	n)	=	r	by	showing	that	every	two	vertices	u	and	v	in	Hr,	n
are	connected	by	r	internally	disjoint	u	−	v	paths	for	the	following	values	r
and	n.	(a)	r	=	3	and	n	=	8.	(b)	r	=	4	and	n	=	8.

5.5	Exploration:	Powers	and	Edge	Labelings



We	have	seen	for	integers	r	and	n	with	2	≤	r	<	n	that	the	Harary	graphs	Hr,	n	have
minimum	degree	 r,	 order	n	 and	 size	m	with	 (G)	=	 r	 =	 2m/n .	 These	 graphs
were	defined	in	terms	of	powers	of	cycles.	We	also	mentioned	that	the	square	of
every	connected	graph	of	order	3	or	more	is	2-connected.	In	fact,	if	k	and	n	are
integers	with	 2	 ≤	 k	 <	n	 and	G	 is	 a	 connected	 graph	 of	 order	 n,	 then	Gk	 is	 k-
connected	(see	Exercise	5.39).

In	 particular,	 for	 every	 connected	 graph	G	 of	 order	 n	 ≥	 3	 and	 every	 two
distinct	vertices	u	and	v	of	G,	there	exist	in	G2	two	internally	disjoint	u	−	v	paths
P	and	P′.	Of	course,	each	edge	of	P	and	P′	belongs	either	to	G	or	to	G2	−	E(G).
Label	each	edge	of	G2	that	belongs	to	G	with	the	label	1	and	label	each	edge	of
G2	not	belonging	to	G	with	the	label	2.	In	general,	an	edge	uv	of	Gk	is	labeled	i
(1	≤	 i	 ≤	k)	 if	dG(u,	v)	 =	 i.	 Such	 a	 graph	Gk	 is	 then	 called	 a	distance-labeled
graph.	A	path	P	 in	Gk	 is	called	proper	 if	every	 two	adjacent	edges	 in	P	have
different	 labels.	 Later	 we	 will	 see	 that	 this	 is	 related	 to	 the	 topic	 of	 graph
colorings	 (discussed	 in	 Chapter	 10).	 While	 for	 every	 connected	 graph	 G	 of
diameter	 2	 or	more,	 the	 graph	G2	 contains	 a	 proper	u	 −	v	 path	 for	 every	 two
vertices	u	and	v,	the	graph	G2	need	not	contain	two	internally	disjoint	proper	u	−
v	paths.	(See	Exercises	5.40	and	5.41.)

Let	G	be	a	connected	graph	of	diameter	d	≥	2	and	let	k	be	an	integer	with	2	<
k	<	d.	If	Gk	is	a	distance-labeled	graph	and	e	is	an	edge	labeled	j	where	1	<	j	≤	k,
then	e	is	necessarily	adjacent	to	an	edge	labeled	i	for	every	integer	i	with	1	≤	i	<
j	 (see	 Exercise	 5.42).	 This	 property	 possessed	 by	 distance-labeled	 graphs	Gk
suggests	other	concepts.

Let	G	 be	 a	 connected	 graph.	 By	 a	proper	 edge	 labeling	 of	G	 we	mean	 a
labeling	of	the	edges	of	G	from	the	set	{1,	2,	…,	k}	for	some	positive	integer	k
such	that	no	two	adjacent	edges	are	labeled	the	same.

We	now	 turn	our	attention	 to	proper	edge	 labelings	of	 trees.	A	proper	edge
labeling	of	a	tree	T	from	the	elements	of	the	set	{1,	2,	…,	k}	is	called	a	Grundy
labeling	 if	 the	 labeling	 has	 the	 property	 that	whenever	 an	 edge	 e	 is	 labeled	 j
where	1	<	j	≤	k,	then	e	is	adjacent	to	an	edge	labeled	i	for	every	integer	i	with	1	≤
i	 <	 j.	 Grundy	 labelings	 are	 named	 for	 Patrick	 Michael	 Grundy	 (1917–1959),
whose	interests	included	combinatorial	games.	The	maximum	positive	integer	k
for	which	a	tree	T	has	a	Grundy	labeling	from	the	set	{1,	2,	…,	k}	is	called	the
Grundy	index	Γ′(T)	of	T.	For	every	 tree	T,	 the	Grundy	 index	Γ′(T)	exists	and
Δ(T)	≤	Γ′(T)	≤	2Δ(T)	−	1.	(See	Exercise	5.43.)	For	example,	Γ′(T)	=	4	for	the	tree
T	of	Figure	5.15.



Figure	5.15:	A	tree	with	Grundy	index	4

By	an	achromatic	edge	labeling	of	a	tree	T	we	mean	a	proper	edge	labeling
of	T	 from	the	elements	of	 the	set	S	=	{1,	2,	…,	k}	 for	 some	positive	 integer	k
such	that	for	every	two	distinct	elements	i	and	j	of	S,	there	exist	adjacent	edges
labeled	i	and	j.	The	maximum	k	for	which	T	has	an	achromatic	edge	labeling	is
called	the	achromatic	index	of	T	and	is	denoted	by	 ′(T).	For	example,	ψ′(P9)	=
4	(see	Figure	5.16).

Figure	5.16:	An	achromatic	edge	labeling	of	P9

Exercises	for	Section	5.5

5.39	Prove	that	if	G	is	a	connected	graph	of	order	n	and	k	is	an	integer	with	2	≤
k	<	n,	then	Gk	is	k-connected.

5.40	Show	for	every	connected	graph	G	of	diameter	2	or	more	and	every	two
vertices	 u	 and	 v	 in	 G	 that	 G2	 contains	 a	 proper	 u	 −	 v	 path	 but	 not
necessarily	two	internally	disjoint	proper	u	−	v	paths.

5.41	Show	for	every	connected	graph	G	of	diameter	3	or	more	and	every	two
vertices	u	and	v	in	G	that	G3	contains	two	internally	disjoint	proper	u	−	v
paths	but	not	necessarily	three	internally	disjoint	proper	u	−	v	paths.

5.42	Let	G	be	a	connected	graph	of	diameter	d	≥	2	and	let	k	be	an	integer	with	2
≤	 k	 ≤	 d.	 Prove	 that	 if	Gk	 is	 a	 distance-labeled	 graph	 and	 e	 is	 an	 edge
labeled	j	where	1	<	j	≤	k,	then	e	is	adjacent	to	an	edge	labeled	i	for	every
integer	i	with	1	≤	i	<	j.

5.43	Show	that	the	Grundy	index	Γ′(T)	exists	for	every	tree	T	and	that



5.44	Does	there	exist	an	integer	n	<	9	such	that	ψ′(Pn)	=	4?

5.45	Show	that	Γ′(T)	≤	ψ′(T)	for	every	nontrivial	tree	T.

5.46	Give	an	example	of	a	nontrivial	tree	T	such	that	Γ′(T)	≠	ψ′(T).

5.47	Show	that	if	ψ′(T)	=	k	for	some	tree	T,	then	 .



Chapter	6
Traversability

6.1	Eulerian	Graphs

Figure	6.1(a)	shows	the	layout	of	a	housing	development	in	a	community,	where
mailboxes	are	placed	along	one	side	of	each	street	(indicated	by	double	lines	in
the	diagram).	Can	a	letter	carrier	make	a	round	trip	through	the	development	and
pass	 by	 each	 mailbox	 but	 once?	 Figure	 6.1(b)	 shows	 that	 the	 answer	 to	 this
question	is	yes.

Figure	6.1:	A	housing	development	and	a	route	of	a	letter	carrier

The	streets	in	the	housing	development	can	be	represented	quite	naturally	by
the	graph	G	 of	Figure	6.2,	where	 the	 vertices	 represent	 the	 street	 intersections



and	the	edges	represent	the	streets.	In	terms	of	graph	theory,	the	question	for	the
letter	carrier	can	be	rephrased	as	follows:	Does	the	graph	G	of	Figure	6.2	have	a
circuit	that	contains	every	edge	of	G?	The	letter	carrier’s	route	shown	in	Figure
6.1(b)	tells	us	that	the	circuit

in	the	graph	G	of	Figure	6.2	has	the	desired	property.

Figure	6.2:	Modeling	the	streets	of	a	housing	development	by	a	graph

This	brings	us	 to	 the	main	 topic	of	 this	section.	A	circuit	C	 in	a	graph	G	 is
called	an	Eulerian	circuit	(pronounced	oy-LEER-e-an)	if	C	contains	every	edge
of	G.	Since	no	edge	is	repeated	in	a	circuit,	every	edge	appears	exactly	once	in
an	 Eulerian	 circuit.	 Certainly,	 only	 graphs	with	 one	 nontrivial	 component	 can
contain	such	a	circuit.	For	this	reason,	we	restrict	ourselves	to	connected	graphs
when	 investigating	 the	 question	 of	whether	 a	 graph	 has	 an	Eulerian	 circuit.	A
connected	graph	that	contains	an	Eulerian	circuit	is	called	an	Eulerian	graph.	In
particular,	the	graph	G	of	Figure	6.2	is	an	Eulerian	graph.

An	 Eulerian	 circuit	 in	 a	 connected	 graph	G	 is	 therefore	 a	 closed	 trail	 that
contains	 every	 edge	 of	 G.	 There	 will	 also	 be	 occasions	 when	 we	 will	 be
interested	 in	 open	 trails	 that	 contain	 every	 edge	 of	 a	 graph.	 For	 a	 connected
graph	G,	we	refer	to	an	open	trail	that	contains	every	edge	of	G	as	an	Eulerian
trail.	For	example,	the	graph	G	of	Figure	6.3	contains	the	Eulerian	trail

Figure	6.3:	A	graph	with	an	Eulerian	trail



To	 understand	 why	 the	 adjective	 “Eulerian”	 is	 used	 here,	 let	 us	 go	 back
several	 years,	 indeed	 a	 few	 centuries,	 to	 17th	 and	 18th	 century	 Switzerland,
when	thirteen	members	of	the	remarkable	Bernoulli	family	became	distinguished
mathematicians.	Among	the	most	prominent	were	two	brothers,	Jaques	and	Jean,
the	 latter	 also	 known	 as	 John	 or	 Johann.	 Although	 the	 accomplishments	 of
Johann	 and	 the	 other	 Bernoullis	 were	 numerous,	 one	 of	 Johann’s	 major
accomplishments	may	 have	 been	 to	 convince	 the	 father	 of	 a	 young	 Leonhard
Euler	 (pronounced	OY-ler)	 to	 have	 his	 son	 discontinue	 studying	 theology	 and
study	 mathematics	 instead.	 Later	 Johann	 Bernoulli	 became	 the	 mathematical
advisor	of	Euler.	When	one	 individual	 serves	as	 the	academic	advisor	 (usually
doctoral	 advisor)	 of	 another,	 the	 advisor	 is	 referred	 by	 some	 as	 the	 academic
father	(or	academic	mother)	of	the	student.	This	provides	a	sense	of	“family”	for
teacher	and	student.	Hence	Johann	Bernoulli	could	be	called	the	academic	father
of	Euler.

Euler	was	born	in	Basel,	Switzerland	on	April	15,	1707.	While	in	his	20s,	he
became	ill	and	lost	vision	in	one	of	his	eyes.	Later,	he	developed	a	cataract	in	his
other	eye	and	spent	the	last	few	years	of	his	life	totally	blind.	However,	just	as
the	magnificent	 composer	Ludwig	van	Beethoven	did	much	of	his	work	while
totally	 deaf,	 Euler	 did	much	 of	 his	mathematical	 research	while	 totally	 blind.
During	 his	 lifetime,	 more	 than	 500	 research	 papers	 and	 books	 of	 his	 were
published.	After	his	death	(from	a	stroke)	on	September	18,	1783,	another	400
were	published.	At	 that	 time	and	 for	a	good	many	years	afterwards,	Euler	had
more	publications	than	any	other	mathematician,	only	to	be	exceeded	in	the	20th
century	by	Paul	Erd s	(pronounced	AIR-dish),	an	academic	descendant	of	Euler.
We	will	visit	Paul	Erd s	later.

While	Euler	made	significant	contributions	to	every	area	of	mathematics	that
existed	during	his	lifetime,	it	is	a	contribution	he	made	to	an	area	of	mathematics
that	did	not	exist	during	his	lifetime	that	is	of	primary	interest	to	us	here.

The	city	of	Königsberg,	located	in	Prussia,	would	play	an	interesting	role	in
Euler’s	life	and	in	the	history	of	graph	theory.	The	River	Pregel	flowed	through
Königsberg,	separating	it	into	four	land	areas.	Seven	bridges	were	built	over	the
river	that	allowed	the	citizens	of	Königsberg	to	travel	between	these	land	areas.
A	map	 of	 Königsberg,	 showing	 the	 four	 land	 areas	 (labeled	 A,	 B,	 C,	 D),	 the
location	of	the	river	and	the	seven	bridges	at	that	time	are	given	in	Figure	6.4.



Figure	6.4:	Königsberg	in	the	early	18th	century

The	 story	 goes	 that	 the	 citizens	 of	 Königsberg	 enjoyed	 going	 for	 walks
throughout	 the	city.	Evidently,	some	citizens	wondered	whether	 it	was	possible
to	 go	 for	 a	walk	 in	Königsberg	 and	 pass	 over	 each	 bridge	 exactly	 once.	 This
became	 known	 as	 the	Königsberg	 Bridge	 Problem.	 Evidently	 this	 problem
remained	unsolved	for	some	time	and	became	well	known	throughout	the	region.
This	problem	eventually	came	to	the	attention	of	Euler	(who	was	believed	to	be
in	St.	Petersburg	at	 the	 time).	Although	the	subject	of	graph	theory	did	not	yet
exist	and	certainly	Euler’s	 solution	of	 this	problem	did	not	 involve	graphs,	his
solution	 had	 overtones	 of	what	would	 become	 graph	 theory.	 In	 particular,	 the
situation	in	Königsberg	can	be	represented	by	the	multigraph	in	Figure	6.5.

Figure	6.5:	The	Königsberg	multigraph

When	 considering	 a	 walk	W	 in	 some	 multigraph	M,	 it	 is	 not	 enough	 to
express	W	as	a	sequence	of	vertices.	For	example,	if	u,	v	are	consecutive	vertices
in	W	and	there	are	parallel	edges	joining	u	and	v	in	M,	then	it	must	somehow	be
indicated	which	edge	is	being	traversed,	such	as	u,	e,	v.

In	 graph	 theory	 terms,	 the	 Königsberg	 Bridge	 Problem	 is:	 Does	 the



multigraph	M	of	Figure	6.5	contain	an	Eulerian	circuit	or	an	Eulerian	trail?	(Of
course,	Euler	didn’t	use	these	terms.)	Suppose	that	such	a	journey	over	the	seven
bridges	of	Königsberg	was	possible.	Then	 it	must	begin	at	some	 land	area	and
end	at	a	land	area	(possibly	the	same	one).	Such	a	journey	must	therefore	result
in	 a	 trail	 of	 length	 7	 (one	 edge	 for	 each	 bridge)	 that	 encounters	 eight	 vertices
(including	repetition),	namely,

Each	of	the	vertices	vi	(1	≤	i	≤	8)	represents	a	land	area	(A,	B,	C	or	D).	Certainly
each	land	area	must	appear	in	T.	Observe	that	all	four	vertices	of	the	multigraph
M	 have	 odd	 degree.	 At	 least	 two	 vertices	 of	M	 are	 neither	 the	 initial	 nor	 the
terminal	vertex	of	T.	Thus	each	time	that	such	a	vertex	is	entered	along	T,	 it	 is
exited.	 However,	 this	 implies	 that	 the	 vertex	 has	 even	 degree,	 which	 is
impossible.	Consequently,	 a	walk	 that	 passes	 over	 every	 bridge	 in	Königsberg
exactly	once	is	impossible	as	well.

Königsberg	was	founded	in	1255	and	was	the	capital	of	German	East	Prussia.
The	 Prussian	 Royal	 Castle	 was	 located	 in	 Königsberg	 but	 it	 was	 destroyed
during	World	War	 II,	 as	was	much	of	 the	 city.	Because	of	 the	outcome	of	 the
war,	 it	 was	 decided	 at	 the	 Potsdam	 Conference	 in	 1945	 that	 a	 region	 located
between	 Poland	 and	 Lithuania,	 containing	 the	 city	 of	 Königsberg,	 should	 be
made	 part	 of	 Russia.	 In	 1946,	 Königsberg	 was	 renamed	 Kaliningrad	 after
Mikhail	Kalinin,	the	formal	leader	of	the	Soviet	Union	during	1919-1946.	After
the	 fall	 of	 the	 USSR,	 Lithuania	 and	 other	 former	 Soviet	 republics	 became
independent	and	Kaliningrad	was	no	longer	part	of	Russia.	None	of	the	attempts
to	change	its	name	back	to	Königsberg	have	been	successful.

Returning	 to	 the	 multigraph	 M	 of	 Figure	 6.5,	 we	 are	 led	 to	 ask	 what
characteristic	it	possesses	that	doesn’t	allow	it	to	have	an	Eulerian	circuit	or	an
Eulerian	 trail.	We	have	already	mentioned	 that	all	 four	vertices	of	M	have	odd
degree.	This,	it	turns	out,	is	the	key	observation.	For	a	connected	graph	G	to	be
Eulerian,	 it	 is	 both	 necessary	 and	 sufficient	 that	 each	 vertex	 of	 G	 has	 even
degree.

Theorem	6.1	A	nontrivial	connected	graph	G	is	Eulerian	if	and	only	if	every
vertex	of	G	has	even	degree.

Proof.	Assume	first	that	G	is	Eulerian.	Then	G	contains	an	Eulerian	circuit	C.
Suppose	that	C	begins	at	the	vertex	v	(and	therefore	ends	at	u).	We	show	that
every	vertex	of	G	 is	 even.	Let	v	 be	 a	vertex	of	G	 different	 from	u.	 Since	C



neither	begins	nor	ends	at	v,	each	time	that	v	is	encountered	on	C,	two	edges
are	 accounted	 for	 (one	 to	 enter	 v	 and	 another	 to	 exit	 v).	 Thus	 v	 has	 even
degree.	Now	 to	u.	Since	C	 begins	 at	u,	 this	 accounts	 for	 one	 edge.	Another
edge	is	accounted	for	because	C	ends	at	u.	If	u	is	encountered	at	other	times,
two	edges	are	accounted	for.	So	u	is	even	as	well.

For	 the	 converse,	 assume	 that	G	 is	 a	 nontrivial	 connected	 graph	 in	 which
every	vertex	 is	 even.	We	 show	 that	G	 contains	 an	Eulerian	 circuit.	Among	 all
trails	in	G,	let	T	be	one	of	maximum	length.	Suppose	that	T	is	a	u	−	v	trail.	We
claim	 that	u	 =	v.	 If	 not,	 then	T	 ends	 at	 v.	 It	 is	 possible	 that	v	may	 have	 been
encountered	earlier	in	T.	Each	such	encounter	 involves	 two	edges	of	G,	one	 to
enter	v	and	another	to	exit	v.	Since	T	ends	at	v,	an	odd	number	of	edges	at	v	has
been	encountered.	But	v	has	even	degree.	This	means	 that	 there	 is	at	 least	one
edge	at	v,	say	vw,	 that	does	not	appear	on	T.	But	then	T	can	be	extended	 to	w,
contradicting	the	assumption	that	T	has	maximum	length.	Thus	T	is	a	u	−	u	trail,
that	is,	C	=	T	is	a	u	−	u	circuit.	If	C	contains	all	edges	of	G,	then	C	is	an	Eulerian
circuit	and	the	proof	is	complete.

Suppose	then	that	C	does	not	contain	all	edges	of	G,	 that	 is,	 there	are	some
edges	of	G	that	do	not	lie	on	C.	Since	G	is	connected,	some	edge	e	=	xy	not	on	C
is	 incident	 with	 a	 vertex	 x	 that	 is	 on	C.	 Let	H	 =	G	 −	E(C),	 that	 is,	H	 is	 the
spanning	subgraph	of	G	obtained	by	deleting	the	edges	of	C.	Every	vertex	of	C
is	incident	with	an	even	number	of	edges	on	C.	Since	every	vertex	of	G	has	even
degree,	 every	 vertex	 of	H	 has	 even	 degree.	 It	 is	 possible,	 however,	 that	H	 is
disconnected.	 On	 the	 other	 hand,	 H	 has	 at	 least	 one	 nontrivial	 component,
namely,	 the	component	H1	of	H	containing	 the	edge	xy.	This	means	 that	H1	 is
connected	and	every	vertex	of	H1	has	even	degree.	Consider	a	trail	of	maximum
length	in	H1,	beginning	at	x.	As	we	just	saw,	this	trail	must	also	end	at	x	and	is
an	x	–	x	circuit	C′	of	H1.

Now	if,	in	the	circuit	C,	we	were	to	attach	C′	when	we	arrive	at	x,	we	obtain	a
circuit	C″	in	G	of	greater	 length	 than	C,	which	 is	a	contradiction.	This	 implies
that	C	contains	all	edges	of	G	and	is	an	Eulerian	circuit.

Although	 Theorem	 6.1	 is	 credited	 to	 Leonhard	 Euler,	 as	 indeed	 it	 should,
Euler’s	 proof	 was	 incomplete.	 Euler	 failed	 to	 show	 that	 if	 every	 vertex	 of	 a
connected	graph	G	is	even,	then	G	is	Eulerian.	While	Euler	did	not	give	a	proof
with	 the	 care	 and	 precision	 that	 is	 normally	 done	 today,	 it	 is	 quite	 likely	 that
Euler	felt	 this	 implication	was	clear.	Nevertheless,	 it	wasn’t	until	1873	that	 the
missing	portion	of	 the	proof	was	published.	The	proof	was	completed	by	Carl
Hierholzer.	Actually	at	that	time	Hierholzer	had	died	but	he	had	told	a	colleague
what	he	had	done	and	his	 colleague	kindly	wrote	 the	paper	 for	him	and	 listed



Hierholzer	as	its	sole	author.
With	the	aid	of	Theorem	6.1,	it	is	now	easy	to	characterize	graphs	possessing

an	Eulerian	trail.

Corollary	6.2	A	connected	graph	G	contains	an	Eulerian	 trail	 if	and	only	 if
exactly	two	vertices	of	G	have	odd	degree.	Furthermore,	each	Eulerian	trail	of
G	begins	at	one	of	these	odd	vertices	and	ends	at	the	other.

Proof.	Assume	first	that	G	contains	an	Eulerian	trail	T.	Thus	T	is	a	u	−	v	trail
for	some	distinct	vertices	u	and	v.	We	now	construct	a	new	connected	graph	H
from	G	by	adding	a	new	vertex	x	of	degree	2	and	joining	it	to	u	and	v.	Then	C
=	(T,	x,	u)	 is	an	Eulerian	circuit	 in	H.	By	Theorem	6.1,	every	vertex	of	H	 is
even	and	so	only	u	and	v	have	odd	degrees	in	G	=	H	−	x.

For	the	converse,	we	proceed	in	a	similar	manner.	Let	G	be	a	connected	graph
containing	exactly	two	vertices	u	and	v	of	odd	degree.	We	show	that	G	contains
an	Eulerian	 trail	T,	where	T	 is	 either	a	u	 −	v	 trail	 or	 a	v	 −	u	 trail.	Add	 a	 new
vertex	x	of	degree	2	 to	G	and	 join	 it	 to	u	and	v,	 calling	 the	 resulting	graph	H.
Therefore,	H	 is	a	connected	graph	all	of	whose	vertices	are	even.	By	Theorem
6.1,	H	is	an	Eulerian	graph	containing	an	Eulerian	circuit	C.	Since	it	is	irrelevant
which	vertex	of	C	is	the	initial	(and	terminal)	vertex,	we	assume	that	C	is	an	x	−
x	circuit.	Since	x	 is	 incident	only	with	 the	edges	ux	and	vx,	one	of	 these	 is	 the
first	edge	of	C	and	the	other	is	the	final	edge	of	C.	Deleting	x	from	C	results	in
an	Eulerian	trail	T	of	G	that	begins	either	at	u	or	v	and	ends	at	the	other.

As	 a	 result	 of	Theorem	6.1	 and	Corollary	 6.2,	 it	 is	 now	 relatively	 easy	 to
determine	 whether	 a	 graph	 contains	 an	 Eulerian	 circuit	 or	 an	 Eulerian	 trail.
Furthermore,	Theorem	6.1	and	Corollary	6.2	both	hold	if	“graph”	is	replaced	by
“multigraph.”

Certainly,	Cn,	n	≥	3,	 is	Eulerian	and	Pn,	n	≥	2,	contains	an	Eulerian	 trail.	A
complete	 graph	 is	 Eulerian	 if	 and	 only	 if	 n	 ≥	 3	 and	 n	 is	 odd;	 while	Ks,	 t	 is
Eulerian	if	and	only	if	s	and	t	are	both	even.	The	graph	K2,t	contains	an	Eulerian
trail	if	and	only	if	t	is	odd.	The	n-cube	Qn	is	Eulerian	if	and	only	if	n	≥	2	and	n	is
even.	We	have	seen	that	the	n-cube	Qn,	n	≥	2,	is	defined	as	the	Cartesian	product
of	the	(n	−	1)-cube	Qn−1	and	K2.	This	suggests	a	question.

Example	 6.3	 Find	 a	 necessary	 and	 sufficient	 condition	 for	 the	 Cartesian
product	G	×	H	of	two	nontrivial	connected	graphs	G	and	H	to	be	Eulerian.



Solution.	 We	 can	 think	 of	G	 ×	H	 as	 being	 constructed	 by	 replacing	 each
vertex	v	of	G	by	a	copy	Hv	of	H.	Let	x	be	a	vertex	of	G	×	H.	Then	x	belongs	to
Hv	for	some	vertex	v	of	G.	The	vertex	x	 is	adjacent	to	its	neighbors	in	Hv	as
well	as	to	one	vertex	in	Hu	for	every	neighbor	u	of	v	in	G.	Thus

Hence	degG×H	x	is	even	if	and	only	if	degHv	x	and	degG	v	are	both	even	or	both
odd	(that	is,	they	are	of	the	same	parity).

If	degHv	x	is	even,	then	degG	v	is	even	for	every	vertex	v	of	G;	while	if	degHv
x	is	odd,	then	degG	v	is	odd	for	every	vertex	v	of	G.	We	have	therefore	arrived	at
the	following:

Let	G	and	H	be	nontrivial	connected	graphs.	Then	G	×	H	is	Eulerian	if
and	only	if	both	G	and	H	are	Eulerian	or	every	vertex	of	G	and	H	is	odd.

Exercises	for	Section	6.1

6.1	The	diagram	of	Figure	6.6	shows	the	nine	rooms	on	the	second	floor	of	a
large	house	with	doorways	between	various	rooms.	Is	it	possible	to	start	in
some	 room	 and	 go	 for	 a	 walk	 so	 that	 each	 doorway	 is	 passed	 through
exactly	once?	How	is	this	question	related	to	graph	theory?

Figure	6.6:	The	diagram	in	Exercise	6.1

6.2	Let	G1	and	G2	be	two	Eulerian	graphs	with	no	vertex	in	common.	Let	v1	
V(G1)	 and	 v2	 	V(G2).	 Let	G	 be	 the	 graph	 obtained	 from	G1	 	G2	 by
adding	the	edge	v1v2.	What	can	be	said	about	G?



6.3	Let	G1,	G2	and	G3	be	pairwise	disjoint	connected	regular	graphs	and	let	G
=	G1	+	 (G2	+	G3)	be	 the	graph	obtained	 from	G1,	G2	 and	G3	 by	 adding
edges	 between	 every	 two	 vertices	 belonging	 to	 two	 of	G1,	G2	 and	G3.
Prove	that	if	G1	and	 	are	Eulerian	but	G2	and	G3	are	not	Eulerian,	then
G	is	Eulerian.

6.4	Give	an	example	of	a	graph	G	such	that

(a)	both	G	and	 	are	Eulerian.
(b)	G	is	Eulerian	but	 	is	not.
(c)	 neither	G	 nor	 	 is	Eulerian	 and	 both	G	 and	 	 contain	 an	 Eulerian

trail.
(d)	neither	G	nor	 	 is	Eulerian,	but	G	 contains	an	Eulerian	 trail	 and	

does	not.
(e)	G	contains	an	Eulerian	trail	and	an	edge	e	such	that	G	−	e	is	Eulerian.

6.5	Only	one	graph	of	order	5	has	 the	property	 that	 the	addition	of	any	edge
produces	an	Eulerian	graph.	What	is	it?

6.6	Let	G	be	a	connected	regular	graph	that	is	not	Eulerian.	Prove	that	if	 	is
connected,	then	 	is	Eulerian.

6.7	Let	G	be	an	r-regular	graph	of	odd	order	n	and	let	 ,	where	F	and	G
have	 disjoint	 vertex	 sets.	 A	 graph	 H	 is	 constructed	 from	 G	 and	 F	 by
adding	two	new	vertices	u	and	v	and	joining	u	and	v	to	each	other	as	well
as	to	every	vertex	of	G	and	F.	Which	of	the	following	is	true?

(a)	H	is	Eulerian.
(b)	H	has	an	Eulerian	trail.
(c)	H	has	neither	an	Eulerian	circuit	nor	an	Eulerian	trail.

6.8	 (a)	Show	 that	 every	nontrivial	 connected	graph	G	 has	 a	 closed	 spanning
walk	that	contains	every	edge	of	G	exactly	twice.

(b)	Which	nontrivial	connected	graphs	G	have	closed	spanning	walks	that
contain	every	edge	of	G	exactly	three	times?

6.2	Hamiltonian	Graphs



Figure	 6.7	 shows	 a	 diagram	 of	 a	 modern	 art	 museum	 that	 is	 divided	 into	 15
exhibition	rooms.	At	the	end	of	each	day,	a	security	officer	enters	the	reception
room	by	 the	 front	 door	 and	 checks	 each	 exhibition	 room	 to	make	 certain	 that
everything	 is	 in	order.	 It	would	be	most	efficient	 if	 the	officer	could	visit	each
room	only	once	and	return	to	the	reception	room.	Can	this	be	done?

This	 question	 can	 be	 rephrased	 in	 terms	 of	 graphs.	 A	 graph	 G	 can	 be
associated	with	 this	museum	where	 the	vertices	of	G	 are	 the	 exhibition	 rooms
and	two	vertices	(rooms)	are	joined	by	an	edge	if	there	is	a	doorway	between	the
two	rooms.	This	graph	G	is	shown	in	Figure	6.8.	The	question	above	can	now	be
asked	 as	 follows:	 Does	 the	 graph	G	 of	 Figure	 6.8	 have	 a	 cycle	 that	 contains
every	vertex	of	G?	The	answer	is	yes;	indeed,

Figure	6.7:	A	digram	of	the	exhibition	rooms	in	a	museum

is	such	a	cycle.	This	brings	us	to	the	main	topic	of	this	section.

Figure	6.8:	A	graph	that	models	the	exhibition	rooms	and	doorways	of	the



museum	of	Figure	6.7

A	cycle	in	a	graph	G	that	contains	every	vertex	of	G	is	called	a	Hamiltonian
cycle	 of	 G.	 Thus	 a	 Hamiltonian	 cycle	 of	 G	 is	 a	 spanning	 cycle	 of	 G.	 A
Hamiltonian	graph	is	a	graph	that	contains	a	Hamiltonian	cycle.	Therefore,	the
graph	 G	 of	 Figure	 6.8	 is	 Hamiltonian.	 Certainly	 the	 graph	 Cn	 (n	 ≥	 3)	 is
Hamiltonian.	Also,	for	n	≥	3,	the	complete	graph	Kn	is	a	Hamiltonian	graph.

A	path	in	a	graph	G	that	contains	every	vertex	of	G	is	called	a	Hamiltonian
path	 in	 G.	 If	 a	 graph	 contains	 a	 Hamiltonian	 cycle,	 then	 it	 contains	 a
Hamiltonian	 path.	 In	 fact,	 removing	 any	 edge	 from	 a	 Hamiltonian	 cycle
produces	a	Hamiltonian	path.	If	a	graph	contains	a	Hamiltonian	path,	however,	it
need	not	contain	a	Hamiltonian	cycle.	For	example,	the	graph	Pn	clearly	contains
a	Hamiltonian	path	but	Pn	contains	no	cycles	at	all.

The	graph	G	=	K3,3	of	Figure	6.9	is	a	Hamiltonian	graph.	For	example,	C	=
(u,	x,	v,	y,	w,	z,	u)	 is	a	Hamiltonian	cycle	of	G.	Since	G	 is	3-regular	and	every
Hamiltonian	 cycle	 contains	 two	 edges	 incident	 with	 each	 vertex	 of	G,	 every
Hamiltonian	cycle	of	the	graph	G	of	Figure	6.9	fails	to	contain	exactly	one	of	the
three	edges	 incident	with	each	vertex	of	G.	By	redrawing	G	 in	Figure	6.9,	we
can	see	more	easily	that	G	is	Hamiltonian.	Indeed,	a	Hamiltonian	graph	of	order
n	consists	of	a	cycle	C	of	length	n,	with	possibly	some	additional	edges	joining
non-consecutive	 vertices	 of	C.	 Since	 a	 Hamiltonian	 cycle	C	 in	 a	 graph	G	 of
order	n	≥	3	is	a	connected	2-regular	subgraph	of	order	n,	every	proper	subgraph
of	C	is	a	path	or	a	(disjoint)	union	of	paths.	In	particular,	C	contains	no	cycle	of
order	less	than	n	as	a	subgraph,	and	certainly	C	contains	no	subgraph	having	a
vertex	of	degree	3	or	more.	Furthermore,	since	a	Hamiltonian	cycle	C	of	G	is	a
2-regular	subgraph,	if	G	contains	a	vertex	v	of	degree	2	in	G,	then	both	edges	of
G	incident	with	v	must	lie	on	C.

Figure	6.9:	The	Hamiltonian	graph	K3,3

The	graph	G	of	Figure	6.10	is	not	a	Hamiltonian	graph.	In	order	to	see	this,
let’s	 suppose	 that	G	 is	Hamiltonian.	 Then	G	 contains	 a	 Hamiltonian	 cycle	C.



Since	C	contains	the	vertex	t,	which	has	degree	2,	both	tu	and	tz	lie	on	C.	By	the
same	reasoning,	xy	and	xz	lie	on	C,	as	do	vw	and	vz.	However,	this	says	that	z	is
incident	with	three	edges	on	C,	which	is	impossible.	Therefore,	as	we	claimed,
the	graph	G	of	Figure	6.10	is	not	Hamiltonian.

Figure	6.10:	A	non-Hamiltonian	graph

The	famous	Petersen	graph	(shown	in	Figure	6.11)	 is	also	not	Hamiltonian.
The	 Petersen	 graph	 is	 a	 3-regular	 graph	 of	 order	 10.	 This	 graph	 can	 be
considered	as	being	constructed	from	two	5-cycles,	namely	the	outer-cycle	C′	=
(u1,	u2,	u3,	u4,	u5,	u1),	 the	 inner-cycle	C″	 =	 (v1,	v3,	v5,	v2,	 v4,	 v1)	 and	 the	 five
edges	u1v1,	u2v2,	u3v3,	u4v4,	u5v5.	(By	interchanging	the	labels	of	C′	and	C″,	we
see	that	it	doesn’t	matter	which	5-cycle	is	referred	to	as	the	outer-cycle	or	inner-
cycle.)	In	fact,	the	length	of	a	smallest	cycle	in	the	Petersen	graph	is	5.	There	are
several	ways	 to	 show	 that	 the	Petersen	graph	 is	 not	Hamiltonian.	We	describe
one	of	these.

Theorem	6.4	The	Petersen	graph	is	non-Hamiltonian.

Figure	6.11:	The	Petersen	graph:	A	non-Hamiltonian	graph

Proof.	 Suppose	 that	 the	 Petersen	 graph,	 which	 we	 will	 denote	 by	 PG,	 is



Hamiltonian.	Then	PG	 contains	 a	Hamiltonian	 cycle	C.	 This	 cycle	 contains
ten	edges.	Two	of	the	three	edges	incident	with	each	vertex	of	PG	necessarily
belong	to	C.	Certainly,	C	contains	all,	some	or	none	of	the	five	edges	uivi	(1	≤
i	≤	5);	so	at	least	five	edges	of	C	belong	either	to	C′	or	to	C″.	Therefore,	either
C′	contains	at	least	three	edges	of	C	or	C″	contains	at	least	three	edges	of	C.
Without	 loss	of	generality,	assume	that	C′	contains	at	 least	 three	edges	of	C.
First,	 observe	 that	 all	 five	 edges	 of	C′	 cannot	 belong	 to	C	 since	 no	 cycle
contains	a	smaller	cycle	as	a	subgraph.	Suppose	that	C	contains	exactly	four
edges	of	C′,	say	the	edges	u4u5,	u5u1,	u1u2,	u2u3	(see	Figure	6.12(a),	where	the
dashed	 edges	 of	 PG	 cannot	 belong	 to	C).	 However,	 the	 cycle	C	must	 then
contain	the	edges	u4v4,	u3v3	as	well	as	v1v3,	v1v4	(see	Figure	6.12(b)).	But	this
implies	that	C	contains	an	8-cycle,	which	is	impossible.

Figure	6.12:	The	cycle	C	contains	exactly	four	edges	of	C′

One	 case	 remains	 then,	 namely	 that	C	 contains	 exactly	 three	 edges	 of	C′.
There	are	two	possibilities:	(1)	the	three	edges	of	C′	on	C	are	consecutive	on	C′
or	(2)	these	three	edges	are	not	consecutive	on	C′.	These	possibilities	are	shown
in	Figures	6.13(a)	 and	 6.13(b),	 respectively.	 The	 situation	 in	 Figure	 6.13(a)	 is
impossible	 as	 u1v1	 is	 the	 only	 edge	 incident	 with	 u1	 that	 could	 lie	 on	 C.
Likewise,	 the	 situation	 in	 Figure	6.13(b)	 is	 impossible	 since	C	 would	 have	 to
contain	 the	 smaller	 cycle	 (u4,	 v4,	 v1,	 v3,	 u3,	 u4).	 Therefore,	 as	 claimed,	 the
Petersen	graph	is	not	Hamiltonian.



Figure	6.13:	The	cycle	C	contains	exactly	three	edges	of	C′

The	 adjective	 “Hamiltonian”	 is	 named	 for	 the	 Irish	mathematician	William
Rowan	 Hamilton	 (1805–1865).	 Although	 Hamilton’s	 personal	 life	 was	 filled
with	 sorrow,	 his	 professional	 life	 was	marked	 by	 numerous	 accomplishments.
His	 interests	 included	 poetry,	 optics,	 astronomy	 and	 mathematics	 (especially
algebra).	Indeed,	as	with	poetry,	Hamilton	felt	that	mathematics	too	was	artistic.
Hamilton	 became	 acquainted	with	 the	 distinguished	 poet	William	Wordsworth
and	 the	 two	 had	 discussions	 about	 science	 and	 poetry.	 Wordsworth	 told
Hamilton	that	his	talents	were	with	science,	however,	not	poetry.	One	thing	that
worked	against	Hamilton	was	his	inability	to	write	well.	Hamilton	was	knighted
in	1835	for	his	accomplishments	in	physics	and	thus	became	Sir	William	Rowan
Hamilton.	 It	 was	 Hamilton	 who	 discovered	 quaternions	 (the	 first
noncommutative	division	algebra)	and	he	spent	much	of	his	later	years	working
on	this	topic.

Hamilton’s	connection	with	graph	theory	was	even	more	slight	than	Euler’s.
This	 connection	 involved	 a	 well-known	 geometric	 figure.	 A	 regular
dodecahedron	 is	 a	 polyhedron	having	 twelve	 faces	 (all	 regular	 pentagons)	 and
twenty	corners	with	three	edges	of	pentagons	meeting	at	each	corner	(see	Figure
6.14).



Figure	6.14:	A	regular	dodecahedron

A	regular	dodecahedron	has	been	known	to	be	used	as	a	desk	calendar	since	a
month	can	be	displayed	on	each	of	its	twelve	faces.	In	1857,	Hamilton	invented
a	game	called	 the	Icosian	Game.	 It	consisted	of	a	 regular	dodecahedron	made
from	wood.	Each	 corner	 of	 the	dodecahedron	was	marked	with	one	of	 twenty
cities	 beginning	 with	 different	 consonants.	 A	 goal	 of	 the	 game	 was	 to	 travel
“Around	the	World,”	that	is,	to	find	a	round	trip	that	passed	through	each	of	the
twenty	cities	exactly	once.	To	make	it	easier	to	remember	which	city	had	already
been	visited,	there	was	a	peg	at	each	corner	so	the	journey	could	be	described	by
a	string	that	was	wrapped	around	the	peg	at	each	city	visited.	This	game	proved
to	be	awkward	and	a	board	game	version	of	it	was	produced	(see	Figure	6.15).

Figure	6.15:	The	graph	of	the	dodecahedron

Hamilton	sold	 the	game	 to	 J.	 Jacques	and	Sons	 (well	known	even	 today	as
makers	 of	 quality	 chess	 sets)	 for	 25	 pounds	 and	 obtained	 a	 patent	 for	 it	 in
London	in	1859.	The	game	was	a	commercial	failure.	In	graph	theory	terms,	the
object	 of	 the	 game	 was	 to	 find	 a	 Hamiltonian	 cycle	 in	 the	 graph	 (of	 the
dodecahedron)	in	Figure	6.15.	Of	course,	this	term	did	not	exist	at	that	time	but
it	was	Hamilton’s	game	 that	gave	 rise	 to	his	name	being	used	 for	 these	 terms.
Curiously,	some	two	years	before	this,	Thomas	Penyngton	Kirkman	had	asked	in
a	 paper	 of	 his	 whether	 there	 exists	 a	 cycle	 passing	 through	 every	 vertex	 of
certain	 polyhedra.	 So	 Hamilton	 was	 not	 the	 first	 to	 deal	 with	 Hamiltonian
graphs.

Let’s	 see	 what	 we	 know	 about	 Hamiltonian	 graphs.	 If	G	 is	 a	 Hamiltonian
graph,	 then	certainly	G	 is	connected.	Since	G	 contains	a	Hamiltonian	cycle,	G
has	no	cut-vertices	and	has	order	at	least	3;	so	G	is	2-connected.	This	says	that
for	 every	 vertex	 v	 of	G,	 the	 graph	G	 −	 v	 is	 connected.	 If	 we	 remove	 more



vertices	from	G,	then	the	number	of	components	of	the	resulting	graph	cannot	be
too	large.	Recall	that	k(G)	denotes	the	number	of	components	in	a	graph	G.

Theorem	6.5	If	G	is	a	Hamiltonian	graph,	then	for	every	nonempty	proper	set
S	of	vertices	of	G,

Proof.	Let	S	be	a	nonempty	proper	subset	of	V(G).	Suppose	that	k(G	−	S)	=	k
and	that	G1,	G2,	…,	Gk	are	the	components	of	G	−	S.	Since	G	is	Hamiltonian,
G	contains	a	Hamiltonian	cycle	C.	Whenever	C	encounters	a	vertex	of	Gi	 for
the	last	time	(1	≤	i	≤	k),	the	next	vertex	of	C	must	belong	to	S.	This	 implies
that	S	must	contain	at	least	k	vertices,	that	is,	k	=	k(G	−	S)	≤	|S|.

Theorem	6.5	gives	a	necessary	condition	for	a	graph	to	be	Hamiltonian,	that
is,	this	theorem	describes	a	property	possessed	by	every	Hamiltonian	graph.	The
main	benefit	of	a	necessary	condition	lies	in	the	contrapositive	of	the	statement:

Let	G	be	a	graph.	If	k(G	−	S)	>	|S|	for	some	nonempty	proper	subset	S	of
V(G),	then	G	is	not	Hamiltonian.

That	 is,	 Theorem	 6.5	 gives	 us	 a	 sufficient	 condition	 for	 a	 graph	 to	 be	 non-
Hamiltonian.	In	particular,	this	gives	us	the	obvious	fact	when	a	connected	graph
G	contains	a	cut-vertex	v	(and	where	S	=	{v})	and	k(G	−	v)	≤	2	>	1	=	|S|:

If	a	graph	G	contains	a	cut-vertex,	then	G	cannot	be	Hamiltonian.

Consider	 the	 graph	G	 of	 Figure	 6.16,	 where	 S	 =	 {u,	 v,	 w}.	 Then	G	 −	 S
contains	four	components.	However	then,	k(G	−	S)	=	4	>	3	=	|S|	and	by	Theorem
6.5,	G	 is	 not	 Hamiltonian.	 This	 sufficient	 condition	 for	 a	 graph	 to	 be	 non-
Hamiltonian	 is	 not	 necessary,	 however;	 that	 is,	 there	 exist	 non-Hamiltonian
graphs	G	 such	 that	k(G	−	S)	≤	 |S|	 for	every	nonempty	proper	subset	S	 of	V(G)
(see	Exercise	6.9).



Figure	6.16:	Illustrating	Theorem	6.5

Although	 the	 definitions	 of	 Eulerian	 circuits	 and	 Hamiltonian	 cycles	 seem
similar,	 these	 concepts	 are,	 in	 fact,	 quite	 different.	 While	 we	 have	 seen	 that
determining	 whether	 a	 graph	 contains	 an	 Eulerian	 circuit	 is	 not	 difficult,
determining	whether	 a	graph	contains	a	Hamiltonian	cycle	can	be	exceedingly
difficult.	Indeed,	while	there	is	a	very	simple	characterization	of	Eulerian	graphs
(Theorem	6.1),	 there	 is	no	 such	useful	 characterization	of	Hamiltonian	graphs.
This	 illustrates	 how	making	what	 appears	 to	 be	 a	 small	 change	 in	 a	 problem,
namely	 from	 seeking	 an	 Eulerian	 circuit	 to	 seeking	 a	 Hamiltonian	 cycle,	 can
change	 the	problem	 from	one	 that	 is	 easily	 solvable	 to	one	where	no	practical
method	of	solution	appears	to	exist.

As	 is	 ordinarily	 the	 case	 when	 there	 is	 no	 characterization	 of	 graphs
possessing	a	certain	property,	one	looks	for	sufficient	conditions	for	a	graph	to
have	such	a	property.	One	sufficient	condition	for	a	graph	to	be	Hamiltonian	that
is	not	difficult	to	apply	was	discovered	by	Oystein	Ore.

Theorem	6.6	Let	G	be	a	graph	of	order	n	≥	3.	If

for	each	pair	u,	v	of	nonadjacent	vertices	of	G,	then	G	is	Hamiltonian.

Proof.	Assume,	to	the	contrary,	that	there	exists	a	non-Hamiltonian	graph	G	of
order	 n	 ≥	 3	 such	 that	 deg	 u	 +	 deg	 v	 ≥	 n	 for	 each	 pair	 u,	 v	 of	 nonadjacent
vertices	of	G.	 It	may	be	 the	case	 that	 if	we	add	certain	edges	 to	G,	 then	 the
resulting	graph	is	still	not	Hamiltonian.	Of	course,	if	we	add	all	possible	edges
to	G,	we	obtain	Kn,	which	 is	obviously	Hamiltonian.	Add	as	many	edges	as
possible	 to	G	 so	 that	 the	 resulting	 graph	H	 is	 not	 Hamiltonian.	 Therefore,
adding	any	edge	to	H	results	in	a	Hamiltonian	graph.	Also,	degH	u	+	degH	v	≥
n	for	every	pair	u,	v	of	nonadjacent	vertices	of	H.



Since	H	is	not	complete,	H	contains	pairs	of	nonadjacent	vertices.	Let	x	and	y
be	 two	 nonadjacent	 vertices	 of	H.	 Thus	H	 +	 xy	 is	 Hamiltonian.	 Furthermore,
every	Hamiltonian	cycle	of	H	+	xy	must	contain	the	edge	xy.	This	means	that	H
contains	 a	Hamiltonian	x	 −	y	 path	P	 =	 (x	 =	x1,	x2,	…,	xn	 =	 y).	We	 claim	 that
whenever	x1xi	is	an	edge	of	H,	where	2	≥	i	≥	n,	then	xi−1xn	is	not	an	edge	of	H
(see	Figure	6.17),	for	otherwise,

is	a	Hamiltonian	cycle	of	H,	which	is	impossible.	Hence	for	each	vertex	in	{x2,
x3,	…,	xn}	that	is	adjacent	to	x1,	there	is	a	vertex	in	{x1,	x2,	…,	xn−1}	that	is	not
adjacent	to	xn.	However,	this	means	that	deg	xn	≤	(n	−	1)	−	deg	x1	and	so

This	is	a	contradiction.

Figure	6.17:	A	step	in	the	proof	of	Theorem	6.6

The	bound	given	in	Theorem	6.6	is	sharp.	For	example,	suppose	that	n	=	2k	+
1	≥	3	is	an	odd	integer.	Let	G	be	the	graph	obtained	by	identifying	a	vertex	in	a
copy	of	Kk+1	and	a	vertex	in	another	copy	of	Kk+1.	So	G	=	K1	+	(2Kk).	For	n	=	7,
the	graph	G	 is	 shown	 in	Figure	6.18.	Certainly	G	 is	 non-Hamiltonian	 since	G
contains	a	cut-vertex.	If	u	and	v	are	any	two	nonadjacent	vertices	of	G,	then	deg
u	=	deg	v	 =	k	 and	 so	deg	u	+	deg	v	 =	 2k	 =	n	 −	 1.	Hence	 the	 bound	 given	 in
Theorem	6.6	cannot	be	lowered	to	produce	the	same	conclusion.

Figure	6.18:	The	graph	G	=	K1	+	(2K3)



There	 is	 a	 corollary	 to	 Theorem	 6.6	 due	 to	 Gabriel	 Dirac,	 whom	 we
encountered	earlier	and	which	is	even	easier	to	apply.	Dirac	was	a	distinguished
research	 mathematician	 whose	 stepfather	 Paul	 Dirac	 was	 well	 known	 for	 his
work	in	quantum	mechanics.	In	fact,	Paul	Dirac	was	awarded	the	Nobel	Prize	for
physics	 in	 1933.	 Gabriel	 Dirac	 was	 a	 professor	 at	 Aarhus	 Universitet	 in
Denmark.

Corollary	6.7	Let	G	be	a	graph	of	order	n	≥	3.	If	deg	v	≥	n/2	for	each	vertex	v
of	G,	then	G	is	Hamiltonian.

Proof.	Certainly,	if	G	=	Kn,	then	G	is	Hamiltonian.	We	may	therefore	assume
that	G	is	not	complete.	Let	u	and	v	be	two	nonadjacent	vertices	of	G.	Thus

By	Theorem	6.6,	G	is	Hamiltonian.
If	we	look	at	the	proof	of	Theorem	6.6	more	carefully,	then	we	might	see	that

it	provides	a	proof	of	another	result,	due	to	J.	Adrian	Bondy	and	Vašek	Chvátal.

Theorem	6.8	Let	 u	 and	 v	 be	 nonadjacent	 vertices	 in	 a	 graph	G	 of	 order	 n
such	that	deg	u	+	deg	v	≥	n.	Then	G	+	uv	 is	Hamiltonian	 if	and	only	 if	G	 is
Hamiltonian.

Proof.	If	G	is	a	Hamiltonian	graph,	then	certainly	G	+	uv	 is	Hamiltonian	for
any	 two	 nonadjacent	 vertices	 u	 and	 v	 of	G.	 Thus	 we	 need	 only	 verify	 the
converse.

Let	G	+	uv	be	a	Hamiltonian	graph	for	two	nonadjacent	vertices	u	and	v	of	a
graph	G	and	assume,	to	the	contrary,	that	G	is	not	Hamiltonian.	This	implies	that
every	Hamiltonian	cycle	in	G	+	uv	must	contain	the	edge	uv	and	so	G	contains	a
Hamiltonian	u	−	v	path.	Since	degG	u	+	degG	v	≥	n,	 the	proof	of	Theorem	6.6
tells	us	that	G	contains	a	Hamiltonian	cycle.	This	is	a	contradiction.

The	closure	C(G)	of	a	graph	G	of	order	n	 is	 the	graph	obtained	from	G	by
recursively	joining	pairs	of	nonadjacent	vertices	whose	degree	sum	is	at	least	n
(in	 the	 resulting	 graph	 at	 each	 stage)	 until	 no	 such	 pair	 remains.	 Figure	 6.19
illustrates	how	to	obtain	the	closure	of	a	graph	G,	while	Figure	6.20	shows	three
other	 graphs	 and	 their	 closures.	 (The	 graph	G3	 of	Figure	 6.20	 is	 the	 graph	 of
Figure	6.19.)	In	the	graph	G4	of	Figure	6.20,	the	vertices	u	and	v	are	the	only	two
nonadjacent	vertices	whose	degree	sum	is	at	least	10	(the	order	of	G4).



Repeated	applications	of	Theorem	6.8	give	us	the	following	result.

Figure	6.19:	Constructing	the	closure	of	a	graph

Figure	6.20:	Graphs	and	their	closures

Theorem	6.9	A	graph	is	Hamiltonian	if	and	only	if	its	closure	is	Hamiltonian.

A	simple	but	useful	consequence	of	Theorem	6.9	is	stated	next.

Corollary	6.10	If	G	is	a	graph	of	order	at	least	3	such	that	C(G)	is	complete,



then	G	is	Hamiltonian.

We	saw	in	Corollary	6.7	(Dirac’s	theorem)	that	if	the	degree	of	every	vertex
is	 at	 least	n/2	 in	 a	 graph	G	 of	 order	n	 ≥	 3,	 then	G	 is	Hamiltonian.	Moreover,
Ore’s	 theorem	 (Theorem	6.6)	 requires	 a	weaker	 condition	 to	 be	 satisfied	 for	 a
graph	 to	 be	 Hamiltonian,	 as	 only	 the	 degree	 sum	 of	 every	 two	 nonadjacent
vertices	 must	 be	 at	 least	 n.	 Actually,	 Bondy	 and	 Chvátal’s	 Closure	 Theorem
(Theorem	 6.8)	 implies	 this	 as	 well.	 Indeed,	 Theorem	 6.8	 suggests	 that	 many
more	graphs	are	Hamiltonian.	Yet,	it	is	not	clear	what	conditions	on	the	degrees
of	the	vertices	of	a	graph	G	of	order	n	≥	3	must	be	satisfied	in	order	for	Theorem
6.8	 to	 guarantee	 that	G	 is	 Hamiltonian.	 An	 example	 of	 such	 a	 result	 (which
preceded	 Theorem	 6.8	 chronologically)	 is	 due	 to	 Lajos	 Pósa.	 The	 following
theorem	is	even	more	remarkable	because	Pósa	was	barely	a	teenager	when	he
discovered	this	result.	Despite	having	a	promising	future	in	research,	Pósa	went
on	to	devote	himself	to	the	mathematics	education	of	the	everyday	student	in	his
native	Hungary.

Theorem	6.11	Let	G	be	a	graph	of	 order	n	≥	3.	 If	 for	 every	 integer	 j	with	
,	the	number	of	vertices	of	G	with	degree	at	most	j	is	less	than	j,

then	G	is	Hamiltonian.

Proof.	We	show	 that	C(G)	 is	 complete.	Assume,	 to	 the	contrary,	 that	 this	 is
not	 the	case.	Among	all	pairs	of	nonadjacent	vertices	 in	C(G),	 let	u,	w	 be	 a
pair	 for	which	degC(G)	u	+	degC(G)	w	 is	maximum.	Necessarily,	 degC(G)	u	 +
degC(G)	w	 ≤	 n	 −	 1.	 We	 may	 also	 assume	 that	 degC(G)	 u	 ≤	 degC(G)	w.	 Let
degC(G)	u	=	k.	Thus	 	and	so

Let	W	 be	 the	 set	 of	 all	 vertices	 distinct	 from	 w	 that	 are	 not	 adjacent	 to	 w.
Therefore,	u	 	W.	Observe	that	if	v	 	W,	then	degC(G)	v	≤	k,	for	otherwise

contradicting	 the	 defining	 property	 of	 the	 pair	 u,	w.	 Therefore,	 the	 degree	 of
every	vertex	of	W	is	at	most	k.	So	by	hypothesis,	|W|	≤	k	−	1.	Hence

which	contradicts	(6.1).



For	j	=	1,	Theorem	6.11	says	that	G	has	no	vertex	of	degree	1.	For	j	=	2,	the
graph	G	is	allowed	to	have	a	vertex	of	degree	2.	For	j	=	3,	the	graph	G	is	allowed
to	have	a	vertex	of	degree	2	and	a	vertex	of	degree	3	or	two	vertices	of	degree	3.

Exercises	for	Section	6.2

6.9	We	have	 seen	 that	 the	graph	G	of	Figure	6.10	 is	 not	Hamiltonian.	Show
that	k(G	−	S)	≤	|S|	for	every	nonempty	proper	subset	S	of	V(G).	What	does
this	say	about	Theorem	6.5?

6.10	Let	G	be	a	6-regular	graph	of	order	10	and	let	u,	v	 	V(G).	Prove	that	G,	G
−	v	and	G	−	u	−	v	are	all	Hamiltonian.

6.11	Prove	that	 	is	Hamiltonian	for	n	≥	5.

6.12	Let	G	be	a	3-regular	graph	of	order	12	and	H	a	4-regular	graph	of	order
11.

(a)	Is	G	+	H	Eulerian?
(b)	Is	G	+	H	Hamiltonian?

6.13	Give	an	example	of	a	graph	G	that	is

(a)	Eulerian	but	not	Hamiltonian.	(Explain	why	G	is	not	Hamiltonian.)
(b)	Hamiltonian	but	not	Eulerian.	(Explain	why	G	is	not	Eulerian.)
(c)	Hamiltonian	and	has	an	Eulerian	trail	but	is	not	Eulerian.
(d)	neither	Eulerian	nor	Hamiltonian,	but	has	an	Eulerian	trail.

6.14	Give	an	example	of	a	graph	with	the	following	properties	or	explain	why
no	such	example	exists:

(a)	a	2-connected	(that	is,	connected,	order	at	least	3	and	no	cut-vertices)
Eulerian	graph	that	is	not	Hamiltonian.

(b)	a	Hamiltonian	graph	G	that	is	not	Eulerian	but	whose	complement	
is	Eulerian.

6.15	The	 subdivision	graph	 of	 a	 graph	G	 is	 that	 graph	 obtained	 from	G	 by
deleting	every	edge	uv	of	G	and	replacing	it	by	a	vertex	w	of	degree	2	that
is	joined	to	u	and	v.	Is	it	true	that	if	the	subdivision	graph	of	a	graph	G	is
Hamiltonian,	then	G	is	Eulerian?



6.16	Let	G	be	a	connected	r-regular	graph	of	even	order	n	such	that	 	is	also
connected.	Show	that

(a)	either	G	or	 	is	Eulerian.
(b)	either	G	or	 	is	Hamiltonian.

6.17	For	a	graph	G	of	order	n	≥	3,	the	graph	G(3)	is	obtained	from	G	by	adding
a	new	vertex	vS	for	each	3-element	subset	S	of	V(G)	and	joining	vS	to	each
vertex	in	S.	Find	all	such	graphs	G	for	which	G(3)	is	Hamiltonian.

6.18	Show	that	the	bound	in	Corollary	6.7	is	sharp.

6.19	Let	G1	and	G2	be	 two	graphs	of	order	n	≥	3,	each	of	which	satisfies	 the
hypothesis	 of	Dirac’s	 theorem	 (Corollary	6.7)	on	Hamiltonian	graphs.	A
graph	G	is	constructed	from	G1	 	G2	by	adding	edges	between	G1	and	G2
such	that	every	vertex	of	G1	is	joined	to	at	least	half	the	vertices	of	G2	in
such	a	way	that	every	vertex	of	G2	is	joined	to	at	least	half	the	vertices	of
G1.	Prove	that	G	is	Hamiltonian.

6.20	Let	G	be	a	graph	of	order	n	≥	3	having	the	property	that	for	each	v	 	V(G),
there	 is	 a	 Hamiltonian	 path	 with	 initial	 vertex	 v.	 Show	 that	 G	 is	 2-
connected	 (connected,	 order	 at	 least	 3	 and	 no	 cut-vertices)	 but	 not
necessarily	Hamiltonian.

6.21	Let	G	be	a	graph	of	order	n	≥	3	such	that	deg	u+deg	v	≥	n	−	1	for	every
two	nonadjacent	vertices	u	and	v.	Prove	that	G	must	contain	a	Hamiltonian
path.

6.22	 (a)	 Does	 there	 exist	 a	 graph	 G	 of	 order	 10	 and	 size	 28	 that	 is	 not
Hamiltonian?

(b)	 Does	 there	 exist	 a	 graph	 H	 of	 order	 10	 and	 size	 28	 that	 is	 not
Hamiltonian,	where	8	of	 the	10	vertices	have	the	following	degrees:
5,	5,	5,	5,	5,	6,	6,	6?

6.23	(a)	Does	there	exist	a	graph	G	of	order	n	=	2k	≥	6	and	size	m	=	k2+k−2	that
is	not	Hamiltonian?

(b)	Does	there	exist	a	graph	H	of	order	n	=	2k	≥	6	and	size	m	=	k2+k−2
that	is	not	Hamiltonian,	where	k	vertices	of	H	have	degree	k	and	k	−	2
vertices	of	H	have	degree	k	+	1?

6.24	(a)	A	connected	graph	G	of	order	n	=	2k	+	1	has	k	+	1	vertices	of	degree	2,



no	 two	 of	 which	 are	 adjacent,	 while	 the	 remaining	 k	 vertices	 have
degree	3	or	more.	Show	that	G	is	not	Hamiltonian.

(b)	Give	an	example	of	a	Hamiltonian	graph	H	of	order	n	=	2k	for	some	k
≥	 2,	where	 k	 vertices	 have	 degree	 2,	 no	 two	 vertices	 of	 which	 are
adjacent,	while	the	remaining	vertices	have	degree	3	or	more.

6.3	Exploration:	Hamiltonian	Walks

While	 certainly	 not	 every	 connected	 graph	 of	 order	 at	 least	 3	 contains	 a
Hamiltonian	cycle,	every	connected	graph	does	contain	a	closed	spanning	walk.
Indeed,	if	every	edge	of	a	connected	graph	G	is	replaced	by	two	parallel	edges,
then	the	resulting	multigraph	M	is	Eulerian	(see	Figure	6.21).	Since	an	Eulerian
circuit	in	M	gives	rise	to	a	closed	spanning	walk	in	G	in	which	each	edge	of	G
appears	twice,	it	follows	that	a	connected	graph	of	size	m	has	a	closed	spanning
walk	of	length	2m	in	G.

Figure	6.21:	Closed	spanning	walks	in	graphs

A	Hamiltonian	walk	 in	 a	 connected	graph	G	 is	 a	 closed	 spanning	walk	of
minimum	length	in	G.	From	our	earlier	observation,	every	connected	graph	G	of
size	m	contains	a	Hamiltonian	walk	and	the	length	of	such	a	walk	is	at	most	2m.
The	 length	 of	 a	 Hamiltonian	 walk	 in	G	 is	 denoted	 by	 h(G).	 Therefore,	 for	 a
connected	graph	G	of	order	n	≥	3,	 it	 follows	 that	h(G)	=	n	 if	 and	only	 if	G	 is
Hamiltonian.	 The	 concept	 of	 a	Hamiltonian	walk	was	 introduced	 by	 Seymour
Goodman	and	Stephen	Hedetniemi	in	1973.

Although	it	is	often	difficult	to	determine	whether	a	graph	G	is	Hamiltonian,
we	have	seen	that	if	G	satisfies	any	of	a	number	of	sufficient	conditions,	then	G
is	Hamiltonian.	However,	none	of	these	conditions	is	necessary	and	so	G	can	be
Hamiltonian	without	satisfying	any	of	these	conditions.	In	such	a	case,	our	only
option	may	be	to	construct	a	Hamiltonian	cycle	in	G.	So	the	problem	is	reduced
to	finding	a	way	to	list	all	of	the	vertices	of	G	in	a	cyclic	sequence	(v1,	v2,	…,	vn,
v1)	so	that	every	two	consecutive	vertices	in	the	sequence	are	adjacent.	Another



way	to	say	this	is	to	list	the	vertices	of	G	in	a	cyclic	sequence	(v1,	v2,	…,	vn,	v1)
such	that	d(vi,	vi+1)	=	1	for	1	≤	i	≤	n	−	1	and	d(vn,	v1)	=	1.	If	we	also	write	v1	as
vn+1,	then	the	cyclic	sequence	(v1,	v2,	…,	vn,	vn+1	=	v1)	is	a	Hamiltonian	cycle	if
and	only	if

Looking	at	Hamiltonian	cycles	in	this	manner	suggests	another	concept.	For	a
connected	graph	G	of	order	n	≥	3	and	a	cyclic	ordering

of	V(G),	define	the	number	d(s)	by

Therefore,	 d(s)	 ≥	 n	 for	 each	 cyclic	 ordering	 s	 of	 V(G).	 Moreover,	 G	 is
Hamiltonian	if	and	only	if	there	exists	a	cyclic	ordering	s′	of	V(G)	such	that	d(s′)
=	n.	The	Hamiltonian	number	h*(G)	of	G	is	defined	by

where	the	minimum	is	taken	over	all	cyclic	orderings	s	of	V(G).	For	the	graph	G
=	K2,3	of	Figure	6.22,	d(s1)	=	8	and	d(s2)	=	6	for	the	cyclic	orderings

of	V(G).	Since	G	is	a	non-Hamiltonian	graph	of	order	5	and	d(s2)	=	6,	it	follows
that	h*(G)	=	6.

We	are	about	to	see	that	there	is	an	alternative	way	to	define	the	length	h(G)
of	a	Hamiltonian	walk	in	G.	Denote	the	length	of	a	walk	W	by	L(W).

Theorem	6.12	For	every	connected	graph	G,



Figure	6.22:	A	graph	G	with	h*(G)	=	6

Proof.	First,	we	show	that	h(G)	≤	h*(G).	Let	s	:	v1,	v2,	…,	vn,	vn+1	=	v1	be	a
cyclic	ordering	of	V(G)	for	which	d(s)	=	h*(G).	For	each	integer	i	with	1	≤	i	≤
n,	let	Pi	be	a	vi	−	vi+1	geodesic	in	G.	Thus	L(Pi)	=	d(vi,	vi+1).	The	union	of	the
paths	Pi	form	a	closed	walk	W	in	G	containing	all	vertices	of	G.	Therefore,

Next,	we	show	that	h*(G)	≤	h(G).	Let	W	 be	 a	Hamiltonian	walk	 in	G	with
L(W)	=	h(G).	Suppose	that	W	=	(x1,	x2,	…,	xN,	x1),	where	then	N	≥	n.	Define	v1	=
x1	and	v2	=	x2.	For	3	≥	i	≥	n,	define	vi	to	be	xji,	where	ji	is	the	smallest	positive
integer	such	that	 .	Then	s	:	v1,	v2,	…,	vn,	vn+1	=	v1
is	 a	 cyclic	ordering	of	V(G).	For	 each	 i	with	 1	≤	 i	 ≤	n,	 let	Qi	 be	 the	 vi	 −	vi+1
subwalk	of	W	and	so	d(vi,	vi+1)	≤	L(Qi).	Since

we	have	the	desired	result.

As	a	consequence	of	Theorem	6.12,	we	can	denote	the	Hamiltonian	number
of	a	graph	G	by	h(G),	which	is	then	the	length	of	Hamiltonian	walk	in	G.

For	the	graph	G	=	K2,3	of	Figure	6.22	and	the	cyclic	orderings	s1	:	v1,	v2,	v3,
v4,	v5,	v1	and	s2	:	v1,	v3,	v2,	v4,	v5,	v1	of	V(G),	we	saw	that	d(s1)	=	8	and	d(s2)	=	6.
Actually,	 it	 is	 not	 difficult	 to	 show	 that	 d(s)	 is	 either	 8	 or	 6	 for	 every	 cyclic
ordering	s	of	V(G).	This	suggests	another	parameter	of	a	connected	graph.	The
upper	Hamiltonian	number	h+(G)	of	a	connected	graph	G	is	defined	as



where	the	maximum	is	 taken	over	all	cyclic	orderings	s	of	V(G).	Therefore,	h+
(G)	=	8	for	the	graph	G	of	of	Figure	6.22.

As	another	example,	we	consider	the	Petersen	graph.	Label	the	vertices	of	the
Petersen	 graph	 PG	 as	 shown	 in	 Figure	 6.23.	 Since	 PG	 is	 a	 non-Hamiltonian
graph	of	order	10,	h(PG)	≥	11.	On	the	other	hand,	let	s	:	x1,	x2,	…,	x11	=	x1	be
any	cyclic	ordering	of	 the	vertices	of	PG.	Since	diam(PG)	=	2,	 it	 follows	 that
d(xi,	xi+1)	 ≤	 2	 for	 1	 ≤	 i	 ≤	 10.	Hence	d(s)	 ≤	 2	 ·	 10	=	 20	 and	 so	h+(PG)	 ≤	 20.
Therefore,

Figure	6.23:	The	Petersen	graph

In	fact,	h(PG)	=	11	and	h+(PG)	=	20.	Moreover,	consider	the	sequences	si	(1	≤	i
≤	10):

Since	d(si)	=	10	+	i	for	1	≤	i	≤	10,	it	follows	that	for	each	integer	k	with	11	≤	k	≤
20,	there	exists	a	cyclic	ordering	s	of	V(PG)	such	that	d(s)	=	k.



Exercises	for	Section	6.3

6.25	For	G1	=	Kn	and	G2	=	Ks,	t,	where	n	≥	3	and	1	≤	s	≤	t,	find	h(Gi)	and	h+(Gi)
for	i	=	1,	2.

6.26	Give	an	example	of	a	graph	G	of	order	n	≥	3	such	that	h(G)	=	n	+	1.	Verify
that	your	example	is	correct.

6.27	Give	 an	 example	of	 a	graph	G	 of	order	n	≥	3	 such	 that	h(G)	=	2n	 −	 2.
Verify	that	your	example	is	correct.

6.28	Let	Cn	be	a	cycle	of	order	n	≥	3.

(a)	What	is	h+(Cn)	if	n	is	even?

(b)	What	can	you	say	about	h+(Cn)	if	n	is	odd?

6.29	(a)	Prove	that	if	G	is	a	connected	graph	of	order	n	and	diameter	d	≥	2,	then
h+(G)	≤	nd.

(b)	Is	the	upper	bound	in	(a)	is	sharp?

6.30	Determine	all	graphs	G	for	which	h(G)	=	h+(G).

6.31	Instead	of	considering	cyclic	sequences	of	the	vertices	of	a	graph	G	 (and
studying	 the	 Hamiltonian	 and	 upper	 Hamiltonian	 numbers),	 consider
linear	sequences	of	the	vertices	of	G.

6.33	Ask	and	answer	a	question	of	your	own	concerning	Hamiltonian	numbers
and/or	upper	Hamiltonian	numbers.

6.4	Excursion:	Early	Books	of	Graph	Theory

Theorem	 6.1,	 published	 in	 1736,	 is	 considered	 to	 be	 the	 beginning	 of	 graph
theory.	It	wasn’t	until	1936,	however,	when	the	first	 textbook	(in	German)	was
written	on	graph	theory	by	Dénes	König.	König	was	born	in	Budapest,	Hungary
on	September	21,	1884.	König	was	interested	in	mathematics	at	an	early	age,	no
doubt	 influenced	 by	 his	 father	who	was	 a	well-known	mathematics	 professor.
Indeed,	he	even	published	a	paper	as	a	high	school	student.



König	spent	nine	semesters	doing	university	work,	the	first	four	in	Budapest
and	the	last	five	in	Göttingen.	He	attended	lectures	by	Hermann	Minkowski	on
analysis	situs,	which	is	what	topology	was	called	in	its	early	days.	The	fact	that
Minkowski	was	interested	in	graph	theory	played	a	big	role	in	the	mathematics
König	decided	to	work	on.	König	received	his	doctorate	in	1907	and	wrote	his
dissertation	 in	 geometry.	 He	 acquired	 a	 faculty	 position	 at	 the	 Technische
Hochschule	 in	Budapest	 that	year	and	 remained	a	member	of	 the	 faculty	 there
until	his	death.	Among	the	courses	König	taught	was	graph	theory,	although	the
name	 “graph	 theory”	 never	 appeared	 in	 the	 catalogue	 at	 the	 university	 until
1927.	It	fell	under	the	heading	of	analysis	situs	prior	to	that	time.	In	1935	König
became	 a	 full	 professor.	 König	 was	 well	 known	 for	 his	 enthusiastic	 lectures,
although	his	lectures	were	not	always	well	attended.	Because	of	him,	however,	a
number	of	dedicated	students	were	introduced	to	this	new	area	of	mathematics.
Indeed,	under	his	influence,	Hungarian	researchers	turned	to	this	field,	including
Paul	Erd s,	Tibor	Gallai	and	Paul	Turán.

Although	 an	 excellent	 mathematician,	 König’s	 main	 accomplishment	 is
probably	 the	 popularization	 and	 recognition	 of	 graph	 theory.	 Because	 of	 his
efforts,	graph	theory	grew	from	being	a	collection	of	isolated	results	in	a	branch
of	 recreational	 mathematics	 to	 a	 recognized	 new	 area	 of	 the	 mathematical
sciences.	 Although	 he	 was	 belittled	 by	 some	 mathematicians,	 he	 was	 not
discouraged.	 He	 believed	 in	 the	 future	 of	 graph	 theory.	 Indeed,	 König	 would
often	begin	a	lecture	on	graph	theory	by	saying:

Graph	theory	is	one	of	the	most	interesting	of	mathematical	disciplines.

In	1936,	König’s	book	Theorie	der	endlichen	und	unendlichen	Graphen	(the
very	 first	 book	 ever	written	 solely	 on	 graph	 theory)	was	 published	 in	 Leipzig
although	Oswald	Veblen	had	discussed	graph	theory	in	his	1922	book	Analysis
Situs,	 the	first	book	written	on	topology.	König	worked	on	his	book	with	great
care	 for	 many	 years.	 His	 book	 awakened	 the	 interest	 of	 many	 young
mathematicians	 in	 graph	 theory,	 although	 its	 impact	was	 only	 felt	 after	World
War	II.	In	1944,	after	the	occupation	of	Hungary	by	the	Nazis,	König	worked	to
assist	 persecuted	 mathematicians.	 Rather	 than	 be	 persecuted	 himself,	 he
committed	suicide	on	October	19,	1944.	In	1950	König’s	book	was	reprinted	in
the	United	States.	For	over	20	years,	König’s	work	was	the	only	book	on	graph
theory,	until	1958	when	Théorie	des	Graphes	et	Ses	Applications	by	the	French
mathematician	Claude	Berge	was	published.

Claude	Berge	was	born	on	June	5,	1926.	He	was	the	one	individual	to	spread
the	word	of	graph	theory	throughout	France.	Despite	König’s	book,	prior	to	the



1950s	many	mathematicians	 thought	 little	 of	 combinatorics	 and	 graph	 theory.
Most	French	mathematicians	tended	to	resist	graph	theory	and	preferred	the	term
“network”	instead.	However,	because	of	Berge’s	efforts,	all	this	changed.

When	 graph	 theory	 was	 introduced	 to	 Berge,	 it	 was	 a	 subject	 that	 was
unknown	in	France.	It	was	Berge’s	intent	to	make	some	sense	of	this	new	field.
At	first,	he	worked	on	graph	theory	just	for	himself,	but	in	1958	he	published	his
book	on	graph	theory	(others	would	come	later).	He	found	the	subject	interesting
and	alive	with	many	applications.	However,	it	wasn’t	only	the	French	to	whom
Berge	introduced	graph	theory.	He	traveled	widely	and	lectured	on	the	subject.
Many	of	Berge’s	works	were	translated	into	other	languages.	In	1993	Berge	was
awarded	the	Euler	Medal	by	the	Institute	of	Combinatorics	and	Its	Applications.

Berge	 made	 contributions	 to	 other	 areas	 of	 mathematics,	 including	 game
theory	 and	 topology.	 He	 introduced	 an	 alternative	 to	 the	 Nash	 equilibrium
(named	after	John	Nash	whose	life	was	chronicled	in	the	2002	academy	award
winning	 movie	 A	 Beautiful	 Mind)	 called	 the	 Berge	 equilibrium.	 Berge	 also
coined	the	term	hypergraph.

Berge	had	many	interests	besides	mathematics.	He	had	a	special	affinity	for
Chinese	works	 of	 art	 and	was	 a	 skillful	 chess	 player.	Berge	 loved	 to	write.	 In
1994	he	authored	a	mathematical	murder	mystery,	titled	Who	Killed	the	Duke	of
Densmore?	 in	 which	 the	 detective	 investigates	 the	 murder	 of	 the	 Duke	 of
Densmore	 and	 uses	 graphs	 (actually	 interval	 graphs,	which	we	 do	 not	 discuss
here)	to	find	the	murderer.	Berge	died	on	June	30,	2002.

The	next	major	book	on	graph	theory,	titled	Theory	of	Graphs,	was	published
in	1962	by	 the	American	Mathematical	Society,	 four	years	after	Berge’s	book.
Its	author,	Oystein	Ore	(pronounced	OR-ah)	was	born	in	Oslo,	Norway	in	1899.
Ore	 attended	 the	 University	 of	 Oslo,	 from	 which	 he	 graduated	 in	 1922.	 He
received	his	Ph.D.	in	1924.	After	this,	he	spent	time	in	Paris	and	Gottingen	and
then	 returned	 to	 the	University	 of	Oslo.	 In	 1927	 he	went	 to	 the	United	 States
where	he	became	a	professor	of	mathematics	at	Yale	University.	Ore	wrote	over
a	hundred	papers	and	a	number	of	books.

Ore	was	well	 known	 for	 his	work	 in	 algebra	 and	 number	 theory	 before	 he
started	 working	 in	 graph	 theory.	 He	 had	 much	 to	 do	 with	 introducing	 graph
theory	 to	 the	 English-speaking	world	with	 his	 1962	 book.	Ore	 once	wrote,	 in
reference	to	Euler’s	solution	to	the	Königberg	Bridge	Problem,	that

The	 theory	 of	 graphs	 is	 one	 of	 the	 few	 fields	 of	 mathematics	 with	 a
definite	birth	date.

Ore	died	during	the	summer	of	1968,	only	a	few	months	before	Ore	was	to



attend	and	be	the	principal	speaker	at	the	first	of	nine	quadrennial	graph	theory
conferences	to	be	held	at	Western	Michigan	University.

Although	 some	 books	 dealing	 with	 special	 topics	 in	 graph	 theory	 and
applications	of	graph	 theory	were	published	during	1959-1969,	only	 two	other
major	books	on	graph	theory	were	published	before	1970,	both	in	1969.	One	of
these	was	the	1969	book	Teoriia	Konechnykn	Grafov	(Theory	of	Finite	Graphs)
by	Alexander	A.	Zykov,	who	has	had	the	greatest	influence	on	the	development
of	 and	 interest	 in	 graph	 theory	 in	 Russia.	 Born	 in	 Kiev	 in	 1922,	 Zykov	 was
introduced	 to	 graph	 theory	 during	 1943-44	while	 he	was	 a	 student	 at	Gor’kiy
State	University.	He	was	in	Novosibirsk	during	1959-69	and	organized	a	graph
theory	 seminar	 at	 the	 Mathematical	 Institute	 of	 the	 Siberian	 branch	 of	 the
Academy	 Sciences	 in	 the	USSR.	 Since	 1969	Zykov	 has	 been	 at	Odessa	 State
Polytechnic	University	 in	Ukraine,	where	 he	 organized	 the	Odessa	 seminar	 in
discrete	mathematics.

The	second	book,	titled	Graph	Theory,	was	written	by	Frank	Harary	(1921-
2005).	Harary	 received	his	Ph.D.	 in	1948	 from	 the	University	of	California	 in
Berkeley	and	became	a	faculty	member	at	the	University	of	Michigan,	where	he
stayed	 until	 1986.	 He	 then	 became	 a	 faculty	 member	 at	 New	 Mexico	 State
University.

While	working	with	 social	 psychologists	 at	 the	University	 of	Michigan,	 he
independently	discovered	graph	 theory.	Harary	spent	much	of	his	 life	 traveling
and	 lecturing	 on	 graph	 theory,	 thereby	 introducing	 this	 subject	 to	 many
mathematicians	 around	 the	 world.	 Along	 the	 way,	 he	 acquired	 numerous	 co-
authors,	 which	 led	 to	 hundreds	 of	 publications	 on	 all	 aspects	 of	 the	 subject.
Harary,	known	for	his	lucid	writing	style	and	his	enthusiasm	for	the	subject,	was
often	referred	to	as	the	Ambassador	of	Graph	Theory.

At	 one	 time	 Alexander	 Zykov	 gave	 Frank	 Harary	 a	 framed	 set	 of	 three
pictures	of	lions,	namely	(1)	a	lion	sleeping,	(2)	a	lion	awakening	and	(3)	a	lion
roaring	 to	 represent	 (1)	graph	 theory	yesterday,	 (2)	graph	 theory	 today	and	 (3)
graph	theory	tomorrow.	Although	meant	as	a	comical	gift,	Zykov	indicated	that
if	one	were	to	define	“yesterday”	as	“before	1936,”	“today”	as	“1936-1970”	and
“tomorrow”	 as	 “after	 1970,”	 then	 there	 is	 a	 certain	 amount	 of	 truth	 to	 this
representation	of	graph	theory.

William	 T.	 Tutte	 (1917–2002),	 a	 mathematician	 who	 made	 numerous
significant	contributions	to	graph	theory,	was	a	shy	man	with	a	clever	sense	of
humor.	 Tutte	 loved	 to	 write	 poetry,	 often	 under	 the	 pseudonym	 of	 Blanche
Descartes.	As	Descartes,	 he	 reflected	 on	 graph	 theory	 in	 his	 1969	 poem	 titled
“The	Expanding	Unicurse”:



Some	citizens	of	Königsberg
Were	walking	on	the	strand
Beside	the	river	Pregel
With	its	seven	bridges	spanned.

“O	Euler,	come	and	walk	with	us,”
Those	burghers	did	beseech.
“We’ll	roam	the	seven	bridges	o’er,
And	pass	but	once	by	each.”

“It	can’t	be	done,”	thus	Euler	cried.
“Here	comes	the	Q.	E.	D.
Your	islands	are	but	vertices,
And	four	have	odd	degree.”

From	Königsberg	to	König’s	book,
So	runs	the	graphic	tale,
And	still	it	grows	more	colorful,
In	Michigan	and	Yale.

The	mention	of	Michigan	and	Yale	in	the	last	line	of	the	poem	refers	to	the
universities	 of	Frank	Harary	 and	Oystein	Ore,	 respectively.	We	will	 encounter
William	Tutte	again.



Chapter	7
Digraphs

7.1	Strong	Digraphs

We	 saw	 in	 Section	 6.1	 that	 the	 street	 system	 of	 a	 town	 can	 be	 naturally
represented	 by	 a	 graph.	 In	 this	 case,	 the	 vertices	 of	 the	 graph	 are	 the	 street
intersections	 in	 the	 town,	while	 the	 edges	of	 the	graph	are	 the	 street	 segments
between	 intersections.	The	 street	 systems	of	 two	 towns	A	and	B	are	 shown	 in
Figure	7.1	together	with	the	graphs	GA	and	GB	that	model	them.

Figure	7.1:	Two	towns	and	two	graphs	modeling	them



Both	graphs	GA	and	GB	of	Figure	7.1	have	 the	 important	property	 that	 they
are	connected,	meaning	that	it	is	possible	to	travel	between	any	two	locations	in
both	Town	A	and	Town	B.	(Of	course,	this	is	a	characteristic	one	would	expect
of	any	town.)	The	graph	GB	has	a	bridge,	however,	while	GA	does	not.	In	fact,	it
may	be	the	case	that	the	street	segment	in	Town	B	that	gives	rise	to	the	bridge	in
GB	is	a	road	that	goes	over	a	bridge	in	the	town.	Of	course,	a	major	disadvantage
of	having	such	a	street	in	Town	B	is	that	if	it	should	ever	become	necessary	to
close	 that	 street,	 then	 traveling	 between	 some	 pairs	 of	 locations	 in	Town	B	 is
impossible.	We	have	no	such	difficulties	in	Town	A,	however.	The	fact	that	we
can	travel	between	any	two	street	intersections	in	Town	A	even	after	one	of	its
streets	may	be	closed	allows	us	to	do	something	else	in	Town	A,	as	we	are	about
to	discover.	Before	continuing	with	this	discussion,	however,	it	is	convenient	to
revisit	the	concept	of	a	digraph	(directed	graph).

Recall	that	a	digraph	D	consists	of	a	finite	nonempty	set	V	of	objects	called
vertices	and	a	set	E	of	ordered	pairs	of	distinct	vertices.	Each	element	of	E	is	an
arc	or	a	directed	edge.	If	a	digraph	D	has	the	property	that	for	each	pair	u,	v	of
distinct	vertices	of	D,	at	most	one	of	(u,	v)	and	(v,	u)	is	an	arc	of	D,	then	D	is	an
oriented	graph.	An	oriented	graph	can	also	be	obtained	by	assigning	a	direction
to	(that	is,	orienting)	each	edge	of	a	graph	G.	The	digraph	D	is	then	referred	to	as
an	orientation	of	G.	A	digraph	H	is	called	a	subdigraph	of	a	digraph	D	if	V(H)	
	V(D)	and	E(H)	 	E(D).
A	digraph	D	is	symmetric	if	whenever	(u,	v)	is	an	arc	of	D,	then	(v,	u)	is	an

arc	of	D	as	well.	We	will	 rarely	be	 interested	 in	symmetric	digraphs,	however,
since	studying	symmetric	digraphs	is	really	the	same	as	studying	graphs.

Also,	recall	that	if	(u,	v)	is	an	arc	of	a	digraph,	then	u	is	said	to	be	adjacent
to	v	and	v	is	adjacent	from	u.	The	vertices	u	and	v	are	also	said	to	be	incident
with	the	arc	(u,	v).	The	number	of	vertices	to	which	a	vertex	v	is	adjacent	is	the
outdegree	of	v	and	is	denoted	by	od	v.	The	number	of	vertices	from	which	v	 is
adjacent	is	the	indegree	of	v	and	is	denoted	by	id	v.	The	sum	of	the	outdegrees
of	the	vertices	of	a	digraph	D	is	the	size	of	D,	as	is	the	sum	of	its	indegrees.

Theorem	7.1	(The	First	Theorem	of	Digraph	Theory)	If	D	is	a	digraph	of
size	m	with	V(D)	=	{v1,	v2,	…,	vn},	then

Now	let	D	be	a	digraph.	A	sequence



of	vertices	of	D	such	that	ui	is	adjacent	to	ui	+	1	for	all	i	(0	≤	i	≤	k	−	1)	is	called	a
(directed)	u	−	v	walk	in	D.	Each	arc	(ui,	ui	+	1),	0	≤	i	≤	k	−	1,	is	said	to	lie	on	or
belong	to	W.	The	number	of	occurrences	of	arcs	on	a	walk	is	the	length	of	the
walk.	 So	 the	 length	 of	 the	 walk	W	 in	 (7.1)	 is	 k.	 A	 walk	 in	 which	 no	 arc	 is
repeated	 is	a	 (directed)	 trail,	while	a	walk	 in	which	no	vertex	 is	 repeated	 is	a
(directed)	path.	A	u	−	v	walk	is	closed	if	u	=	v	and	is	open	if	u	≠	v.	A	closed
trail	of	length	at	least	2	is	a	(directed)	circuit;	a	closed	walk	of	length	at	least	2
in	which	 no	 vertex	 is	 repeated	 except	 for	 the	 initial	 and	 terminal	 vertices	 is	 a
(directed)	cycle.	Consequently,	whenever	we	 refer	 to	 any	kind	 of	 a	walk	 in	 a
digraph,	we	mean	a	directed	walk,	that	is,	we	always	proceed	in	the	direction	of
the	arrows.	As	with	graphs,	the	subdigraph	of	a	digraph	consisting	of	the	vertices
and	arcs	of	a	path,	cycle,	trail	or	circuit	is	referred	to	by	the	same	term.

To	illustrate	these	concepts,	consider	the	digraph	D	of	Figure	7.2.	Since	(t,	w)
and	(w,	t)	are	both	arcs	of	D,	the	digraph	D	is	not	an	oriented	graph.	First,	W	=
(y,	w,	v,	x,	y,	w,	t)	is	a	y	−	t	walk	of	length	6.	The	arc	(y,	w)	occurs	twice	on	W,
so	W	is	not	a	trail.	However,	T	=	(y,	w,	t,	w,	v)	is	a	y	−	v	trail.	Since	the	vertex	w
is	repeated	in	T,	it	is	not	a	path.	Also,	C	=	(v,	t,	w,	t,	u,	v)	is	a	circuit	that	is	not	a
cycle,	while	C′	=	(v,	x,	y,	w,	v)	is	a	cycle	of	length	4.	The	cycle	C″	=	(t,	w,	t)	has
length	2.

Figure	7.2:	Walks	in	a	digraph

The	underlying	graph	of	a	digraph	D	is	obtained	by	removing	all	directions
from	the	arcs	of	D	and	replacing	any	resulting	pair	of	parallel	edges	by	a	single
edge.	Equivalently,	the	underlying	graph	of	a	digraph	D	is	obtained	by	replacing
each	arc	 (u,	v)	or	pair	 (u,	v),	 (v,	u)	 of	 arcs	 by	 the	 edge	uv.	 So	 the	graph	G	 of
Figure	7.2	is	the	underlying	graph	of	the	digraph	D	of	that	figure.	Also,	if	D	is	an
orientation	of	a	graph	G,	then	G	is	the	underlying	graph	of	D.

While	a	graph	 is	 either	 connected	or	 it’s	not,	 for	 a	digraph	 there	 is	 another
alternative.	A	digraph	D	is	connected	 (sometimes	called	weakly	connected)	 if
the	underlying	graph	of	D	is	connected.	In	particular,	the	digraph	D	of	Figure	7.2



is	connected.	A	digraph	D	is	strong	(or	strongly	connected)	if	D	contains	both	a
u	 −	v	 path	 and	 a	 v	 −	u	 path	 for	 every	 pair	u,	v	 of	 distinct	 vertices	 of	D.	 The
digraph	D	of	Figure	7.2	is	not	strong	since	there	is	no	z	−	y	path	 in	D.	 Indeed,
there	is	no	path	from	z	to	any	other	vertex	of	D.

Distance	is	defined	in	digraphs	as	well	as	in	graphs.	Let	u	and	v	be	vertices	in
a	digraph	D.	The	directed	distance	or,	more	simply,	the	distance	 (u,	v)	 from
u	to	v	is	the	length	of	a	shortest	u	−	v	path	in	D.	A	u	−	v	path	of	length	 (u,	v)	is
a	u	−	v	geodesic.	Once	again,	let	us	emphasize	that	the	paths	we	are	discussing
here	are	directed	paths.	In	order	for	 	(u,	v)	to	be	defined	for	every	pair	u,	v	of
vertices	of	D,	the	digraph	D	must	be	strong.

If	D	 is	 a	 strong	 digraph,	 then	 necessarily	 every	 vertex	 of	D	 has	 positive
outdegree	and	 indegree.	This	 is	only	a	necessary	condition	 for	a	digraph	 to	be
strong,	 however,	 not	 a	 sufficient	 condition.	 Every	 vertex	 in	 the	 digraph	D	 of
Figure	7.3	has	positive	outdegree	and	 indegree;	yet,	 there	 is	no	u	−	x	path,	 for
example.

Figure	7.3:	A	digraph	that	is	not	strong

While	every	u	−	v	path	in	a	digraph	D	is	a	u	−	v	walk,	we	have	seen	that	the
converse	is	not	true.	On	the	other	hand,	the	presence	of	a	u	−	v	walk	in	D	implies
the	existence	of	a	u	−	v	path	in	D.	The	statement	and	proof	are	nearly	identical	to
the	corresponding	result	for	graphs	(Theorem	1.6).

Theorem	7.2	If	a	digraph	D	contains	a	u	−	v	walk	of	length	l,	then	D	contains
a	u	−	v	path	of	length	at	most	l.

Proof.	Among	all	u	−	v	walks	in	D,	let	W	be	one	of	minimum	length.	Suppose
that	W	=	(u	=	u0,	u1,	…,	uk	=	v).	Then	k	≤	l.	If	the	vertices	u0,	u1,	u2,	…,	uk	are
distinct,	then	W	is	a	u	−	v	path	and	the	proof	is	complete.	Otherwise,	there	are
vertices	ui	and	uj	such	that	ui	=	uj,	where	1	≤	i	<	j	≤	k.	If	we	delete	ui	+	1,	ui	+	2,
…,	uj	from	W,	then	we	obtain	a	u	−	v	walk

whose	length	is	less	than	k,	which	is	impossible.	Thus	W	is	a	u	−	v	path	of	length



k	≤	l.

The	 following	 result	 provides	 a	 necessary	 and	 sufficient	 condition	 for	 a
digraph	to	be	strong.

Theorem	 7.3	 A	 digraph	 D	 is	 strong	 if	 and	 only	 if	 D	 contains	 a	 closed
spanning	walk.

Proof.	 Since	 every	 trivial	 digraph	 is	 strong,	 we	 may	 assume	 that	 D	 is
nontrivial.	First,	let	D	be	a	digraph	that	contains	a	closed	spanning	walk	W	=
(w0,	w1,	…,	wk	=	w0).	Let	u	and	v	be	any	two	distinct	vertices	of	D.	Then	u	=
wi	and	v	=	wj	for	integers	i	and	j	with	0	≤	i	<	j	≤	k.	Since	W′	=	(u	=	wi,	wi	+	1,
…,	wj	=	v)	is	a	u	−	v	walk	and	W″	=	(v	=	wj,	wj	+	1,	…,	wk	=	w0,	w1,	…,	wi	=	u)
is	a	v	−	u	walk,	it	follows	by	Theorem	7.2	that	D	contains	both	a	u	−	v	path
and	a	v	−	u	path.

Now	we	verify	the	converse.	Let	D	be	a	strong	digraph	and	suppose	that	V(D)
=	{v1,	v2,	…,	vn}.	Since	D	is	strong,	D	contains	a	vi	−	vi	+	1	path	Pi	for	i	=	1,	2,
…,	n	−	1.	Let	Pn	be	a	vn	−	v1	path.	For	1	≤	i	≤	n	−	1,	let	Pi′	be	the	path	obtained
by	deleting	the	final	vertex	of	Pi.	Then

is	a	closed	spanning	walk	in	D.

By	Theorem	7.3,	a	digraph	that	contains	a	spanning	circuit	is	strong.	There	is
one	type	of	spanning	circuit	that	is	of	added	interest	to	us.	An	Eulerian	circuit
in	 a	 (strong)	 digraph	D	 is	 a	 circuit	 containing	 every	 arc	 of	D.	 An	Eulerian
digraph	is	a	digraph	containing	an	Eulerian	circuit.	The	digraph	D	of	Figure	7.4
is	Eulerian	and	C	=	(u,	v,	w,	y,	z,	x,	y,	x,	w,	u)	is	an	Eulerian	circuit.

Figure	7.4:	An	Eulerian	digraph



Just	as	Eulerian	graphs	are	easy	to	characterize,	so	too	are	Eulerian	digraphs.
Indeed,	 the	 proof	 is	 similar	 to	 the	 proof	 of	 the	 characterization	 of	 Eulerian
graphs	(Theorem	6.1).

Theorem	7.4	A	nontrivial	connected	digraph	D	is	Eulerian	if	and	only	if	od	v
=	id	v	for	every	vertex	v	of	D.

Proof.	First,	let	D	be	an	Eulerian	digraph.	Then	D	contains	an	Eulerian	circuit
C.	Let	v	be	a	vertex	of	C.	Assume	first	that	v	is	not	the	initial	vertex	of	C	(and
so	v	is	not	the	terminal	vertex	either).	Whenever	v	is	encountered	on	C,	an	arc
is	used	to	enter	v	and	another	is	used	to	exit	v.	This	contributes	1	to	both	the
indegree	and	outdegree	of	v.	If	v	is	encountered	k	times	on	C,	then	od	v	=	id	v
=	k.	If	v	is	the	initial	vertex	of	C,	then	an	arc	is	used	to	exit	v.	The	final	arc	of
C	enters	v.	Any	other	occurrences	of	v	on	C	contribute	1	to	both	the	indegree
and	outdegree	of	v	and	so	od	v	=	id	v	in	this	case	as	well.

For	the	converse,	let	D	be	a	nontrivial	connected	digraph	for	which	od	v	=	id
v	for	every	vertex	v	of	D.	For	a	vertex	u	of	D,	let	T	be	a	trail	of	maximum	length
with	initial	vertex	u.	Suppose	that	T	is	a	u	−	v	trail.	Assume	first	that	u	≠	v	and
that	v	is	encountered	k	times	on	T,	where	k	≥	1.	Then	T	contains	k	arcs	directed
towards	v	and	k	−	1	arcs	directed	away	from	v.	However,	since	od	v	=	id	v,	there
is	an	arc	directed	away	from	v	that	does	not	belong	to	T.	This	means,	however,
that	 T	 can	 be	 extended	 to	 a	 longer	 trail	 with	 initial	 vertex	 u.	 Since	 this	 is
impossible,	u	=	v	and	T	is	a	circuit	C	in	D.	Consequently,	D	contains	circuits	and
C	is	a	circuit	of	maximum	length	in	D.

We	 claim	 that	C	 contains	 all	 of	 the	 arcs	 of	D	 and	 that	C	 is	 therefore	 an
Eulerian	circuit.	Assume,	to	the	contrary,	that	C	does	not	contain	all	of	the	arcs
of	D.	Since	D	is	connected,	there	is	a	vertex	w	on	C	that	is	incident	with	arcs	not
on	C.	Let	D′	=	D	−	E(C)	be	the	spanning	subdigraph	of	D	whose	arcs	are	those
not	belonging	to	C.	Since	odD	v	=	idD	v	and	odC	v	=	idC	v	for	every	vertex	v	on
C,	 it	 follows	 that	 od	D′	v	 =	 id	D′	v	 for	 every	 vertex	 of	D′.	Let	T′	 be	 a	 trail	 of
maximum	length	in	D′	with	initial	vertex	w.	As	before,	T′	is	a	circuit	C′	in	D″.	If
we	attach	C′	to	C	at	w,	then	we	produce	a	circuit	C″	in	D	containing	more	arcs
than	C,	which	is	impossible.	Hence	C	is	an	Eulerian	circuit.

We	mentioned	earlier	that	in	Town	A	(Figure	7.1)	it	is	possible	to	close	down
any	 street	 segment	 in	 the	 town	 and,	 afterwards,	 still	 be	 able	 to	 travel	 between
any	two	street	intersections;	while	in	Town	B	this	is	not	possible	because	of	the
existence	of	a	bridge	in	the	graph	GB	that	models	the	street	system	of	this	town.
We	also	mentioned	that	this	characteristic	of	Town	A	allows	something	else	to	be



done	 there.	 Suppose	 that	 the	 town	 commissioners	 in	Town	A,	 in	 their	 infinite
wisdom,	decide	that	it	would	be	convenient	(for	whatever	reason)	to	convert	all
the	streets	in	the	town	to	one-way	streets.	Can	this	be	done?	The	answer	to	this
question	is	of	course	yes	but	 this	 is	not	 the	question	that	should	be	asked.	Is	 it
possible	 to	 convert	 all	 the	 streets	 in	 Town	 A	 to	 one-way	 streets	 so	 that,
afterwards,	it	is	possible	to	drive	(legally)	from	any	place	in	Town	A	to	any	other
place.	The	answer	to	this	question	is	also	yes	and	one	way	to	accomplish	this	is
shown	 in	Figure	7.5.	This	 new	 street	 system	 is	modeled	by	 the	digraph	DA	 in
Figure	7.5.	You	have	probably	noticed	that	the	question	that	we	have	just	asked
can	be	 rephrased	as	 follows:	Does	 there	exist	a	strong	orientation	of	 the	graph
GA	of	Figure	7.1?	Of	course,	we	now	know	that	 the	answer	 to	 this	question	 is
yes.	The	more	general	question	is:	Which	graphs	have	strong	orientations?	The
graphs	GA	and	GB	of	Figure	7.1	provide	the	clue.

Figure	7.5:	A	digraph	modeling	the	one-way	streets	system

Theorem	7.5	A	nontrivial	connected	graph	G	has	a	strong	orientation	if	and
only	if	G	contains	no	bridges.

Proof.	 Suppose	 first	 that	G	 is	 a	 nontrivial	 connected	 graph	 that	 contains	 a
bridge,	say	e	=	uv.	Let	D	be	any	orientation	of	G.	Then	either	(u,	v)	or	(v,	u)	is
an	arc	of	D,	say	(u,	v).	Surely,	D	contains	a	u	−	v	path.	We	claim	that	there	is
no	v	−	u	path	in	D;	for	if	D	contains	a	v	−	u	path	P,	then	P	can	be	considered
as	a	v	−	u	path	P′	in	G	that	does	not	contain	uv	in	G.	However,	the	path	P′	in	G
together	 with	 the	 edge	 uv	 produce	 a	 cycle	 in	G	 that	 contains	 e,	 which	 is
impossible	since	e	is	a	bridge.	Thus,	as	claimed,	D	contains	no	v	−	u	path	and
so	D	is	not	strong.

To	verify	the	converse,	let	G	be	a	connected	graph	that	contains	no	bridges.
We	show	that	G	has	a	strong	orientation.	Since	G	contains	no	bridges,	G	has	a



cycle	C.	If	we	direct	the	edges	of	C	to	produce	a	directed	cycle	C′,	then	for	every
two	vertices	x	and	y	on	C′,	 there	 is	both	an	x	−	y	path	and	a	y	−	x	path	on	C′.
Thus,	it	is	certainly	possible	to	direct	some	of	the	edges	of	G	to	obtain	a	digraph
D′	so	that,	afterwards,	there	is	a	set	U	of	vertices	of	D′	where	there	is	both	an	x	−
y	path	and	a	y	−	x	path	for	every	two	vertices	x	and	y	of	U.	If	an	edge	of	G	that
joins	 two	vertices	of	U	 has	not	been	assigned	a	direction,	 then	we	may	assign
any	direction	and	obtain	the	same	conclusion.

Consequently,	 there	 is	a	 set	S	 of	vertices	of	G	 of	 largest	 cardinality	 and	 an
orientation	D	of	 the	edges	of	G	 joining	two	vertices	of	S	such	that,	afterwards,
for	every	two	distinct	vertices	x	and	y	in	S	there	is	both	an	x	−	y	path	and	a	y	−	x
path	 in	D.	 If	S	=	V(G),	 then	 the	proof	 is	complete.	Assume,	however,	 that	S	≠
V(G).	Since	G	is	connected,	there	must	be	a	vertex	u	 	S	and	a	vertex	v	 	S	such
that	uv	 	E(G).	Since	uv	is	not	bridge,	uv	lies	on	a	cycle

of	G.	Of	course,	u	 	S	but	u	may	not	be	 the	first	vertex	of	C″	 following	v	 that
belongs	to	S.	Let	w	=	vt	(t	≤	s)	be	the	first	such	vertex.	Now	direct	the	edges	uv,
vv2,	…,	vt	−	1vt	as	(u,	v),	(v,	v2),	…,	(vt	−	1,	vt)	(see	Figure	7.6)	and	 let	P	be	 the
(directed)	v	−	vt	path	produced.	If	any	other	edge	joins	a	vertex	of	T	=	{v1,	v2,	…,
vt	 −	 1}	 and	 a	 vertex	 of	 S	 	T,	 then	 direct	 this	 edge	 arbitrarily.	 Let	D′	 be	 the
resulting	digraph.

Figure	7.6:	Producing	a	strong	orientation

It	then	follows	that	for	each	pair	x,	y	of	vertices	of	S	 	T,	there	is	both	an	x	−
y	path	and	a	y	−	x	path	in	D′.	This	contradicts	S	as	being	a	proper	subset	of	V(G)
of	largest	cardinality	for	which	there	exist	both	an	x	−	y	path	and	a	y	−	x	path	for
each	pair	x,	y	 	S	in	an	orientation	of	G.

It	was	mentioned	in	Chapter	5	 that	a	graph	G	 is	2-edge-connected	 if	G	 is	a
nontrivial	connected	graph	that	contains	no	bridges.	Hence	Theorem	7.5	can	be



restated	as	follows:

A	nontrivial	connected	graph	G	has	a	strong	orientation	if	and	only	if	G
is	2-edge-connected.

Theorem	7.5	is	due	to	Herbert	E.	Robbins	(1915–2001).	The	paper	in	which
this	 theorem	 appears,	 titled	 “A	 theorem	 on	 graphs,	 with	 an	 application	 to	 a
problem	 of	 traffic	 control,”	 was	 published	 in	 1939	 in	 the	 American
Mathematical	Monthly,	 only	 a	 year	 after	 he	 received	 his	 Ph.D.	 from	Harvard
University	 in	 topology,	 under	 the	direction	of	Hassler	Whitney.	This	was	only
Robbins’	second	publication	of	what	was	to	become	a	long	and	impressive	list.
Also,	 in	 1939	 at	 age	 24,	 Robbins	 began	 work	 on	 the	 classic	 book	What	 Is
Mathematics?	with	Richard	Courant.	This	book	has	been	classified	by	Robbins
as	 more	 of	 a	 literary	 work	 than	 a	 scientific	 work.	 A	 few	 years	 later	 Robbins
became	interested	in	and	devoted	his	research	to	statistical	analysis,	in	which	he
made	major	contributions.	He	spent	many	years	as	a	Professor	of	Mathematical
Statistics	 at	 Columbia	 University.	 In	 1958	 he	 had	 a	 doctoral	 student,	 Herbert
Wilf,	who	also	has	made	major	contributions	to	combinatorics	and	graph	theory.

Exercises	for	Section	7.1

7.1	(a)	Prove	that	if	D	is	an	oriented	graph	of	order	4	such	that	D	−	v	is	strong
for	every	vertex	v	of	D,	then	D	is	strong.

(b)	Show	that	no	oriented	graph	D	of	order	4	has	the	property	that	D	−	v	is
strong	for	every	vertex	v	of	D.

7.2	 Prove	 that	 a	 graph	 G	 has	 an	 Eulerian	 orientation	 if	 and	 only	 if	 G	 is
Eulerian.

7.3	 Show	 that	 each	 of	 the	 graphs	G1	 and	G2	 in	 Figure	 7.7	 is	 orientable	 by
assigning	a	direction	to	each	edge	so	that	the	resulting	digraph	is	strong.

Figure	7.7:	The	graphs	of	Exercise	7.3



7.4	 The	 converse	 	 of	 a	 digraph	D	 is	 obtained	 from	D	 by	 reversing	 the
direction	of	every	arc	of	D.	Show	that	a	digraph	D	is	strong	if	and	only	if
its	converse	 	is	strong.

7.5	Prove	that	a	nontrivial	digraph	D	is	strong	if	and	only	if	for	every	edge-cut
S	of	the	underlying	graph	G	of	D	separating	V(G	−	S)	into	two	sets	A	and
B,	there	is	an	arc	in	D	directed	from	A	to	B	and	an	arc	in	D	directed	from	B
to	A.

7.6	Does	there	exist	a	nontrivial	digraph	D	in	which	no	two	vertices	of	D	have
the	same	outdegree	but	every	two	vertices	of	D	have	the	same	indegree?

7.2	Tournaments

It	 is	 difficult	 to	 know	 just	 how	 far	 back	 competitions	 go.	 There	 have	 been
competitions	 between	 two	 individuals	 (tennis,	 chess,	 bridge,	 jousting)	 and
competitions	between	two	teams	(soccer,	basketball,	baseball).	There	have	even
been	competitions	between	frogs,	as	Mark	Twain	wrote	of	Dan’l	Webster	in	The
Celebrated	Jumping	Frog	of	Calaveras	County.	In	some	competitions,	there	is	a
single	match	between	two	individuals	or	two	teams	and	the	victor	in	the	match
decides	 the	 outcome	 of	 the	 competition.	 In	 other	 competitions,	 often	 called
tournaments,	several	 individuals	(or	 teams)	are	 involved	and	there	 is	a	formula
to	decide	who	plays	whom.	Losing	a	match	causes	that	individual	or	team	to	be
eliminated	and	 the	 tournament	continues	with	 those	 individuals	who	have	won
the	earlier	matches.	Other	tournaments	are	“double	elimination,”	where	a	player
or	 team	 is	 allowed	 to	 lose	 one	 match	 but	 is	 eliminated	 when	 a	 second	 loss
occurs.

Other	 tournaments	 are	 “round	 robin	 tournaments,”	 where	 each	 team	 plays
every	 other	 team	 exactly	 once	 in	 the	 competition	 and	 the	 outcome	 of	 the
tournament	 is	 decided	 only	 after	 all	 these	 matches	 have	 been	 played.	 For
example,	suppose	 that	a	round	robin	 tournament	 involves	eight	 teams	(denoted
by	1,	2,	…,	8).	Then	every	team	must	play	each	of	the	other	seven	teams	once.	In
the	 first	 “round,”	 there	 are	 then	 four	matches,	 each	 involving	 a	 pair	 of	 teams.
There	are	 seven	 rounds	 in	 this	 round	 robin	 tournament.	Figure	7.8	 shows	how
such	 a	 schedule	 might	 look.	 If	 only	 seven	 teams	 were	 involved,	 then	 in	 any
round	robin	 tournament	only	 three	matches	can	 take	place	 in	a	round	with	one
team	not	playing	(this	team	receives	a	“bye”).	In	this	case,	we	can	replace	each
occurrence	of	8	in	Figure	7.8	with	“bye.”	We	will	see	in	Section	8.2	how	such



schedules	can	be	constructed.

Figure	7.8:	A	round	robin	tournament	with	eight	teams

Round	robin	tournaments	give	rise	quite	naturally	to	a	class	of	digraphs,	not
so	 coincidentally	 called	 tournaments.	 A	 tournament	 is	 an	 orientation	 of	 a
complete	graph.	Therefore,	a	tournament	can	be	defined	as	a	digraph	such	that
for	every	pair	u,	v	of	distinct	vertices,	exactly	one	of	(u,	v)	and	(v,	u)	is	an	arc.	A
tournament	T	 then	models	a	 round	robin	 tournament.	The	vertices	of	T	 are	 the
teams	in	the	round	robin	tournament	and	(u,	v)	 is	an	arc	 in	T	 if	 team	u	defeats
team	v.	(Ties	are	not	permitted.)

Recall	that	two	digraphs	D	and	D′	are	isomorphic,	written	D	 	D′,	 if	 there
exists	 a	bijective	 function	 	 such	 that	 (u,	v)	 	E(D)	 if	 and
only	 if	 .	 Such	 a	 function	 	 is	 called	 an	 isomorphism.
There	is	only	one	tournament	of	order	1	and	only	one	tournament	of	order	2	(up
to	isomorphism).	There	are	two	tournaments	of	order	3	and	four	tournaments	of
order	4.	The	tournaments	of	order	4	or	less	are	shown	in	Figure	7.9.	There	are
also	12	tournaments	of	order	5.	Based	on	this	information,	it	probably	comes	as
a	great	surprise	to	learn	that	there	are	over	154	billion	tournaments	of	order	12.

Figure	7.9:	Tournaments	of	order	4	or	less

A	tournament	T	is	transitive	if	whenever	(u,	v)	and	(v,	w)	are	arcs	of	T,	then
(u,	w)	 is	also	an	arc	of	T.	The	 tournaments	T1,	T2,	T4	and	T5	of	Figure	7.9	are
transitive.	 In	 fact,	 for	 every	 positive	 integer	 n,	 there	 is	 a	 unique	 transitive
tournament	of	order	n	(again,	up	to	isomorphism).	If	T	is	a	transitive	tournament



of	order	n	and	i	is	an	integer	with	0	≤	i	≤	n	−	1,	there	is	a	vertex	vi	in	T	such	that
od	vi	=	i.	Transitive	tournaments	have	a	property	that	no	other	tournaments	have.

Theorem	7.6	A	tournament	T	is	transitive	if	and	only	if	T	has	no	cycles.

Proof.	Let	T	 be	 a	 transitive	 tournament	 and	 assume,	 to	 the	 contrary,	 that	T
contains	a	cycle	C	=	(v1,	v2,	…,	vk,	v1).	Since	(v1,	v2)	and	(vk,	v1)	are	arcs	of	T,
there	are	vertices	on	C	to	which	v1	is	adjacent	and	vertices	on	C	from	which	v1
is	adjacent.	Hence	there	must	be	a	vertex	vi	(2	≤	i	≤	k	−	1)	such	that	(v1,	vi)	and
(vi	 +	 1,	v1)	are	arcs	of	T.	Since	(v1,	vi)	and	(vi,	vi	 +	 1)	 are	 arcs	 of	 a	 transitive
tournament,	(v1,	vi	+	1)	is	an	arc	of	T.	This	is	a	contradiction.

For	the	converse,	assume	that	T	is	a	tournament	that	contains	no	cycles.	Let
(u,	v)	and	(v,	w)	be	two	arcs	of	T.	Since	T	contains	no	cycles,	(w,	u)	is	not	an	arc
of	T,	implying	that	(u,	w)	is	an	arc	of	T	and	so	T	is	transitive.

As	we	have	seen,	 if	T	 is	a	 transitive	 tournament	of	order	n,	 then	 there	 is	 a
unique	 vertex	 u	 of	 T	 having	 outdegree	 n	 −	 1,	 which	 is	 certainly	 the	 largest
outdegree	of	any	vertex	of	T.	Therefore,	u	 is	adjacent	 to	all	other	vertices	of	T
and	so	 (u,	v)	≤	1	for	every	vertex	v	of	T.	Nearly	the	same	thing	is	true	for	any
vertex	of	maximum	outdegree	in	a	tournament	(transitive	or	not).

Theorem	7.7	If	u	is	a	vertex	of	maximum	outdegree	in	a	tournament	T,	then	
(u,	v)	≤	2	for	every	vertex	v	of	T.

Proof.	Suppose	that	od	u	=	k	and	let	v1,	v2,	…,	vk	be	the	k	vertices	of	T	that	are
adjacent	from	u.	If	there	are	no	other	vertices	of	T,	then	 (u,	v)	≤	1	for	every
vertex	v	of	T.

Assume	then	that	there	are	some	vertices	of	T	adjacent	to	u,	say	w1,	w2,	…,	wl
(see	Figure	7.10).	We	have	already	noted	that	 (u,	vi)	=	1	for	1	≤	i	≤	k.	We	show
that	 (u,	wj)	=	2	for	each	vertex	wj	with	1	≤	j	≤	l.	If	some	vertex	vi(1	≤	i	≤	k)	is
adjacent	to	wj,	 then	certainly	 (u,	wj)	=	2.	On	the	other	hand,	if	 this	is	not	the
case,	 then	wj	 is	 adjacent	 to	 all	 of	 the	 vertices	 v1,	 v2,	…,	 vk.	 Since	wj	 is	 also
adjacent	to	u,	it	follows	that	od	wj	≥	k	+	1	≥	k	=	od	u,	which	is	impossible.



Figure	7.10:	A	step	in	the	proof	of	Theorem	7.7

Suppose	 that	 we	 have	 a	 collection	 of	 teams	 involved	 in	 a	 round	 robin
tournament.	As	we	have	 seen,	 the	 results	of	 the	matches	can	be	modeled	by	a
tournament	T	(a	digraph).	The	outdegree	of	a	vertex	in	T	 is	then	the	number	of
matches	 won	 by	 this	 team.	 Let	A	 be	 a	 team	 that	 has	 won	 the	 most	 matches.
According	to	Theorem	7.7,	if	B	is	any	other	team,	then	either	(1)	A	defeated	B	or
(2)	A	defeated	a	team	that	defeated	B.

As	with	graphs,	 a	path	P	 in	 a	 digraph	D	 is	 a	Hamiltonian	path	 of	D	 if	P
contains	all	vertices	of	D.	A	cycle	C	in	D	is	a	Hamiltonian	cycle	 if	C	contains
every	 vertex	 of	D.	 If	D	 has	 a	 Hamiltonian	 cycle,	 then	 D	 is	 a	 Hamiltonian
digraph.	We	now	describe	a	property	possessed	by	all	tournaments	that	was	first
observed	by	László	Rédei.

Theorem	7.8	Every	tournament	contains	a	Hamiltonian	path.

Proof.	Let	P	be	a	path	of	greatest	length	in	a	tournament	T,	say

If	P	contains	every	vertex	of	T,	then	P	is	a	Hamiltonian	path.	Suppose	then	that
P	is	not	a	Hamiltonian	path.	Thus	there	exists	a	vertex	v	of	T	that	is	not	on	P	(see
Figure	7.11).	Neither	(v,	v1)	nor	(vk,	v)	is	an	arc	of	P,	for	otherwise	T	contains	a
path	whose	length	exceeds	the	length	of	P.	Thus	(v1,	v)	and	(v,	vk)	are	arcs	of	T.
This	implies,	however,	that	there	must	be	a	vertex	vi,	1	≤	i	≤	k	−	1,	such	that	v	is
adjacent	from	vi	and	vi	+	1	is	adjacent	from	v.	However	then,	P′	=	(v1,	v2,	…,	vi,	v,
vi	+	1,	…,	vk)	is	a	path	whose	length	is	greater	than	that	of	P,	which	is	impossible.

According	to	Theorem	7.8	then,	if	we	have	any	collection	of	teams	that	have
participated	in	a	round	robin	tournament,	then	the	teams	can	be	ordered,	say



Figure	7.11:	A	step	in	the	proof	of	Theorem	7.8

as	A1,	A2,	…,	An,	such	that	team	A1	has	defeated	A2,	team	A2	has	defeated	A3	and
so	on.	This	doesn’t	necessarily	mean	that	A1	is	the	best	team	and	An	is	the	worst
team,	 however.	 For	 example,	 in	 the	 strong	 tournament	T	 of	 order	 3	 shown	 in
Figure	7.12,	there	is	no	logical	ordering	of	the	three	teams.	For	example,	(A1,	A2,
A3)	and	(A2,	A3,	A1)	as	well	as	 (A3,	A1,	A2)	are	Hamiltonian	paths.	 Indeed,	 the
only	time	that	there	is	a	clear	ordering	of	the	teams	is	when	the	resulting	digraph
(tournament)	is	transitive.

Figure	7.12:	Hamiltonian	paths	in	a	tournament

If	T	 is	 a	 tournament	 that	 is	 not	 transitive,	 then	 not	 only	 does	 T	 contain	 a
Hamiltonian	 path	 but,	 by	Theorem	 7.6,	T	 contains	 cycles.	 If	T	 is	 strong,	 then
even	more	can	be	said.

Theorem	 7.9	Every	 vertex	 in	 a	 nontrivial	 strong	 tournament	 belongs	 to	 a
triangle.

Proof.	Let	v	be	a	vertex	in	a	nontrivial	strong	tournament	T.	Since	T	is	strong,
od	v	>	0	and	id	v	>	0.	Let	U	be	the	set	of	vertices	to	which	v	is	adjacent,	and
let	W	be	the	set	of	vertices	from	which	v	is	adjacent	(see	Figure	7.13).	Thus	U
≠	ø	and	W	≠	ø.	Since	T	is	strong,	there	is	a	v	−	w	path	for	each	w	 	W.	Such	a
path	necessarily	contains	an	arc	(u,	w)	for	some	u	 	U	and	some	w	 	W	and	so
v	lies	on	the	triangle	(v,	u,	w,	v).



Figure	7.13:	A	step	in	the	proof	of	Theorem	7.9

While	 every	 tournament	 contains	 a	 Hamiltonian	 path,	 certainly	 not	 every
tournament	 contains	 a	 Hamiltonian	 cycle.	 If	 a	 tournament	 T	 contains	 a
Hamiltonian	cycle,	then	(by	Theorem	7.3)	T	is	strong.	What	may	be	surprising	is
that	the	converse	is	true	as	well.

Theorem	7.10	A	nontrivial	 tournament	 T	 is	Hamiltonian	 if	 and	 only	 if	 T	 is
strong.

Proof.	We	have	already	seen	that	every	Hamiltonian	tournament	is	strong.	For
the	converse,	assume	that	T	is	a	nontrivial	strong	tournament.	Thus	T	contains
cycles.	 Let	C	 be	 a	 cycle	 of	maximum	 length	 in	T.	 If	C	 contains	 all	 of	 the
vertices	 of	 T,	 then	 C	 is	 a	 Hamiltonian	 cycle.	 So	 assume	 that	 C	 is	 not
Hamiltonian,	say

where	3	≤	k	<	n.	If	T	contains	a	vertex	v	that	is	adjacent	to	some	vertex	of	C	and
adjacent	 from	 some	 vertex	 of	C,	 then	 there	 must	 be	 a	 vertex	 vi	 of	C	 that	 is
adjacent	to	v	such	that	vi	+	1	is	adjacent	from	v.	In	this	case,

is	 a	 cycle	 whose	 length	 is	 greater	 than	 that	 of	C,	 producing	 a	 contradiction.
Hence,	every	vertex	of	T	that	is	not	on	C	is	either	adjacent	to	every	vertex	of	C
or	adjacent	from	every	vertex	of	C.	Since	T	is	strong,	there	must	be	vertices	of
each	type.

Let	U	be	the	set	of	all	vertices	of	T	that	are	not	on	C	and	such	that	each	vertex
of	C	is	adjacent	to	every	vertex	of	U	and	let	W	be	the	set	of	those	vertices	of	T
that	are	not	on	C	such	that	every	vertex	of	W	is	adjacent	to	each	vertex	of	C	(see
Figure	7.14).	Then	U	≠	ø	and	W	≠	ø.



Figure	7.14:	A	step	in	the	proof	of	Theorem	7.10

Since	T	is	strong,	there	is	a	path	from	every	vertex	of	C	to	every	vertex	of	W.
Since	no	vertex	of	C	is	adjacent	to	any	vertex	of	W,	there	must	be	a	vertex	u	 	U
that	is	adjacent	to	a	vertex	w	 	W.	However	then,

is	a	cycle	whose	length	is	greater	than	that	of	C,	a	contradiction.
Theorem	7.10	 is	due	 to	Paul	Camion.	The	 results	of	Rédei	and	Camion	are

the	 fundamental	 theorems	 on	 traversability	 in	 tournaments.	 There	 is	 only	 one
strong	 tournament	 T	 of	 order	 4.	 Since	 every	 vertex	 in	 a	 strong	 tournament
belongs	to	a	triangle,	there	is	a	vertex	v	in	T	such	that	T	−	v	is	also	strong.	This
statement	 is	 true	 for	 strong	 tournaments	 of	 every	order	greater	 than	4	 as	well.
The	 proof	 of	 the	 following	 result	 uses	 the	 same	 approach	 as	 the	 proof	 of	 the
preceding	result.

Theorem	7.11	If	T	is	a	strong	tournament	of	order	n	≥	4,	 then	there	exists	a
vertex	v	of	T	such	that	T	−	v	is	a	strong	tournament.

Proof.	Since	the	result	is	true	for	n	=	4,	we	can	assume	that	n	≥	5.	Assume,	to
the	contrary,	that	the	theorem	is	false.	Then	there	exists	a	strong	tournament	of
order	 n	 ≥	 5	 such	 that	 for	 every	 vertex	 v	 of	T,	 the	 tournament	T	 −	 v	 is	 not
strong.	By	Theorem	7.10,	this	implies	that	T	contains	no	cycle	of	length	n	−	1.
Let	C	 be	 a	 cycle	 of	 greatest	 length	 in	 T	 that	 is	 not	 a	 Hamiltonian	 cycle.
Suppose	that

where	3	≤	k	≤	n	−	2.	If	there	exists	a	vertex	x	not	on	C	that	is	adjacent	to	some
vertices	of	C	and	adjacent	from	some	vertices	of	C,	then	there	is	some	vertex	vi
on	C	such	that	(vi,	x)	and	(x,	vi	+	1)	are	arcs	of	T.	However,	then,



is	a	cycle	of	length	k	+	1,	which	is	a	contradiction.
This	 implies	 that	every	vertex	of	T	 that	 is	not	on	C	 is	 either	adjacent	 to	all

vertices	of	C	or	is	adjacent	from	all	vertices	of	C.	Let	U	be	the	set	of	vertices	of
T	that	are	not	on	C	and	that	are	adjacent	from	all	vertices	of	C	and	let	W	be	the
set	of	vertices	of	T	 that	are	not	on	C	and	 that	are	adjacent	 to	all	vertices	of	C.
Then	U	≠	ø	and	W	≠	ø	(see	Figure	7.15).

Figure	7.15:	A	step	in	the	proof	of	Theorem	7.11

Since	T	is	strong,	there	exist	vertices	u	 	U	and	w	 	W	such	that	(u,	w)	is	an
arc	of	T.	However,	then,

is	a	cycle	of	length	k	+	1,	which	is	impossible.
As	a	consequence	of	Theorem	7.11,	every	strong	tournament	of	order	n	≥	3

contains	an	induced	strong	tournament	of	order	k	for	every	integer	k	with	3	≤	k	≤
n.

Exercises	for	Section	7.2

7.7	Prove	that	there	is	only	one	tournament	T	of	order	n,	where	3	≤	n	≤	5,	such
that	T	and	T	−	(u,	v)	+	(v,	u)	are	strong	for	every	arc	(u,	v)	of	T.

7.8	If	every	vertex	of	some	tournament	of	order	n	has	 the	same	outdegree	x,
then	what	is	x?

7.9	Prove	that	a	tournament	T	is	transitive	if	and	only	if	every	two	vertices	of	T
have	distinct	outdegrees.

7.10	Prove	 that	 if	u	and	v	are	vertices	of	a	 tournament	such	 that	 (u,	v)	=	k,



then	id	u	≥	k	−	1.

7.11	Let	T	be	a	tournament	of	order	n	≥	3	with	V(T)	=	{v1,	v2,	…,	vn}.	Prove
that	if	od	vi	>	id	vi	for	1	≤	i	≤	n	−	1,	then	T	is	not	strong.

7.12	Prove	or	disprove:

(a)	 If	every	vertex	of	a	 tournament	T	belongs	 to	a	cycle	 in	T,	 then	T	 is
strong.

(b)	For	every	pair	u,	v	of	vertices	 in	a	strong	tournament	T,	 there	exists
either	a	Hamiltonian	u	−	v	path	or	a	Hamiltonian	v	−	u	path.

(c)	 If	 (u,	 v)	 is	 an	 arc	 of	 a	 strong	 tournament	 T,	 then	 (u,	 v)	 lies	 on	 a
Hamiltonian	cycle	of	T.

7.13	Let	u	and	v	be	distinct	vertices	in	a	tournament	such	that	 (u,	v)	and	 (v,
u)	are	defined.	Show	that	 (u,	v)	≠	 (v,	u).

7.14	(a)	Show	that	if	an	odd	number	of	teams	play	in	a	round	robin	tournament,
then	it	is	possible	for	all	teams	to	tie	for	first	place.

(b)	 Show	 that	 if	 an	 even	 number	 of	 teams	 play	 in	 a	 round	 robin
tournament,	then	it	is	not	possible	for	all	teams	to	tie	for	first	place.

7.15	Prove	 that	 if	T	 is	 a	 strong	 tournament	of	order	n	 ≥	 3,	 then	T	 contains	 a
cycle	of	length	k	for	every	integer	k	with	3	≤	k	≤	n.

7.3	Excursion:	Decision—Making

In	 the	 United	 States	 presidential	 election	 of	 2000,	 George	W.	 Bush	 narrowly
defeated	Al	Gore.	Although	Gore	received	a	higher	popular	vote	total	than	Bush,
the	winner	of	the	election	was	Bush	because	his	electoral	vote	total	was	higher
than	that	of	Gore.

During	a	typical	year,	there	are	numerous	occasions	when	decisions	are	made
by	 voting.	 Whether	 it’s	 electing	 a	 president,	 a	 prime	 minister,	 a	 senator,	 a
governor,	a	mayor	or	a	student	representative	on	a	committee,	decisions	must	be
made	as	to	which	individuals	will	hold	these	positions.	Furthermore,	a	procedure
must	be	in	place	to	determine	how	this	decision	will	be	made.	The	answer	may
seem	simple.	The	decision	is	made	by	voting.	However,	this	is	not	as	simple	as	it
may	first	appear.	If	there	are	several	candidates	for	a	certain	position,	then	there



is	a	variety	of	ways	of	deciding	the	outcome	of	an	election.	It	would	seem	that	it
is	easy	to	decide	the	outcome	of	a	two-person	election	and	in	general	this	is	true,
with	 the	 aforementioned	 2000	 United	 States	 presidential	 election	 being	 a
possible	 exception	 (even	 though	 there	 were	 more	 than	 two	 candidates	 for
president).	 Making	 a	 decision	 among	 several	 choices	 is	 not	 restricted	 to
governmental	or	college	elections,	however.

Example	7.12	Al,	 his	wife	 Barbara	 and	 their	 three	 children	Cassie,	Donna
and	 Edwin	 have	 discussed	 which	 new	 car	 they	 should	 purchase	 and	 have
agreed	 that	 the	choice	 should	be	made	 from	a	General	Motors	car	 (GM),	 a
Honda	(H),	a	Chrysler	(C),	a	Toyota	(T)	and	a	Ford	(F).	Al	and	Barbara	also
agreed	 that	 this	 should	 be	 a	 family	 decision	 and	 that	 each	 family	 member
would	have	an	equal	voice	in	the	decision.

Actually,	 Al’s	 preferences	 coincide	 exactly	 with	 the	 order	 of	 cars	 listed
above.	 That	 is,	 Al	 prefers	 a	 General	 Motors	 car	 to	 a	 Honda,	 a	 Honda	 to	 a
Chrysler	 and	 so	 on.	 Al’s	 preferences	 are	 given	 in	 the	 tournament	 shown	 in
Figure	7.16.	For	example,	the	directed	edge	from	C	to	F	indicates	that	Al	prefers
a	Chrysler	to	a	Ford.	The	tournament	in	Figure	7.16	is	called	the	tournament	of
paired	comparisons	for	Al’s	preferences	as	it	indicates	his	preferred	choices	for
each	pair	of	cars.

Figure	7.16:	Al’s	tournament	of	paired	comparisons

The	tournaments	of	paired	comparisons	for	all	family	members	are	given	in
Figure	7.17.	All	of	 these	 tournaments	are	 transitive,	as	expected.	For	example,
since	Barbara	prefers	a	Honda	over	a	Ford	and	a	Ford	over	a	Toyota,	one	would
expect	that	she	prefers	a	Honda	over	a	Toyota,	which,	in	fact,	she	does.	For	the
decision	 as	 to	 which	 car	 should	 be	 purchased,	 Figure	 7.18	 shows	 the	 single
tournament	of	paired	comparisons	 for	 the	 entire	 family.	For	 example,	 all	 three
children	prefer	a	Ford	over	a	General	Motors	car,	while	both	parents	prefer	the



General	Motors	car	to	a	Ford.	Since	the	majority	of	the	family	members	prefer	a
Ford	to	a	General	Motors	car,	the	family	prefers	a	Ford	to	a	General	Motors	car
and	 so	 there	 is	 an	 arc	 from	 F	 to	 GM.	 All	 other	 arcs	 in	 this	 tournament	 are
obtained	in	the	same	manner.	Now	that	we	have	all	the	information,	the	question
is:	Which	car	should	be	purchased?	This	question	doesn’t	appear	to	have	an	easy
answer.	At	least,	it	doesn’t	seem	to	have	an	obvious	answer.	The	problem	is	that
even	 though	 every	 tournament	 in	 Figure	 7.17	 is	 transitive,	 the	 tournament	 in
Figure	7.18	constructed	from	these	five	tournaments	is	not	transitive.

Figure	7.17:	The	tournaments	of	paired	comparisons	for	all	five	family	members

Figure	7.18:	The	family	tournament	of	paired	comparisons

Let’s	turn	to	another	example.

Example	 7.13	 Suppose	 that	 a	 college	 is	 having	 an	 election	 for	 student
president	 and	 this	 year	 there	 are	 three	 candidates:	 Atkins,	 Bennett	 and
Chapman.



In	order	 to	have	 the	 full	 input	of	 the	students,	each	student	 is	asked	 to	cast
his/her	vote	by	making	one	of	the	choices	listed	below:

For	example,	checking	the	box	in	the	third	column	in	the	list	would	mean	that
the	 first	 choice	 of	 the	 person	 voting	 is	 Bennett	 (B),	 the	 second	 choice	 is
Chapman	(C)	and	the	third	choice	is	Atkins	(A).	The	voting	takes	place	and	here
is	the	outcome:

What	 do	we	 do	with	 this	 information?	 Let’s	 construct	 a	 tournament	T	 that
provides	the	preferences	among	these	candidates.	The	vertex	set	of	T	is	V(T)	=
{A,	B,	C}.	We	 consider	A	 and	B	 first.	 Since	 100	 +	 500	 +	 50	 =	 650	 students
prefer	A	over	B	and	75	+	425	+	350	=	850	prefer	B	over	A,	we	see	that	B	is	the
clear	choice	over	A	and	the	directed	edge	(B,	A)	is	drawn	in	T.	Similarly,	(C,	A)
is	a	directed	edge	 in	T	 since	825	prefer	C	over	A,	while	675	prefer	A	over	C.
Also,	(C,	B)	is	an	arc	since	900	prefer	C	over	B,	while	only	600	prefer	B	over	C.
This	tournament	is	shown	in	Figure	7.19.

Figure	7.19:	The	tournament	of	paired	comparisons	for	the	college	election

Looking	at	the	tournament	T	in	Figure	7.19,	we	see	that	not	only	is	Chapman
preferred	 over	 the	 other	 two	 candidates,	 each	 of	 Bennett	 and	 Chapman	 is
preferred	over	Atkins.	Furthermore,	the	number	of	voters	with	these	preferences
is	quite	one-sided.	So	 the	decision	appears	 to	be	very	clear.	Or	 is	 it?	After	all,
how	often	do	you	see	a	voting	decision	made	in	this	way?	It	is	common	to	count
only	the	votes	for	the	candidates	who	are	the	first	choice	of	the	voters.	If	this	is
done,	then	the	outcome	of	the	election	is



And	the	winner	is:	Atkins.	On	the	other	hand,	there	are	often	primary	elections
to	 determine	 the	 top	 two	 vote-getters	 to	 face	 off	 in	 a	 general	 election.	 For
example,	in	the	election	above,	Chapman	received	the	least	votes	and	would	be
eliminated	 from	appearing	on	 the	ballot	 in	 the	general	 election.	That	 is,	 in	 the
general	 election,	 it	would	be	Atkins	versus	Bennett.	But	we	have	already	seen
that	 between	 these	 two	 candidates,	 Bennett	 would	 receive	 more	 votes	 than
Atkins	and	would	win	quite	easily.	Therefore,	by	the	two	most	common	ways	of
deciding	an	election,	the	winning	candidate	is	not	the	preferred	candidate.

Exercises	for	Section	7.3

7.16	The	preferences	of	98	voters	for	three	candidates	are	shown	below.

(a)	If	the	candidate	who	is	the	first	choice	of	most	voters	wins,	then	who
would	win?

(b)	 Draw	 the	 tournament	 of	 paired	 comparisons.	 Indicate	 how	 you
decided	to	draw	the	 three	arcs.	According	to	 this	 tournament,	which
candidate	should	win?

7.17	This	year	there	are	four	candidates	for	the	president	of	the	student	council
at	a	 local	college:	Archer	 (A),	Benson	 (B),	Chase	 (C)	and	Dawkins	 (D).
Each	 student	 is	 asked	 to	 order	 his/her	 preferences	 among	 the	 four
candidates	by	voting	for	one	of	the	4!	=	24	ordered	lists	of	candidates.	A
total	of	408	students	vote	in	the	election	and	the	outcome	is	as	follows:



Of	course,	the	question	now	is:	Who	won	the	election?
(a)	Determine	the	winner	of	the	election	by	counting	only	the	first	choice

of	each	voter.
(b)	 Determine	 the	 winner	 of	 the	 election	 by	 eliminating	 the	 candidate

who	received	the	smallest	number	of	votes	in	(a)	and	then	recounting
the	votes	of	the	three	remaining	candidates?

(c)	 Determine	 the	 winner	 of	 the	 election	 by	 eliminating	 the	 two
candidates	who	received	the	smallest	number	of	votes	in	(a)	and	then
recounting	the	votes	of	the	two	remaining	candidates?

(d)	Determine	the	winner	of	the	election	by	constructing	the	tournament
of	paired	comparisons	of	the	four	candidates.

(e)	Who	should	win	the	election?

7.18	Return	to	Example	7.12	of	the	family	trying	to	decide	which	of	five	cars	to
purchase.	 Edwin	 has	 another	 idea	 to	 make	 the	 decision.	 Start	 with	 the
Honda	(H)	and	Ford	(F)	and	determine	which	of	these	is	the	preferred	car
of	the	family.	Then	do	the	same	thing	for	the	Toyota	(T)	and	the	General
Motors	 car	 (GM).	 Then	 compare	 the	Chrysler	 (C)	 and	 the	 preferred	 car
between	 H	 and	 F.	 The	 preferred	 car	 here	 is	 compared	 against	 the	 car
preferred	between	T	and	GM.	Which	car	does	the	family	prefer	using	this
method?	Is	this	a	good	method?

7.4	Exploration:	Wine	Bottle	Problems

There	 are	 games	 and	 problems	 in	 which	 success	 is	 attained	 by	 proceeding
through	 a	 sequence	 of	 steps.	 That	 is,	 in	 the	 process	 of	 playing	 the	 game	 or
attempting	to	solve	the	problem,	an	individual	may	find	himself	or	herself	at	one
of	a	number	of	states	and	from	that	state	it	 is	possible	to	move	to	certain	other
states	by	a	single	(allowable)	step.	Such	a	situation	can	be	modeled	by	a	graph
whose	vertices	are	the	states	and	where	two	states	A	and	B	are	adjacent	if	 it	 is
possible	to	proceed	from	A	to	B	by	a	single	step.	This	is	under	the	assumption
that	moving	from	A	to	B	is	reversible	by	a	single	reverse	step.	If,	on	 the	other
hand,	there	are	states	A	and	B	such	that	it	is	possible	to	proceed	from	A	to	B	by
single	 step	 but	 not	 so	 from	 B	 to	 A,	 then	 this	 situation	 is	 more	 appropriately
modeled	by	a	digraph	rather	than	a	graph.	We	now	look	at	a	class	of	problems
that	can	be	modeled	by	digraphs.



Example	7.14	Three	wine	bottles	A,	B	and	C	have	 capacities	of	 1,	3	and	 4
liters,	 respectively.	 These	 bottles	 are	 not	 graduated,	 however.	 That	 is,	 there
are	 no	 markings	 on	 the	 bottles.	 So,	 looking	 at	 a	 single	 bottle,	 it	 would	 be
impossible	to	know	exactly	how	much	wine	is	in	it,	unless,	of	course,	the	bottle
was	 full	 or	 empty.	 The	 largest	 bottle	 is	 filled	 with	 wine	 and	 the	 other	 two
containers	are	empty.	By	a	pouring,	we	mean	that	the	contents	of	some	bottle
X	 containing	wine	 is	 poured	 into	 a	 bottle	 Y	 until	 either	 bottle	 Y	 is	 filled	 or
bottle	 X	 is	 empty.	 We	 wish	 to	 divide	 the	 wine	 into	 two	 equal	 portions	 by
pouring	successively	from	one	bottle	to	another.	The	problem	then	is:	Can	we
obtain	 2	 liters	 of	 wine	 in	 the	 largest	 bottle	 and	 2	 liters	 in	 the	medium-size
bottle	 and	 if	 so,	 what	 is	 the	 fewest	 possible	 number	 of	 pourings	 needed	 to
accomplish	this?

At	any	particular	time,	suppose	that	bottle	A	contains	a	liters	of	wine,	B	has	b
liters	of	wine	and	C	has	c	liters	of	wine.	Thus	a	+	b	+	c	=	4	and	initially	a	=	b	=
0.	Indeed,	knowing	only	a	and	b	 tells	us	how	much	wine	is	in	all	three	bottles.
To	help	us	answer	this	question,	we	construct	a	digraph	D	such	that

where	(a1,	b1)	is	adjacent	to	(a2,	b2)	if	we	can	proceed	from	(a1,	b1)	to	(a2,	b2)	by
a	single	pouring.	The	answer	 to	 the	question	 is	 therefore	 the	distance	 from	the
vertex	(0,	0)	to	the	vertex	(0,	2)	in	D.	The	digraph	D	is	shown	in	Figure	7.20.

Figure	7.20:	The	digraph	of	Example	7.14



Observe	 that	while	 some	 steps	 are	 reversible,	 others	 are	 not.	 For	 example,
there	is	an	arc	from	(0,	1)	to	(0,	0)	but	not	from	(0,	0)	to	(0,	1).	That	is,	if	bottle
A	 is	 empty	 and	 bottle	B	 contains	 exactly	 1	 liter	 of	wine,	 then	 the	 contents	 of
bottle	B	can	be	poured	into	bottle	C;	while	if	bottle	C	contains	4	liters	of	wine,
then	it	is	not	possible	to	pour	exactly	1	liter	of	the	contents	of	bottle	C	into	bottle
B.	Looking	at	the	digraph	D	of	Figure	7.20,	we	see	that	the	distance	from	(0,	0)
to	(0,	2)	is	3	and	a	geodesic	is	the	path

Consequently,	 beginning	 with	 the	 bottle	 C	 filled	 with	 wine,	 it	 is	 possible	 to
divide	 the	wine	 into	 two	 equal	 portions	 by	 performing	 three	 pourings,	 but	 no
fewer.	Notice	that	there	are	paths	from	(0,	0)	to	(0,	2)	of	greater	length	as	well.

Exercises	for	Section	7.4

7.19	 Three	 wine	 bottles	 A,	 B	 and	 C	 have	 capacities	 of	 3,	 5	 and	 8	 liters,
respectively.	What	is	the	smallest	number	of	pourings	needed	to	produce

(a)	two	bottles,	each	containing	4	liters	of	wine?
(b)	 two	 bottles,	 one	 of	which	 contains	 2	 liters	 of	wine	 and	 the	 other	 6

liters	of	wine?
(c)	two	bottles,	one	of	which	contains	1	liter	of	wine	and	the	other	7	liters

of	wine?

7.20	Create	a	problem	of	your	own	(as	in	Exercise	7.19)	by	selecting	different
capacities	of	three	wine	bottles.



Chapter	8
Matchings	and	Factorization

8.1	Matchings

A	 mathematics	 department	 at	 a	 university	 has	 acquired	 a	 collection	 of	 12
different	mathematics	books	on	a	variety	of	subjects	to	be	presented	to	students
who	have	performed	well	on	a	competitive	mathematics	exam	(one	book	to	each
successful	 student).	 Of	 course,	 there	 would	 be	 a	 problem	 if	 more	 than	 12
students	 qualified	 for	 these	 books.	 It	 turns	 out,	 however,	 that	 this	 is	 not	 a
problem	 as	 only	 10	 students	 did	 well	 enough	 on	 the	 exam	 to	 receive	 books.
Nevertheless,	another	possible	difficulty	has	arisen.	Some	of	the	students	already
have	copies	of	some	books	and	there	are	some	books	that	certain	students	have
no	 need	 for.	 The	 question	 is	 this:	 Is	 there	 a	 way	 of	 distributing	 10	 of	 the	 12
books	 to	 the	 10	 students	 so	 that	 each	 student	 receives	 a	 book	 that	 he	 or	 she
would	like	to	have?	The	answer	to	this	problem	may	be	no	even	though	there	are
more	books	than	students.	For	example,	there	may	be	three	or	more	books	that
no	 student	 wants.	 Also,	 perhaps	 there	 are	 four	 students	 only	 interested	 in	 the
same	three	books,	in	which	case	it	would	be	impossible	to	distribute	four	books
to	these	four	students.

It	may	already	be	clear	that	this	situation	can	be	modeled	by	a	graph	G	whose
vertices	are	the	students,	say	S1,	S2,	…,	S10	and	the	books,	say	B1,	B2,	…,	B12,
where	two	vertices	of	G	are	adjacent	if	one	of	these	vertices	is	a	student	and	the
other	 is	 a	 book	 that	 this	 student	 would	 like	 to	 have.	 Certainly	 then,	 G	 is	 a
bipartite	graph	with	partite	sets	U	=	{S1,	S2,	…,	S10}	and	W	=	{B1,	B2,	…,	B12}.
For	example,	 if	student	S1	would	 like	 to	have	any	of	 the	books	B2,	B3,	B5,	B7,
then	 the	 graph	 G	 contains	 the	 subgraph	 shown	 in	 Figure	 8.1.	 What	 we	 are
seeking	 then	 is	 a	 set	A	 of	 10	 edges	 in	 the	 graph	G	 (where	G	 is	 only	 partially
drawn	in	Figure	8.1),	no	two	of	which	are	adjacent.	If	such	a	set	A	exists,	then
each	vertex	Si	(1	≤	i	≤	10)	is	incident	with	exactly	one	edge	in	A.



There	is	a	related	mathematical	question	here.	Let	U	and	W	be	two	sets	such
that	|U|	=	10	and	|W|	=	12.	Does	there	exist	a	one-to-one	function	f	:	U	→	W?

Figure	8.1:	A	subgraph	of	a	bipartite	graph

If	this	is	all	there	is	to	the	question,	then	the	answer	is	yes.	However,	what	if	the
image	of	each	element	of	U	cannot	be	just	any	element	of	W?	The	image	of	each
element	 of	U	 is	 required	 to	 be	 an	 element	 of	 some	 prescribed	 subset	 of	W.
Consequently,	what	we	are	asking	is	that	if	we	know	the	sets	of	possible	images
of	the	elements	of	U,	is	there	a	one-to-one	function	f	:	U	→	W	that	satisfies	these
conditions?

This	discussion	leads	us	to	some	new	concepts.	A	set	of	edges	in	a	graph	is
independent	if	no	two	edges	in	the	set	are	adjacent.	By	a	matching	in	a	graph
G,	 we	 mean	 an	 independent	 set	 of	 edges	 in	 G.	 Thus	 the	 problem	 we	 were
discussing	 asks	 whether	 a	 particular	 graph	 contains	 a	 certain	matching.	 Since
many	 problems	 of	 this	 type	 involve	 bipartite	 graphs,	 as	 does	 the	 problem	we
were	discussing,	we	first	consider	these	concepts	for	bipartite	graphs	only.

Let	G	be	a	bipartite	graph	with	partite	sets	U	and	W,	where	r	=	|U|	≤	|W|.	A
matching	in	G	is	therefore	a	set	M	=	{e1,	e2,	…,	ek}	of	edges,	where	ei	=	uiwi	for
1	≤	i	≤	k	such	that	u1,	u2,	…,	uk	are	k	distinct	vertices	of	U	and	w1,	w2,	…,	wk	are
k	distinct	vertices	of	W.	We	say	that	M	matches	the	set	{u1,	u2,	…,	uk}	to	the	set
{w1,	w2,	…,	wk}.	Necessarily,	for	any	matching	of	k	edges,	we	must	have	k	≤	r.
The	term	“matching”	is	used	since	the	edges	of	M	match	or	pair	off	k	elements
of	U	with	k	elements	of	W.	The	question	in	which	we	are	interested	can	now	be
phrased	 as	 follows:	 Does	 G	 contain	 a	 matching	 of	 cardinality	 r?	 Before
continuing	with	this	discussion,	let’s	consider	two	examples.

Example	8.1	As	a	 result	of	doing	well	on	an	exam,	 six	 students	Ashley	 (A),
Bruce	 (B),	Charles	 (C),	Duane	 (D),	Elke	 (E)	and	Faith	 (F)	have	 earned	 the
right	to	receive	a	complimentary	textbook	in	either	algebra	(a),	calculus	 (c),
differential	 equations	 (d),	 geometry	 (g),	 history	 of	 mathematics	 (h),
programming	 (p)	 or	 topology	 (t).	There	 is	 only	 one	 book	 on	 each	 of	 these



subjects.	The	preferences	of	the	students	are

Can	each	of	the	students	receive	a	book	he	or	she	likes?

Solution.	 This	 situation	 can	 be	modeled	 by	 the	 bipartite	 graph	G	 of	 Figure
8.2(a)	having	partite	sets	U	=	{A,	B,	C,	D,	E,	F}	and	W	=	{a,	c,	d,	g,	h,	p,	t}.
We	are	asking	if	G	contains	a	matching	with	six	edges.	Such	a	matching	does
exist,	as	shown	in	Figure	8.2(b).	From	the	matching	shown	in	Figure	8.2(b),
we	see	how	six	of	the	seven	books	can	be	paired	off	with	the	six	students.

Figure	8.2:	A	matching	in	a	bipartite	graph

Example	8.2	Seven	seniors	Ben	 (B),	Don	 (D),	Felix	 (F),	June	 (J),	Kim	 (K),
Lyle	 (L)	and	Maria	 (M)	 are	 looking	 for	 positions	 after	 they	 graduate.	 The
University	Placement	Office	has	posted	open	positions	for	an	accountant	 (a),
consultant	 (c),	 editor	 (e),	 programmer	 (p),	 reporter	 (r),	 secretary	 (s)	 and
teacher	(t).	Each	of	the	seven	students	has	applied	for	some	of	these	positions:

Is	 it	possible	 for	each	student	 to	be	hired	 for	a	 job	 for	which	he	or	 she	has
applied?

Solution.	 This	 situation	 can	 be	modeled	 by	 the	 bipartite	 graph	G	 of	 Figure
8.3,	where	one	partite	set	U	=	{B,	D,	F,	J,	K,	L,	M}	is	the	set	of	students	and
the	other	partite	set	W	=	{a,	c,	e,	p,	r,	s,	t}	is	the	set	of	positions.	A	vertex	u	
U	is	joined	to	a	vertex	w	 	W	if	u	has	applied	for	position	w.



The	 answer	 to	 this	 question	 is	 no	 as	 Ben,	 Felix,	 June	 and	 Lyle	 have	 only
applied	for	some	or	all	the	positions	of	consultant,	editor	and	reporter.	So	not	all
of	 these	 four	 students	 can	 be	 hired	 for	 the	 jobs	 for	 which	 they	 have	 applied.
Consequently,	not	all	seven	students	can	be	hired	for	the	seven	positions.	What
we	 have	 observed	 for	 the	 bipartite	 graph	G	 of	 Figure	 8.3	 is	 that	 there	 is	 no
matching	with	seven	edges.	What	we	gave	for	an	explanation	 is	 that	 there	 is	a
subset	X	=	{B,	F,	J,	L}	of	U	containing	four	vertices	whose	neighbors	belong	to	a
set	{c,	e,	r}	of	only	three	vertices.	As	we	are	about	to	see,	this	is	the	key	reason
why	this	or	any	bipartite	graph	with	partite	sets	U	and	W	such	that	r	=	|U|	≤	|W|
does	not	contain	a	matching	with	r	edges.

Let	G	be	a	bipartite	graph	with	partite	sets	U	and	W	such	that	|U|	≤	|W|.	For	a
nonempty	 set	 X	 of	 U,	 the	 neighborhood	 N(X)	 of	 X	 is	 the	 union	 of	 the
neighborhoods	 N(x),	 where	 x	 	 X.	 Equivalently,	 N(X)	 consists	 of	 all	 those
vertices	of	W	that	are	the	neighbors	of	one	or	more	vertices	in	X.	The	graph	G	is
said	to	satisfy	Hall’s	condition	if	|N(X)|	≥	|X|	for	every	nonempty	subset	X	of	U.
This	condition	is	named	for	Philip	Hall,	whom	we	will	visit

Figure	8.3:	A	graph	modeling	the	situation	in	Example	8.2

shortly.	 The	 partite	 set	U	 =	 {B,	D,	 F,	 J,	 K,	 L,	M}	 in	 the	 bipartite	 graph	G	 of
Example	8.2	 (shown	 in	 Figure	8.3)	 does	 not	 satisfy	Hall’s	 condition	 since	 the
subset	X	 =	 {B,	 F,	 J,	 L}	 of	U	 has	 the	 property	 that	 |N(X)|	 <	 |X|.	 It	 turns	 out,
however,	that	the	bipartite	graph	G	of	Example	8.1	does	satisfy	Hall’s	condition.

Theorem	8.3	Let	G	be	a	bipartite	graph	with	partite	sets	U	and	W	such	that	r
=	 |U|	 ≤	 |W|.	Then	 G	 contains	 a	 matching	 of	 cardinality	 r	 if	 and	 only	 if	 G
satisfies	Hall’s	condition.

Proof.	 If	Hall’s	 condition	 is	 not	 satisfied,	 then	 there	 is	 some	 subset	S	 of	U
such	that	|S|	>	|N(S)|.	Since	S	cannot	be	matched	to	a	subset	of	W,	 it	 follows
that	U	cannot	be	matched	to	a	subset	of	W.



The	converse	is	verified	by	the	Strong	Principle	of	Mathematical	Induction.
We	 proceed	 by	 induction	 on	 the	 cardinality	 of	 U.	 Suppose	 first	 that	 Hall’s
condition	is	satisfied	and	|U|	=	1.	Since	|N(U)|	≥	|U|	=	1,	 there	is	a	vertex	in	W
adjacent	to	the	vertex	in	U	and	so	U	can	be	matched	to	a	subset	of	W.	Assume,
for	an	integer	k	≥	2,	that	if	G1	is	any	bipartite	graph	with	partite	sets	U1	and	W1,
where

that	satisfies	Hall’s	condition,	then	U1	can	be	matched	to	a	subset	of	W1.	Let	G
be	 a	 bipartite	 graph	with	 partite	 sets	U	 and	W,	where	k	 =	 |U|	 ≤	 |W|,	 such	 that
Hall’s	condition	is	satisfied.	We	show	that	U	can	be	matched	to	a	subset	of	W.
We	consider	two	cases.

Case	1.	For	every	subset	S	of	U	such	that	1	≤	|S|	<	|U|,	it	follows	that	|N(S)|	>
|S|.	Let	u	 	U.	By	assumption,	u	is	adjacent	to	two	or	more	vertices	of	W.	Let	w
be	a	vertex	adjacent	to	u.	Now	let	H	be	the	bipartite	subgraph	of	G	with	partite
sets	U	−	{u}	and	W	−	{w}.	For	each	subset	S	of	U	−	{u},	|N(S)|	≥	|S|	in	H.	By	the
induction	 hypothesis,	U	 −	 {u}	 can	 be	matched	 to	 a	 subset	 of	W	 −	 {w}.	 This
matching	together	with	the	edge	uw	shows	that	U	can	be	matched	to	a	subset	of
W.

Case	2.	There	exists	a	proper	subset	X	of	U	such	that	|N(X)|	=	 |X|.	Let	F	be
the	bipartite	subgraph	of	G	with	partite	sets	X	and	N(X).	Since	Hall’s	condition	is
satisfied	in	F,	it	follows	by	the	induction	hypothesis	that	X	can	be	matched	to	a
subset	of	N(X).	Indeed,	since	|N(X)|	=	|X|,	the	set	X	can	be	matched	to	N(X).	Let
M′	be	such	a	matching.

Next,	consider	the	bipartite	subgraph	H	of	G	with	partite	sets	U	−	X	and	W	−
N(X).	Let	S	be	a	subset	of	U	−	X	and	let

We	show	that	|S|	≤	|S′|.	By	assumption,	|N(X	 	S)|	≥	|X	 	S|.	Hence

Since	|N(X)|	=	|X|,	it	follows	that	|S′|	≥	|S|.	Thus	Hall’s	condition	is	satisfied	in
H	and	so	there	is	a	matching	M″	from	U	−	X	to	W	−	N(X).	Therefore,	M′	 	M″
is	a	matching	from	U	to	W	in	G.

Theorem	 8.3	 is	 also	 due	 to	 Philip	Hall,	 who	was	 a	well-known	 algebraist.



Hall	was	born	on	April	11,	1904	 in	Hempstead,	London,	England	and	grew	 to
love	mathematics	 as	 a	 young	 student.	His	 interest	 in	mathematics	was	 greatly
influenced	 by	 the	 mathematics	 teachers	 he	 had,	 who	 were	 not	 only	 fine
mathematicians,	they	were	enthusiastic	mathematicians.	Hall	excelled	in	English
as	well.	Although	neither	outgoing	nor	athletic,	Hall	was	popular	as	a	 student.
He	went	on	to	King’s	College	Cambridge	where	he	was	encouraged	to	study	the
work	of	William	Burnside	and	became	interested	in	group	theory.	Hall	received
his	B.A.	in	1925.	Only	after	a	great	deal	of	thought	did	he	decide	to	pursue	an
academic	career.

Hall	obtained	a	fellowship	at	King’s	College	in	1927.	He	corresponded	with
Burnside	who	was	 very	 helpful	 to	Hall,	 although	 the	 two	 never	met.	 Later	 in
1927	Hall	obtained	an	important	result	 in	group	theory,	generalizing	the	Sylow
theorems	 for	 finite	 solvable	groups,	which	 is	now	often	called	Hall’s	 theorem.
This	theorem	was	published	in	1928.	Even	though	his	fellowship	was	renewed	in
1930,	 a	 second	 renewal	 appeared	 unlikely	 due	 to	 his	 lack	 of	 mathematical
activity	for	 three	years.	He	 then	published	a	paper	 in	1932	on	groups	of	prime
power	 order,	 perhaps	 his	 best	 known	work.	 In	 1933	 he	was	 then	 appointed	 a
Lecturer	 at	Cambridge.	 In	 1935	 his	 theorem	on	matchings	 (Theorem	8.3)	was
published,	although	it	was	not	stated	in	terms	of	graph	theory.

Except	for	a	period	during	World	War	II	when	he	worked	for	a	Foreign	Office
at	 Bletchley	 Park,	 he	 remained	 at	 Cambridge	 from	 1933	 to	 1967.	 Hall	 spent
much	of	his	life	making	important	contributions	to	algebra	and	is	considered	one
of	 the	 great	 mathematicians	 of	 the	 20th	 century.	 A	 man	 of	 high	 intellectual
standards	 and	 sound	 judgment,	 Hall	 cared	 greatly	 for	 his	 students	 and	 his
students	 cared	greatly	 for	him.	Hall	was	an	elegant	writer	but	when	 it	became
necessary	for	him	to	criticize	the	writing	of	his	students,	he	found	gentle	ways	to
suggest	 improvements.	 Even	 after	 his	 students	 left	 upon	 completing	 their
degrees,	 he	 remained	 in	 contact	 with	 them	 and	 encouraged	 them.	He	 died	 on
December	30,	1982.

As	we	mentioned,	Theorem	8.3	was	not	stated	in	terms	of	graphs.	Let	S1,	S2,
…,	 Sn	 be	 nonempty	 finite	 sets.	 Then	 this	 collection	 of	 sets	 has	 a	 system	 of
distinct	representatives	if	there	exist	n	distinct	elements	x1,	x2,	…,	xn	such	that
xi	 	Si	 for	 1	 ≤	 i	 ≤	n.	Of	 course,	 in	 order	 for	 the	 sets	S1,	S2,	…,	Sn	 to	 have	 a
system	of	distinct	representatives,	|S1	 	S2	 	…	 	Sn|	≥	n.

For	example,	consider	the	sets	S1,	S2,	…,	S7,	where



Then	this	collection	of	sets	has	a	system	of	distinct	representatives.	In	particular,
1,	2,	…,	7	(that	is,	i	 	Si	for	i	=	1,	2,	…,	7)	is	a	system	of	distinct	representatives.
On	the	other	hand,	the	sets	 ,	where

do	 not	 have	 a	 system	 of	 distinct	 representatives	 as	
,	 so	distinct	 representatives	do	not	exist	 for	 the

sets	 .
These	examples	may	very	well	suggest	that	what	is	needed	for	a	collection	of

sets	to	have	a	system	of	distinct	representatives	is	exactly	what	is	required	in	a
bipartite	 graph	G	 to	 have	 one	 partite	 set	U	 matched	 to	 a	 subset	 of	 the	 other
partite	set	W	of	G.

Theorem	8.4	A	collection	{S1,	S2,	…	Sn}	of	nonempty	finite	sets	has	a	system
of	distinct	representatives	if	and	only	if	for	each	integer	k	with	1	≤	k	≤	n,	 the
union	of	any	k	of	these	sets	contains	at	least	k	elements.

Proof.	Suppose	that	{S1,	S2,	…,	Sn}	has	a	system	of	distinct	 representatives.
Then,	necessarily,	for	each	integer	k	with	1	≤	k	≤	n,	the	union	of	any	k	of	these
sets	contains	at	least	k	elements.	So	only	the	converse	needs	to	be	verified.

Let	{S1,	S2,	…,	Sn}	be	a	collection	of	n	sets	such	that	for	each	integer	k	with	1
≤	k	≤	n,	the	union	of	any	k	of	these	sets	contains	at	least	k	elements.	We	construct
a	 bipartite	 graph	 G	 with	 partite	 sets	 U	 =	 {S1,	 S2,	 …,	 Sn}	 and	

,	where	a	vertex	Si	(1	≤	i	≤	n)	in	U	 is	adjacent	 to	a
vertex	w	in	W	if	w	 	Si.	Let	X	be	any	subset	of	U,	where	|X|	=	k	with	1	≤	k	≤	n.
Since	the	union	of	any	k	sets	contains	at	least	k	elements,	|N(X)|	≥	|X|.	Therefore,
G	 satisfies	 Hall’s	 condition.	 By	 Theorem	 8.3,	 G	 contains	 a	 matching	 of
cardinality	n,	which	pairs	off	the	sets	S1,	S2,	…,	Sn	with	n	distinct	elements	in	S1	
	S2	 	…	 	Sn,	producing	a	system	of	distinct	representatives	for	these	sets.

Hall	 actually	 proved	 Theorem	 8.4	 on	 sets	 which	 has	 Theorem	 8.3	 as	 an
equivalent	 formulation.	 It	 was	 in	 fact	 Dénes	 König	 who	 recognized	 Hall’s
theorem	as	a	theorem	in	graph	theory.	Theorem	8.3	is	sometimes	stated	in	“more
friendly”	terms	and	goes	by	the	name	of	the	Marriage	Theorem.

Theorem	 8.5	 (The	Marriage	Theorem)	 In	 a	 collection	 of	 r	 women	 and	 r



men,	a	total	of	r	marriages	between	acquainted	couples	is	possible	if	and	only
if	 for	 each	 integer	 k	with	 1	≤	k	 ≤	 r,	 every	 subset	 of	 k	women	 is	 collectively
acquainted	with	at	least	k	men.

In	 Theorem	 8.3	 our	 interest	 was	 not	 only	 in	 matchings	 but	 matchings	 of
maximum	cardinality.	Such	a	matching	is	called	a	maximum	matching.	At	this
point,	we	no	longer	assume	that	we	are	dealing	with	bipartite	graphs	only.	If	G	is
a	graph	of	order	n,	then	the	cardinality	of	a	maximum	matching	cannot	exceed	

.	That	is,	if	G	is	a	graph	of	(odd)	order	21	+	1,	then	no	matching	contains
more	 than	 	 edges;	while	 if	G	 has	 (even)	order	2k,	 then	no	matching	 contains
more	than	k	edges.	If	a	graph	G	of	order	2k	has	a	matching	M	of	cardinality	k,
then	this	(necessarily	maximum)	matching	M	is	called	a	perfect	matching	as	M
matches	every	vertex	of	G	 to	some	vertex	of	G.	For	example,	every	nonempty
regular	bipartite	graph	contains	a	perfect	matching,	a	 result	obtained	by	Dénes
König.

Theorem	8.6	Every	r-regular	bipartite	graph	(r	≥	1)	has	a	perfect	matching.

Proof.	 Let	 G	 be	 an	 r-regular	 bipartite	 graph	 with	 partite	 sets	 U	 and	 W.
Necessarily	|U|	=	|W|.	Let	X	be	a	nonempty	subset	of	U.	Suppose	that	|X|	=	k	≥
1.	Since	every	vertex	of	X	has	degree	r	in	G,	there	are	kr	edges	of	G	incident
with	 vertices	 of	X.	 Furthermore,	 since	 each	 vertex	 of	W	 is	 incident	with	 at
most	r	of	these	kr	edges,	every	vertex	in	N(X)	is	incident	with	at	most	r	edges
and	so	|N(X)|	≥	k	=	|X|.	By	Theorem	8.3,	G	has	a	perfect	matching.

There	 is	 a	 parameter	 directly	 associated	 with	 matchings	 (and	 maximum
matchings).	 The	 edge	 independence	 number	 ′(G)	 of	 a	 graph	 G	 is	 the
maximum	 cardinality	 of	 an	 independent	 set	 of	 edges.	 Therefore,	 if	 M	 is	 a
maximum	matching	in	G,	then	 ′(G)	=	|M|.	Furthermore,	a	graph	G	of	order	n
has	a	perfect	matching	if	and	only	if	n	is	even	and	 ′(G)	=	n/2.	For	an	integer	n
≥	3	and	integers	r	and	s	with	1	≤	r	≤	s,

There	is	another	parameter	closely	related	to	the	edge	independence	number.
A	vertex	and	an	incident	edge	are	said	to	cover	each	other.	An	edge	cover	of	a
graph	G	without	isolated	vertices	is	a	set	of	edges	of	G	that	covers	all	vertices	of
G.	The	edge	covering	number	 ′(G)	of	a	graph	G	is	the	minimum	cardinality	of
an	edge	cover	of	G.	An	edge	cover	of	G	of	cardinality	 ′(G)	is	a	minimum	edge
cover	of	G.	Thus	 ′(G)	is	defined	if	and	only	if	G	has	no	isolated	vertices.	For	an



integer	n	≥	3	and	integers	r	and	s	with	1	≤	r	≤	s,

Therefore,

while

These	illustrate	the	following	theorem.

Theorem	8.7	For	every	graph	G	of	order	n	containing	no	isolated	vertices,

Proof.	First,	suppose	that	 ′(G)	=	k.	Then	a	maximum	matching	of	G	consists
of	k	edges,	which	then	cover	2k	vertices.	The	remaining	n	−	2k	vertices	of	G
can	be	covered	by	n	−	2k	edges.	Thus	 ′(G)	≤	k	+	(n	−	2k)	=	n	−	k.	Hence

It	remains	only	to	show	that	 ′(G)	+	 ′(G)	≥	n.
Let	X	be	a	minimum	edge	cover	of	G.	Hence	 |X|	=	 	=	 ′(G).	Consider	 the

subgraph	F	=	G[X]	induced	by	X.	We	begin	with	an	observation:	F	contains	no
trail	T	of	length	3.	If	F	did	contain	a	trail	T	of	length	3	and	e	is	the	middle	edge
of	T,	then	X	−	{e}	also	covers	all	vertices	of	G,	which	is	impossible.	Therefore,
F	 contains	 no	 cycles	 and	 no	 paths	 of	 length	 3	 or	 more,	 implying	 that	 every
component	of	F	is	a	star.

Since	a	forest	of	order	n	and	size	n	−	k	contains	k	components	and	the	size	of
F	 is	 	 =	 n	 −	 (n	 −	 l),	 it	 follows	 that	F	 contains	 n	 −	 	 nontrivial	 components.
Selecting	one	edge	from	each	of	these	n	−	 	components	produces	a	matching	of
cardinality	n	−	l,	that	is,	 ′(G)	≥	n	−	l.	Therefore,

Consequently,	 ′(G)	+	 ′(G)	=	n.

Theorem	8.7	 is	 due	 to	Tibor	Gallai,	 known	as	Tibor	Grünwald	 in	 his	 early
years.	Gallai,	a	Hungarian	born	in	1912,	was	a	winner	of	national	mathematics
competitions,	 along	 with	 Paul	 Erd s	 and	 Paul	 Turán	 and	 became	 life-long



friends	of	both.	As	a	consequence	of	his	accomplishments,	Gallai	was	admitted
to	 Pázmány	 University	 in	 Budapest.	 He	 was	 one	 of	 a	 group	 of	 enthusiastic
students	in	the	1930s	in	Budapest	that	included	Paul	Erd s,	Paul	Turán,	George
Szekeres	 and	 Esther	 Klein.	 Some	 of	 these	 students	 attended	 the	 graph	 theory
course	given	by	Dénes	König,	who	was	a	professor	at	the	Technical	University
of	 Budapest.	 This	 was	 to	 have	 a	 profound	 effect	 on	 Gallai’s	 mathematical
interests.	Gallai	helped	König	with	his	graph	theory	book	and	König	mentioned
some	 of	 Gallai’s	 results	 in	 the	 book	 and	 used	 other	 ideas	 of	 Gallai.	Many	 of
Gallai’s	contributions	to	graph	theory	were	to	prove	fundamental	to	the	subject
and	 aided	 in	 the	 rapid	 development	 of	 graph	 theory	 and	 combinatorics.	 For
example,	he	was	among	the	first	 to	recognize	the	importance	of	so-called	min-
max	theorems.

Gallai	 was	 an	 exceptionally	 modest	 individual	 and	 rarely	 made	 public
appearances	 or	 attended	 conferences.	 In	 fact,	 much	 of	 his	 work	 only	 became
known	through	the	efforts	of	his	students.	While	Gallai	was	quick	to	praise	the
work	 of	 others,	 he	 often	 underestimated	 the	 merits	 of	 his	 own	 contributions,
even	 though	 he	 had	 important	 results	 in	 many	 areas	 of	 graph	 theory.
Consequently,	he	was	notoriously	slow	to	publish	his	own	results.	Several	of	his
results	went	unpublished,	later	to	be	independently	rediscovered	(and	published)
by	others.	Gallai	died	in	1992.

Independence	of	vertices	is	an	equally	important	topic	in	graph	theory.	A	set
of	vertices	in	a	graph	is	independent	 if	no	two	vertices	in	the	set	are	adjacent.
The	vertex	 independence	number	 (or	 the	 independence	number)	 (G)	 of	 a
graph	G	is	the	maximum	cardinality	of	an	independent	set	of	vertices	in	G.	An
independent	set	in	G	of	cardinality	 (G)	is	called	a	maximum	independent	set.

There	 is	 an	 analogous	 covering	 concept	 for	 vertices.	 A	 vertex	 cover	 in	 a
graph	G	is	a	set	of	vertices	that	covers	all	edges	of	G.	The	minimum	number	of
vertices	 in	 a	 vertex	 cover	 of	G	 is	 the	vertex	 covering	number	 (G)	 of	G.	 A
vertex	cover	of	cardinality	 (G)	is	a	minimum	vertex	cover	in	G.	For	an	integer
n	≥	3	and	integers	r	and	s	with	1	≤	r	≤	s,

while

Here	too	observe	that



There	is	an	analogue	to	Theorem	8.7	for	vertices,	also	due	to	Gallai.	The	proof	is
similar	 to	 the	 proof	 of	 Theorem	 8.7	 and	 is	 left	 as	 an	 exercise.	 The	 results	 in
Theorems	8.7	and	8.8	are	often	referred	to	as	the	Gallai	Identities.

Theorem	8.8	For	every	graph	G	of	order	n	containing	no	isolated	vertices,

The	 independence	 and	 covering	 concepts	 that	we	 have	 just	 discussed	 for	 a
graph	G	are	summarized	below.
(G) vertex	independence	number maximum	number	of	vertices,	no	two	of	which	are	adjacent
(G) vertex	covering	number minimum	number	of	vertices	that	cover	all	edges	of	G
′(G) edge	independence	number maximum	number	of	edges,	no	two	of	which	are	adjacent
′(G) edge	covering	number minimum	number	of	edges	that	cover	all	vertices	of	G

Example	 8.9	Determine	 the	 values	 of	 (G),	 (G),	 ′(G)	 and	 ′(G)	 for	 the
graph	G	=	K1+	2K3	of	Figure	8.4.

Figure	8.4:	The	graph	G	in	Example	8.9

Solution.	 Since	 the	 order	 of	 G	 is	 7,	 it	 follows	 that	 .
Because	 {tu,	 vw,	 yz}	 is	 an	 independent	 set	 of	 three	 edges,	 ′(G)	 =	 3.	 By
Theorem	8.7,	 ′(G)	=	4.	Note	that	{tu,	vw,	wx,	yz}	is	a	minimum	edge	cover
for	G.

The	vertex	w	is	adjacent	to	all	other	vertices	of	G.	Furthermore,	G[{t,	u,	v}]	=
K3	 and	 G[{x,	 y,	 z}]	 =	 K3.	 Thus	 (G)	 =	 2.	 One	 example	 of	 a	 maximum
independent	set	is	{t,	z}.	By	Theorem	8.8,	 (G)	=	5.	One	example	of	a	minimum
vertex	cover	of	G	is	{t,	u,	w,	y,	z}.

Exercises	for	Section	8.1

8.1	Let	G	be	the	bipartite	graph	with	partite	sets	U	=	{u0,	u1,	…,	u6}	and	W	=
{w0,	w1,	…,	w6},	where	the	elements	of	U	are	the	statements	listed	below,



and	wi	=	i	for	0	≤	i	≤	6.	Vertices	ui	and	wj	(0	≤	i,	j	≤	6)	are	adjacent	if	the
integer	wj	is	a	correct	response	to	the	statement	ui.

u0:	The	size	of	a	nontrivial	complete	graph.
u1:	The	number	of	distinct	u	−	u	paths	for	vertices	u	and	u	in	a	tree.
u2:	The	number	of	Hamiltonian	cycles	in	a	transitive	tournament.
u3:	The	number	of	bridges	in	a	tree	of	order	6.
u4:	The	value	of	r	for	a	nonempty	r-regular	graph	of	order	7.
u5:	The	maximum	degree	of	a	tree	of	order	5.
u6:	The	maximum	number	of	cut-vertices	among	all	graphs	of	order	5.

(a)	Draw	the	graph	G.
(b)	Does	G	 contain	 a	 perfect	matching?	 If	 no,	 explain	why	 not;	 if	 yes,

draw	a	perfect	matching	and	indicate	what	this	means	in	this	case.

8.2	There	are	positions	open	in	seven	different	divisions	of	a	major	company:
advertising	 (a),	 business	 (b),	 computing	 (c),	 design	 (d),	 experimentation
(e),	finance	(f)	and	guest	relations	(g).	Six	people	are	applying	for	some	of
these	positions,	namely:

(a)	Represent	this	situation	by	a	bipartite	graph.
(b)	Is	it	possible	to	hire	all	six	applicants	for	six	different	positions?

8.3	Figure	8.5	shows	two	bipartite	graphs	G1	and	G2,	each	with	partite	sets	U	=
{v,	w,	x,	y,	z}	and	W	=	{a,	b,	c,	d,	e}.	In	each	case,	can	U	be	matched	to	W?

Figure	8.5:	The	graphs	G1	and	G2	in	Exercise	8.3

8.4	A	connected	bipartite	graph	G	has	partite	sets	U	and	W,	where	|U|	=	|W|	=	k



≥	2.	Prove	that	if	every	two	vertices	of	U	have	distinct	degrees	in	G,	then
G	contains	a	perfect	matching.

8.5	Prove	that	every	tree	has	at	most	one	perfect	matching.

8.6	 (a)	 Prove	 that	 every	 connected	 graph	 of	 order	 4	 that	 is	 not	K1,	 3	 has	 a
perfect	matching.

(b)	Let	G	be	a	connected	graph	of	even	order.	Prove	that	if	G	contains	no
induced	subgraph	isomorphic	to	K1,	3,	then	G	has	a	perfect	matching.

8.7	Give	an	example	of	a	connected	non-Hamiltonian	graph	that	contains	two
disjoint	perfect	matchings.

8.8	 Show	 that	 the	 Petersen	 graph	 does	 not	 contain	 two	 disjoint	 perfect
matchings.	(Recall	that	the	smallest	cycle	in	the	Petersen	graph	has	length
5.)

8.9	For	each	integer	i	with	1	≤	i	≤	4,	give	an	example	of	a	connected	graph	Gi
of	smallest	order	such	that	 (G)	+	 ′(Gi)	=	5	and	 (Gi)	=	i.

8.10	 Show,	 for	 every	 connected	 graph	G	 of	 order	 6	 with	 four	 independent
vertices,	that	either	 (G)	=	5	or	 ′(G)	≥	2.

8.11	Give	an	example	of	an	infinite	class	of	graphs	G	for	which	 (G)	=	 ′(G).

8.12	Prove	or	disprove:

(a)	Every	vertex	cover	of	a	graph	contains	a	minimum	vertex	cover.
(b)	Every	independent	set	of	edges	in	a	graph	is	contained	in	a	maximum

independent	set	of	edges.

Figure	8.6:	The	graph	G	in	Exercise	8.13

8.13	Determine	the	values	of	 (H),	 (H),	 ′(H)	and	 ′(H)	 for	 the	graph	H	of
Figure	 8.6.	 Give	 an	 example	 of	 a	 minimum	 vertex	 cover,	 a	 maximum
independent	 set	 of	 vertices,	 a	 minimum	 edge	 cover	 and	 a	 maximum
independent	set	of	edges	of	H.

8.14	Prove	 that	 a	graph	G	without	 isolated	vertices	has	 a	perfect	matching	 if



and	only	if	 ′(G)	= ′(G).

8.15	Two	vertex-disjoint	graphs	G1	and	G2	have	orders	n1	and	n2,	respectively,
where	(1)	n2	≥	n1,	(2)	n1	and	n2	are	of	the	same	parity	and	(3)	 ′(G2)	≥	(n2
−	n1)/2.	Let	G	=	G1	+	G2.	What	is	 ′(G)?

8.16	Prove	that	 if	G	 is	a	graph	of	order	n,	maximum	degree	Δ	and	having	no
isolated	vertices,	then	 .

8.2	Factorization

We	 have	 mentioned	 that	 a	 matching	M	 in	 a	 graph	G	 of	 order	 n	 is	 a	 perfect
matching	if	n	 is	even	and	 |M|	=	n/2.	The	subgraph	F	=	G[M]	 induced	by	M	 is
therefore	a	1-regular	spanning	subgraph	of	G.	A	1-regular	spanning	subgraph	of
a	graph	G	is	also	called	a	1-factor	of	G.	Consequently,	the	edge	set	of	a	1-factor
of	a	graph	is	a	perfect	matching	of	the	graph.	So	a	graph	G	has	a	1-factor	if	and
only	if	G	has	a	perfect	matching.

For	 even	 integers	 n	 ≥	 4,	 the	 graphs	 Cn	 and	Kn	 have	 1-factors,	 while	 for
positive	integers	r	and	s,	the	complete	bipartite	graph	Kr,	s	has	a	1-factor	 if	and
only	 if	 r	 =	 s.	 The	 Petersen	 graph	 PG	 (see	 Figure	 8.7)	 also	 has	 a	 1-factor,	 for
example,	F	=	PG[X],	where	X	=	{ui	ui	:	1	≤	i	≤	5}	is	a	1-factor	of	the	Petersen
graph.	Of	course,	the	Petersen	graph	is	a	3-regular	graph.	Many	other	3-regular
graphs	have	1-factors.	Indeed	all	of	the	graphs	in	Figure	8.7	have	1-factors.

Not	every	3-regular	graph	contains	a	1-factor,	however.	For	example,	the	3-
regular	graph	H	of	order	16	shown	in	Figure	8.8	does	not	contain	a	1-factor.	This
brings	up	a	question:	Which	graphs	contain	1-factors?	Certainly,	only	graphs	of
even	order	can	contain	a	1-factor.	If	G	is	a	Hamiltonian	graph	of	even	order,	then
G	contains	a	1-factor.	By	 taking	every	other	edge	 in	a	Hamiltonian	cycle,	a	1-
factor	 is	 obtained.	 Indeed,	 a	 Hamiltonian	 graph	 of	 even	 order	 contains	 two
disjoint	perfect	matchings.



Figure	8.7:	3-regular	graphs	containing	1-factors

Figure	8.8:	A	3-regular	graph	containing	no	1-factor

If	G	 is	 a	 Hamiltonian	 graph	 of	 even	 order,	 then	 k(G	 −	 S)	 ≤	 |S|	 for	 every
nonempty	proper	subset	S	of	V(G),	where,	recall,	k(G	−	S)	denotes	the	number	of
components	of	G	−	S.	This	is	a	consequence	of	Theorem	6.5.	We	have	seen	that
the	converse	of	this	theorem	is	not	true.	For	example,	k(PG	−	S)	≤	|S|	for	every
nonempty	 proper	 subset	S	 of	 the	 vertex	 set	 of	 the	 Petersen	 graph	PG	 but	 the
Petersen	 graph	 is	 not	 Hamiltonian.	 Yet	 the	 Petersen	 graph	 does	 contain	 a	 1-
factor.

We	have	already	noted	that	the	graph	H	of	Figure	8.8	does	not	contain	a	1-
factor.	If	it	did	contain	a	1-factor	F,	then	exactly	one	edge	of	F	is	incident	with
the	vertex	v.	Since	H	−	v	consists	of	three	components	of	odd	order,	two	of	these
components	 must	 contain	 a	 1-factor,	 which,	 of	 course,	 is	 impossible.	 This
implies	that	if	G	is	a	graph	of	even	order	containing	a	nonempty	proper	subset	S



of	V(G)	 such	 that	G	 −	 S	 has	more	 than	 |S|	 components	 of	 odd	 order,	 then	G
cannot	 contain	 a	 1-factor.	 It	 turns	 out	 that	 this	 observation	 is	 a	 critical	 one.	A
component	of	a	graph	 is	odd	or	even	 according	 to	whether	 its	order	 is	odd	or
even.	 We	 write	 ko(G)	 for	 the	 number	 of	 odd	 components	 of	 a	 graph	 G.	 In
particular,	if	G	is	a	Hamiltonian	graph	of	even	order	n	(and	thus	G	contains	a	1-
factor),	 then	ko(G	 −	S)	≤	 |S|	 for	 every	proper	 subset	S	 of	V(G).	The	 following
theorem	provides	a	characterization	of	graphs	containing	a	1-factor.

Theorem	8.10	A	graph	G	contains	a	1-factor	if	and	only	if	ko(G	−	S)	≤	|S|	for
every	proper	subset	S	of	V(G).

Proof.	Assume	first	that	G	contains	a	1-factor	F.	Let	S	be	a	proper	subset	of
V(G).	If	G	−	S	has	no	odd	components,	then	ko(G	−	S)	=	0	and	certainly	ko(G
−	S)	≤	|S|.	Suppose	that	ko(G	−	S)	=	k	≥	1	and	let	G1,	G2,	…,	Gk	be	 the	odd
components	of	G	−	S.	(There	may	also	be	even	components	of	G	−	S.)	Since	G
contains	the	1-factor	F	and	the	order	of	each	subgraph	Gi	(1	≤	i	≤	k)	 is	odd,
some	edge	of	F	must	be	incident	to	both	a	vertex	of	Gi	and	a	vertex	of	S	and
so	ko(G	−	S)	≤	|S|.

For	 the	 converse,	 assume	 that	ko(G	 −	S)	≤	 |S|	 for	 every	 proper	 subset	S	 of
V(G).	 In	 particular,	 for	 S	 =	 ,	 we	 have	 ko(G	 −	 S)	 =	 ko(G)	 =	 0,	 that	 is,	 every
component	of	G	 is	 even	and	so	G	 has	 even	order.	We	now	show	by	 induction
that	every	graph	G	of	even	order	with	this	property	has	a	1-factor.	There	is	only
one	graph	of	order	2	having	only	even	components,	namely	K2,	which,	of	course,
has	a	1-factor.	Assume,	for	an	even	integer	n	≥	4,	that	all	graphs	H	of	even	order
less	than	n	for	which	ko(H	−	S)	≤	|S|	for	every	proper	subset	S	of	V(H)	have	a	1-
factor.	Let	G	 be	 a	graph	of	order	n	 satisfying	ko(G	−	S)	≤	 |S|	 for	 every	 proper
subset	S	of	V(G).	Thus	every	component	of	G	has	even	order.

First,	 we	 make	 an	 observation.	 Since	 every	 nontrivial	 component	 of	 G
contains	a	vertex	that	 is	not	a	cut-vertex	(Corollary	5.6),	 there	are	subsets	R	of
V(G)	for	which	ko(G	−	R)	=	|R|.	(For	example,	we	could	choose	R	=	{v},	where	v
is	 not	 a	 cut-vertex	 of	 G.)	 Among	 all	 such	 sets,	 let	 S	 be	 one	 of	 maximum
cardinality	and	let	G1,	G2,	…,	Gk	be	the	k	odd	components	of	G	−	S.	Thus	k	=	|S|
≥	1.

Observe	that	G1,	G2,	…,	Gk	are	the	only	components	of	G	−	S,	for	otherwise
G	−	S	has	an	even	component	G0	containing	a	vertex	u0	that	is	not	a	cut-vertex.



Then	for	the	set	S0	=	S	 	{u0}	of	cardinality	k	+	1,

which	is	impossible.	Therefore,	as	claimed,	the	odd	components	G1,	G2,	…,	Gk
are,	in	fact,	the	only	components	of	G	−	S.

Now,	for	each	integer	i	with	1	≤	i	≤	k,	let	Si	be	the	set	of	vertices	of	S	that	are
adjacent	to	at	least	one	vertex	in	Gi.	Since	G	has	only	even	components,	each	set
Si	is	nonempty.	We	claim	next	that	for	each	integer	 	with	1	≤	 	≤	k,	the	union	of
any	 	 of	 the	 sets	 S1,	 S2,	 …,	 Sk	 contains	 at	 least	 	 vertices.	 Assume,	 to	 the
contrary,	that	there	exists	an	integer	j	such	that	the	union	T	of	j	of	the	sets	S1,	S2,
…,	Sk	has	fewer	than	j	elements.	Without	loss	of	generality,	we	may	assume	that	

	and	|T|	≤	j.	Then

which	 is	 impossible.	Thus,	 as	 claimed,	 for	 each	 integer	 	with	1	≤	 	 ≤	 k,	 the
union	of	any	 	of	the	sets	S1,	S2,	…,	Sk	contains	at	least	 	vertices.

By	Theorem	8.4,	there	exists	a	set	{v1,	v2,	…,	vk}	of	k	distinct	vertices	such
that	vi	 	Si	for	1	≤	i	≤	k.	Since	every	graph	Gi	(1	≤	i	≤	k)	contains	a	vertex	ui	for
which	uivi	 	E(G),	 it	 follows	 that	 {uvui	 :	 1	 ≤	 i	 ≤	 k}	 is	 a	matching	 of	G	 (see
Figure	8.9).

Figure	8.9:	A	step	in	the	proof	of	Theorem	8.10

Next,	we	show	that	if	Gi	(1	≤	i	≤	k)	is	nontrivial,	then	Gi	−	ui	has	a	1-factor.
Let	W	be	a	proper	subset	of	V(Gi	−	ui).	We	claim	that



Assume,	to	the	contrary,	that	ko(Gi	−	ui	−	W)	≥	|W|.	Since	Gi	−	ui	has	even	order,
ko(Gi	−	ui	−	W)	and	|W|	are	either	both	even	or	both	odd.	Hence	ko(Gi	−	ui	−	W)	≥
|W|	+	2.	Let	S′	=	S	 	W	 	{ui}.	Then

which	 implies	 that	 ko(G	 −	 S′)	 =	 |S′|,	 contradicting	 our	 choice	 of	S.	 Therefore,
ko(Gi	−	ui	−	W)	≤	|W|,	as	claimed.

By	the	induction	hypothesis,	if	Gi	(1	≤	i	≤	k)	is	nontrivial,	then	Gi	−	ui	has	a
1-factor.	The	collection	of	1-factors	of	Gi	−	ui	for	all	nontrivial	graphs	Gi	(1	≤	i	≤
k)	and	the	edges	in	{uivi	:	1	≤	i	≤	k}	produce	a	1-factor	of	G.

Theorem	8.10	 is	due	 to	William	Thomas	Tutte.	Tutte	was	born	on	May	14,
1917	 in	Newmarket,	 England.	 Tutte’s	 father	was	 a	 gardener	 and	 his	mother	 a
caretaker.	Although	the	family	moved	about	as	his	father	attempted	to	obtain	a
more	 stable	 position,	 his	 father	 eventually	 became	 a	 gardener	 at	 a	 hotel.	 The
family	lived	in	a	flint	cottage	in	the	little	village	of	Cheveley.	Tutte	went	to	the
village	school	from	ages	6	to	11.	Because	of	his	performance	on	a	competitive
exam,	 he	 won	 a	 scholarship	 at	 age	 10	 to	 attend	 a	 school	 in	 Cambridge.	 His
parents	 felt	 that	 the	 distance	 to	 school	was	 too	great	 and	 so	Tutte	was	 kept	 at
home.	 A	 year	 later,	 however,	 he	 took	 the	 exam	 again	 and	 this	 time	 he	 was
permitted	to	go	to	school	in	Cambridge	despite	the	lengthy	commute	each	day.

In	 1935	 he	 entered	 Trinity	 College,	 Cambridge	 where	 he	 majored	 in
chemistry	 and	went	 on	 to	 do	 graduate	work	 in	 chemistry.	 In	 fact,	 he	 had	 two
publications	in	chemistry.	Despite	his	major,	chemistry	was	not	Tutte’s	first	love.
His	primary	interest	was	mathematics.	He	was	active	in	the	Trinity	Mathematical
Society,	where	 he	 met	 three	 undergraduates	 (all	 mathematics	 majors):	 Cedric
Smith,	R.	Leonard	Brooks,	Arthur	Stone,	who	became	life-long	friends	of	Tutte.
The	four	students	wrote	a	paper	using	electrical	networks	 to	solve	a	geometric
problem,	which	became	a	standard	reference	in	the	field.

Tutte’s	 academic	 career	 was	 then	 interrupted	 by	 World	 War	 II.	 At	 the
invitation	 of	 his	 tutor	 in	 January	 1941,	 Tutte	 went	 to	 Bletchley	 Park,	 the
organization	 of	 code-breakers	 in	 Great	 Britain.	 In	 October	 1941,	 Tutte
encountered	 the	 first	 of	 a	 set	 of	 machine-coded	messages	 from	Berlin	 named
Fish.	 While	 the	 Bletchley	 code-breakers,	 among	 whom	 Alan	 Turing	 was	 the
most	 prominent,	 had	 success	 in	 deciphering	 naval	 and	 air	 force	 versions	 of
Enigma	codes,	they	did	not	have	success	with	the	army	version.	Because	of	this,
they	turned	to	Fish,	which	was	used	only	by	the	army.	The	Fish	code	was	used



for	high	level	communications	between	Berlin	and	the	field	commanders.	Using
only	samples	of	messages,	Tutte	was	able	to	discover	the	structure	of	machines
that	generated	these	codes.	Tony	Sale,	who	first	described	the	work	of	Tutte	and
his	colleagues,	called	this	the	“greatest	intellectual	feat	of	the	whole	war.”

After	World	War	 II,	 Tutte	 returned	 to	 Cambridge,	 this	 time	 as	 a	 graduate
student	in	mathematics.	While	a	graduate	student,	he	published	some	work	that
he	had	started	earlier:	a	characterization	of	graphs	containing	1-factors	(Theorem
8.10).	 In	 his	 doctoral	 thesis,	 Tutte	 revitalized	 a	 subject	 that	 is	 now	 known	 as
matroid	theory,	an	area	of	mathematics	 (generally	credited	as	being	 introduced
by	 Hassler	 Whitney)	 that	 grew	 out	 of	 abstractions	 of	 different	 combinatorial
objects	(including	graphs	and	matrices).

Tutte	 completed	 his	 Ph.D.	 at	 the	 University	 of	 Cambridge	 in	 1948,	 with
minimal	assistance	from	his	advisor	Shaun	Wylie.	Tutte	was	invited	to	join	the
faculty	 at	 the	 University	 of	 Toronto	 at	 the	 invitation	 of	 H.	 S.	 M.	 (Donald)
Coxeter	 (1907-2003),	one	of	 the	great	geometers	of	 the	20th	century.	While	 in
Toronto,	 Tutte	 became	 one	 of	 the	 preeminent	 researchers	 in	 the	 field	 of
combinatorics.	In	1957	the	University	of	Waterloo	in	Canada	was	founded.	Five
years	 later	 Ralph	 G.	 Stanton	 (1923-2010),	 the	 Chair	 of	 the	 Department	 of
Mathematics	 there	and	well	known	for	his	work	 in	combinatorial	designs,	was
successful	in	getting	Tutte	to	join	the	Department.	Tutte’s	presence	at	Waterloo
was	 a	 major	 factor	 in	 the	 establishment	 of	 the	 reputation	 of	 the	 University.
Although	Tutte	retired	in	1984,	he	continued	to	work	in	graph	theory	and	related
areas	of	discrete	mathematics.	In	his	1998	book	Graph	Theory	As	I	Have	Known
It,	Tutte	described	how	he	arrived	at	many	of	his	fundamental	results.	He	died	on
May	2,	2002.

Figure	8.7	shows	several	3-regular	graphs	containing	1-factors,	while	Figure
8.8	 shows	 a	 3-regular	 graph	 that	 does	 not	 contain	 a	 1-factor.	Even	 though	 the
graph	of	Figure	8.8	has	bridges,	there	is	no	3-regular	graph	without	bridges	that
does	not	contain	a	1-factor.	This	is	a	result	of	Julius	Petersen.	In	fact,	it	is	often
called	 Petersen’s	 theorem.	 Although	 this	 theorem	 preceded	 Theorem	 8.10
historically,	a	simpler	proof	can	be	given	with	the	aid	of	Theorem	8.10.

Theorem	 8.11	 (Petersen’s	 Theorem)	 Every	 3-regular	 bridgeless	 graph
contains	a	1-factor.

Proof.	Let	G	be	a	3-regular	bridgeless	graph	and	let	S	be	a	subset	of	V(G)	of
cardinality	k	≥	1.	We	show	that	the	number	ko(G	−	S)	of	odd	components	of	G
−	 S	 is	 at	 most	 |S|.	 Since	 this	 is	 certainly	 the	 case	 if	 G	 −	 S	 has	 no	 odd



components,	we	may	assume	that	G	−	S	has	 	≥	1	odd	components	G1,	G2,	…,
Gl.	Let	Xi	(1	≤	i	≤	l)	denote	the	set	of	edges	joining	the	vertices	of	S	and	the
vertices	of	Gi.	Since	every	vertex	of	each	graph	Gi	has	degree	3	in	G	and	the
sum	of	the	degrees	of	the	vertices	in	the	graph	Gi	is	even,	|Xi|	is	odd.	Because
G	is	bridgeless,	|Xi|	≠	1	for	each	i	(1	≤	i	≤	 )	and	so	|Xi|	≥	3.	Therefore,	there
are	 at	 least	 3l	 edges	 joining	 the	 vertices	 of	 S	 and	 the	 vertices	 of	 G	 −	 S.
However,	since	 |S|	=	k	 and	 every	vertex	of	S	 has	 degree	 3	 in	G,	 at	most	 3k
edges	join	the	vertices	of	S	and	the	vertices	of	G	−	S.	Therefore,

and	so	ko(G	−	S)	≤	|S|.	By	Theorem	8.10,	G	has	a	1-factor.

Actually,	Petersen	proved	a	somewhat	stronger	result	(whose	proof	is	left	as
an	exercise).

Theorem	8.12	Every	3-regular	graph	with	at	most	two	bridges	contains	a	1-
factor.

In	view	of	the	graph	H	of	Figure	8.8,	the	number	of	bridges	in	the	statement
of	Theorem	8.12	cannot	be	increased	to	3	and	obtain	the	same	conclusion.

If	a	3-regular	graph	G	contains	a	1-factor	F1	and	the	edges	of	F1	are	removed
from	G	(that	is,	the	edges	of	a	perfect	matching	are	removed	from	G),	then	a	2-
regular	graph	H	results.	If,	in	turn,	H	contains	a	1-factor	F2	and	the	edges	of	F2
are	 removed	 from	H,	 the	 resulting	graph	F3	 is	 itself	 a	 1-factor.	 If	 this	were	 to
occur,	 then	G	 contains	 three	pairwise	edge-disjoint	1-factors.	This	brings	us	 to
our	next	concept.

A	graph	G	is	said	to	be	1-factorable	if	there	exist	1-factors	F1,	F2,	…,	Fr	of
G	such	that	{E(F1),	E(F2),	…,	E(Fr)}	is	a	partition	of	E(G).	We	then	say	that	G
is	factored	into	the	1-factors	F1,	F2,	…,	Fr,	which	form	a	1-factorization	of	G.
Consequently,	every	edge	of	G	belongs	to	exactly	one	of	these	1-factors.	Since
each	set	E(Fi),	1	≤	i	≤	r,	 is	a	perfect	matching,	every	vertex	v	of	G	 is	 incident
with	exactly	one	edge	in	each	of	the	1-factors	F1,	F2,	…,	Fr,	that	is,	degG	u	=	r,
which	implies	that	G	is	r-regular.	Therefore,	every	1-factorable	graph	is	regular.
However,	 the	converse	 is	not	 true.	 In	 fact,	 the	3-regular	graph	H	of	Figure	8.8
doesn’t	 contain	 a	 single	 1-factor.	 On	 the	 other	 hand,	 Theorem	 8.11	 only
guarantees	that	a	3-regular	graph	has	a	1-factor	when	it	is	bridgeless.



In	 1884	 Peter	 Tait	 wrote	 that	 he	 had	 shown	 every	 3-regular	 graph	 is	 1-
factorable	but	this	result	was	“not	true	without	limitation.”	Petersen	interpreted
Tait’s	 vague	 remark	 to	 mean	 that	 every	 3-regular	 bridgeless	 graph	 is	 1-
factorable.	However,	 in	1898	Petersen	showed	that	even	if	a	3-regular	graph	is
bridgeless,	this	doesn’t	mean	that	the	graph	is	1-factorable.	He	did	this	by	giving
an	example	of	a	3-regular	bridgeless	graph	that	is	not	1-factorable:	the	Petersen
graph	(shown	in	Figure	8.7).

Theorem	8.13	The	Petersen	graph	is	not	1-factorable.

Proof.	 Assume,	 to	 the	 contrary,	 that	 the	 Petersen	 graph	 PG	 is	 1-factorable.
Thus	PG	can	be	factored	into	three	1-factors	F1,	F2,	F3.	Hence	 the	spanning
subgraph	H	of	PG	with	E(H)	=	E(F1)	 	E(F2)	is	2-regular	and	so	H	is	either	a
single	cycle	or	a	union	of	two	or	more	cycles.	Since	PG	is	not	Hamiltonian,	H
cannot	be	a	single	cycle	and	is	therefore	the	union	of	two	or	more	cycles.	On
the	other	hand,	since	the	length	of	a	smallest	cycle	in	PG	is	5,	it	follows	that	H
=	2C5.	This	is	impossible,	however,	since	2C5	does	not	contain	a	1-factor.

Probably	the	best	known	1-factorable	graphs	are	the	complete	graphs	of	even
order.

Theorem	 8.14	For	 each	 positive	 ineteger	 k,	 the	 complete	 graph	 K2k	 is	 1-
factorable.

Proof.	Since	the	result	is	true	for	k	=	1	and	k	=	2,	we	assume	that	k	≥	3.	Let
G=	K2k,	where	V(G)	=	{v0,	v1,	v2,	…,	v2k	 −	 1}.	Let	v1,	v2,	…,	v2k	 −	 1	 be	 the
vertices	of	a	regular	(2k	−	1)-gon	and	place	v0	 in	 the	center	of	 the	(2k	−	1)-
gon.	Draw	each	edge	of	G	as	a	straight	line	segment.	Let	F1	be	the	1-factor	of
G	consisting	of	the	edge	v0v1	and	all	edges	of	G	perpendicular	to	v0v1,	namely
v2	v2k	−	1,	v3	v2k	−	2,	…,	vk	vk	+	1.	In	general,	for	1	≤	i	≤	2k	−	1,	let	Fi	be	the	1-
factor	of	G	consisting	of	the	edge	v0vi	and	all	edges	of	G	perpendicular	to	v0vi.
Then	G	has	a	factorization	into	the	1-factors	F1,	F2,	…,	F2k	−	1.

In	 the	1-factorization	of	K2k	described	 in	 the	proof	of	Theorem	8.14,	 the	1-
factor	F2	can	be	obtained	by	rotating	the	1-factor	F1	clockwise	through	an	angle
of	2 /(2k	−	1)	 radians.	By	 rotating	F1	 through	 this	 angle	 twice,	F3	 is	obtained
and	so	on.	For	this	reason,	the	1-factorization	described	in	the	proof	is	called	a



cyclic	factorization.	This	1-factorization	is	illustrated	in	Figure	8.10	for	the	case
k	=	3.

Figure	8.10:	A	cyclic	1-factorization	of	K6

With	 the	aid	of	Theorem	8.6,	we	can	describe	another	class	of	1-factorable
graphs.

Theorem	8.15	Every	r-regular	bipartite	graph,	r	≥	1,	is	1-factorable.

Proof.	Let	G	be	an	r-regular	bipartite	graph,	where	r	≥	1.	By	Theorem	8.6,	G
contains	a	perfect	matching	M1.	Hence	G	−	M1	is	(r	−	1)-regular.	If	r	≥	2,	then
G	 −	M1	 contains	 a	 perfect	 matching	 M2.	 Continuing	 in	 this	 manner	 and
applying	Theorem	8.6	r	times,	we	see	that	E(G)	can	be	partitioned	into	perfect
matchings,	which	gives	rise	to	a	1-factorization	of	G.

A	 2-factor	 in	 a	 graph	 G	 is	 a	 spanning	 2-regular	 subgraph	 of	 G.	 Every
component	 of	 a	 2-factor	 is	 therefore	 a	 cycle.	 A	 graph	 G	 is	 said	 to	 be	 2-
factorable	 if	 there	 exist	 2-factors	F1,	F2,	…,	Fk	 such	 that	 {E(F1),	E(F2),	 …,
E(Fk)}	is	a	partition	of	E(G).	Every	2-factorable	graph	is	necessarily	2k-regular
then.	That	is,	if	G	is	a	2-factorable	graph,	then	G	is	r-regular	for	some	positive
even	 integer	 r.	 In	 what	 might	 be	 considered	 an	 unexpected	 result,	 Petersen
showed	that	the	converse	of	this	statement	is	true	as	well.

Theorem	8.16	A	graph	G	is	2-factorable	if	and	only	if	G	is	r-regular	for	some
positive	even	integer	r.

Proof.	We	have	already	observed	that	every	2-factorable	graph	is	r-regular	for



some	positive	even	integer	r.	Therefore,	we	need	only	establish	the	converse.
Let	 G	 be	 an	 r-regular	 graph,	 where	 r	 =	 2k	 and	 k	 ≥	 1.	 Without	 loss	 of
generality,	we	may	assume	that	G	is	connected.	By	Theorem	6.1,	G	is	Eulerian
and	 therefore	 contains	 an	Eulerian	 circuit	C.	 (Of	 course,	 a	 vertex	 of	G	 can
appear	more	than	once	in	C.	In	fact,	each	vertex	of	G	appears	exactly	k	times
in	C.)

Let	V(G)	=	{v1,	v2,	…,	vn}.	We	construct	a	bipartite	graph	H	with	partite	sets

where	 the	vertices	ui	 and	wj	 (1	≤	 i,	 j	 ≤	n)	 are	 adjacent	 in	H	 if	 vj	 immediately
follows	vi	on	C.	Since	every	vertex	of	G	appears	exactly	k	times	in	C,	the	graph
H	is	k-regular.	By	Theorem	8.15,	H	is	1-factorable	and	so	H	can	be	factored	into
k	1-factors	 .

Next,	we	show	each	1-factor	 	(1	≤	i	≤	k)	of	H	corresponds	to	a	2-factor	Fi
of	G.	Consider	the	1-factor	 ,	for	example.	Since	 	is	a	perfect	matching	of	H,
it	follows	that	 	is	an	independent	set	of	k	edges	of	H,	say

where	the	integers	i1,	i2,	…,	in	are	the	integers	1,	2,	…,	n	in	some	order	and	ij	≠	j
for	each	j	(1	≤	 j	≤	n).	Suppose	 that	 it	=	1.	Then	 the	1-factor	 	gives	 rise	 to	a
cycle	 .	 If	 C(1)	 has	 length	 n,	 then	 the
Hamiltonian	cycle	C(1)	of	G	is	a	2-factor	of	G.	If	the	length	of	C(1)	is	less	than	n,
then	there	is	a	vertex	vl	of	G	 that	is	not	on	C(1).	Suppose	that	 is	=	l.	This	gives
rise	 to	 a	 second	 cycle	 .	 Continuing	 in	 this
manner,	 we	 obtain	 a	 collection	 of	 pairwise	 vertex-disjoint	 cycles	 that	 contain
each	 vertex	 of	G	 once,	 producing	 a	 2-factor	F1	 of	G.	 In	 general	 then,	 the	 1-
factorization	of	H	into	1-factors	 	produces	a	2-factorization	of	G
into	2-factors	F1,	F2,	…,	Fk,	as	desired.

To	illustrate	the	proof	of	Theorem	8.16,	consider	the	4-regular	graph	G	=	K2,
2,	2	shown	in	Figure	8.11(a).	One	Eulerian	circuit	of	G	is

Since	V(G)	=	{v1,	v2,,	…,	v6},	we	construct	a	bipartite	graph	H	(shown	in	Figure
8.11(b))	with	partite	sets	U	=	{u1,	u2,	…,	u6}	and	W	=	{w1,	w2,	…,	w6}.	Since	v1



v2	and	v2v3	are	edges	of	C,	the	edges	u1	w2	and	u2	w3	belong	to	H.	Figure	8.11(c)
shows	a	possible	1-factorization	of	H	 into	 the	 two	1-factors	 	and	 ,	which
gives	rise	to	the	2-factorization	of	G	shown	in	Figure	8.11(d).

Figure	8.11:	Constructing	a	2-factorization	of	a	4-regular	graph	G

Since	 the	 complete	 graph	K2k	 +	 1,	 where	 k	 ≥	 1,	 is	 2k-regular,	K2k	 +	 1	 is	 2-
factorable.	 Some	 2-factorizations	 of	K3,	K5	 and	K7	 are	 shown	 in	 Figure	 8.12.
Observe	that	not	only	does	there	exist	a	2-factorization	of	each	of	K3,	K5	and	K7
but	there	exists	a	2-factorization	of	each	of	these	graphs	in	which	each	2-factor	is
a	Hamiltonian	cycle.	This	is	obvious	in	the	cases	of	K3	and	K5.	A	Hamiltonian
factorization	of	a	graph	G	is	a	2-factorization	of	G	 in	which	each	2-factor	is	a
Hamiltonian	 cycle.	 A	 graph	 G	 is	 Hamiltonian-factorable	 if	 there	 exists	 a
Hamiltonian	factorization	of	G.	We	now	show	that	for	every	odd	integer	n	≥	3,
the	complete	graph	Kn	 is	Hamiltonian-factorable.	Before	presenting	 a	proof	of
this	fact,	we	make	a	few	comments	about	complete	graphs	that	will	be	useful	in
this	proof	and	in	some	future	proofs.

For	a	graph	G	=	Kn,	where	n	≥	4,	with	V(G)	=	{v1,	v2,	…,	vn},	certainly	G
contains	the	Hamiltonian	cycle	C	=	(v1,	v2,	…,	vn,	v1).	For	every	two	distinct



Figure	8.12:	Some	2-factorizations	of	K3,	K5	and	K7

vertices	vi	and	vj	of	G	(and	on	C),	the	distance	dC(vi,	vj)	between	vi	and	vj	on	the
cycle	C	is	one	of	the	integers	1,	2,	…,	n/2	if	n	is	even	and	is	one	of	the	integers
1,	2,	…,	(n	−	1)/2	if	n	 is	odd.	In	the	construction	of	Kn,	 it	 is	at	 times	useful	 to
label	the	edge	vivj	with	the	number	dC(vi,	vj).	Hence	if	n	≥	3	is	odd,	then	exactly
n	edges	are	labeled	k	for	each	integer	k	with	1	≤	k	≤	(n	−	1)/2.	On	the	other	hand,
if	n	≥	4	is	even,	then	exactly	n	edges	are	labeled	k	for	each	integer	k	with	1	≤	k	≤
(n	−	2)/2,	while	n/2	edges	are	labeled	n/2.	This	is	illustrated	in	Figure	8.13	for	K4
and	K5.	For	K6,	only	the	edges	labeled	1	or	3	are	shown.	The	edges	not	drawn	in
K6	are	labeled	2.	Sometimes	it	is	convenient	to	enlarge	a	given	complete	graph
Kn	to	Kn	+	1	by	adding	a	new	vertex	to	Kn	and	joining	that	vertex	to	all	vertices	of
Kn.	 When	 this	 occurs,	 we	 label	 each	 new	 edge	 in	 this	 construction	 with	 the
integer	0.

Figure	8.13:	Labeling	the	edges	of	a	complete	graph

Theorem	 8.17	 For	 every	 integer	 k	 ≥	 1,	 the	 complete	 graph	 K2k	 +	 1	 is



Hamiltonian-factorable.

Proof.	Since	the	theorem	is	true	for	1	≤	k	≤	3,	we	may	assume	that	k	≥	4.	Let
G	=	K2k	+	1	and	H	=	K2k,	where	V(H)	=	{v1,	v2,	…,	v2k}	and	let	V(G)	=	V(H)	
{v0}.	Let	the	vertices	of	H	be	the	vertices	of	a	regular	2k-gon	and	let	the	edges
of	H	 be	 straight	 line	 segments	 (see	 Figure	 8.14(a)	 for	 the	 case	 k	 =	 4).	 A
Hamiltonian	cycle	C	of	G	is	now	constructed	from	a	Hamiltonian	path	P	of	H
that	begins	with	v1,	v2,	v2k,	v3,	v2k	−	1	and	then	continues	in	this	zig-zag	pattern
until	arriving	at	the	vertex	vk	+	1.	The	path	P	is	a	v1	−	vk	+	1	path	where	edges
are	those	parallel	to	v1	v2	or	v2	v2k.	The	cycle	C	in	G	is	completed	by	placing
v0	 at	 some	 convenient	 location	 within	 the	 regular	 2k-gon	 and	 joining	 v0	 to
both	v1	and	vk	+	1	(see	Figure	8.14(b)	for	the	case	when	k	=	4).

Figure	8.14:	Forming	a	Hamiltonian	cycle	in	K9

Observe	 that	 the	Hamiltonian	cycle	C	of	G	 just	constructed	consists	of	 two
edges	labeled	with	each	of	the	integers	0,	1,	…,	k	−	1	and	one	edge	labeled	k.	By
rotating	the	Hamiltonian	path	P	of	H	clockwise	through	an	angle	of	 /k	radians,
a	new	Hamiltonian	path	P′	of	H	is	constructed	that	is	edge-disjoint	with	P′.	The
path	P′	 is	a	v2	−	vk	 +	 2	path.	By	 joining	v0	 to	v2	and	vk	 +	 2,	a	new	Hamiltonian
cycle	C′	of	G	 is	obtained	 that	 is	edge-disjoint	with	C.	We	continue	 this	until	k
Hamiltonian	cycles	of	G	are	obtained	producing	a	Hamiltonian	factorization	of
G.	 (This	 is	 illustrated	 for	 the	 complete	 graph	K9	 (k	 =	 4)	 in	 Figure	 8.15.)	 In
general,	for	each	i	with	1	≤	i	≤	k,	the	ith	Hamiltonian	cycle	of	G	is

where	the	subscripts	are	expressed	modulo	2k.



Figure	8.15:	A	Hamiltonian	factorization	of	K9

More	generally,	a	spanning	subgraph	F	of	a	graph	G	is	called	a	factor	of	G.
The	graph	G	 is	 said	 to	be	 factorable	 into	 the	 factors	F1,	F2,	…,	Fk	 if	 {E(F1),
E(F2),	…,	E(Fk)}	is	a	partition	of	E(G).	If	each	factor	Fi	is	isomorphic	to	some
graph	 F,	 then	 G	 is	 F-factorable.	 For	 a	 graph	 G	 of	 order	 n,	 G	 is	 (n/2)K2-
factorable	if	and	only	if	G	is	1-factorable,	while	G	is	Cn-factorable	if	and	only	if
G	is	Hamiltonian-factorable.

We	 have	 seen	 that	 K9	 is	 Hamiltonian-factorable	 (into	 four	 Hamiltonian
cycles).	 Of	 course,	 we	 saw	 earlier	 (by	 Theorem	 8.16)	 that	K9	 is	 2-factorable.
That	K9	is	factorable	into	Hamiltonian	cycles	is	only	one	type	of	2-factorization
of	K9.	For	example,	K9	can	be	factored	into	copies	of	the	graph	3K3.

Example	8.18	The	graph	K9	is	also	3K3-factorable.

Solution.	As	in	Figure	8.16,	we	place	the	vertices	v1,	v2,	…,	v8	cyclically	as
the	vertices	of	a	regular	8-gon	and	place	v0	in	some	convenient	location	within
the	8-gon.	A	factor	F1	=	3K3	of	K9	is	shown	in	Figure	8.16,	where	two	edges
are	labeled	0,	1,	2	and	3,	as	described	in	Figure	8.16	and	one	edge	is	labeled	4.
By	 rotating	F1	 clockwise	 through	 an	 angle	 of	 /4	 radians	 three	 times,	 three
new	factors	F2,	F3	and	F4	are	produced,	each	of	which	is	3K3.	This	produces	a
3K3-factorization	of	K9.



Figure	8.16:	A	3K3-factorization	of	K9

The	following	problem	was	posed	by	Thomas	Kirkman	in	1850	and	has	since
become	known	as	Kirkman’s	Schoolgirl	Problem:

A	school	mistress	has	 fifteen	 schoolgirls	whom	she	wishes	 to	 take	on	a
daily	walk.	 The	 girls	 are	 to	walk	 in	 five	 rows	 of	 three	 girls	 each.	 It	 is
required	that	no	two	girls	should	walk	in	the	same	row	more	than	once	a
week.	Can	this	be	done?

If	 we	 think	 about	 Kirkman’s	 Schoolgirl	 Problem	 a	 bit,	 we	 see	 that	 the
question	can	be	rephrased	as	follows:	Is	there	a	5K3-factorization	of	K15?	If	we
label	the	vertices	of	K15	by	the	schoolgirls,	numbered	1,	2,	…,	15	say,	then	we
see	that	a	solution	is	given	in	the	next	table.

Although	there	is	a	5K3-factorization	of	K15,	it	turns	out	that	there	is	no	cyclic
5K3-factorization	 of	K15	 (which	 makes	 such	 a	 factorization	 more	 difficult	 to
construct).	Since	we	saw	in	Figure	8.16	that	K9	is	3K3-factorable,	the	following
is	true:



Nine	 schoolgirls	 can	 take	 four	 daily	walks	 in	 three	 rows	 of	 three	 girls
each	so	that	no	two	girls	walk	in	the	same	row	twice.

Suppose	 that	 the	complete	graph	G	=	Kn	of	order	n	has	a	2-factorization	 in
which	every	component	of	each	2-factor	is	a	triangle.	Then	G	 is	 tK3-factorable
for	some	positive	integer	t	and	so	n	=	3t.	Since	the	degree	of	every	vertex	of	G	is
2	in	each	2-factor	of	G,	every	vertex	has	even	degree	in	G.	Therefore,	n	−	1	 is
even	and	so	n	=	3t	is	odd,	which	implies	that	t	is	odd.	Therefore,	t	=	2k	+	1	for
some	nonnegative	integer	k	and	n	=	6k	+	3.	Hence	G	is	(2k	+	1)K3-factorable.

A	Kirkman	triple	system	of	order	n	is	a	set	S	of	cardinality	n,	a	collection	T
of	3-element	subsets	of	S,	called	triples,	and	a	partition	 	of	T	such	that

(1)	every	two	distinct	elements	of	S	belong	to	a	unique	triple	in	T	and

(2)	every	element	of	S	belongs	to	a	unique	triple	in	each	element	of	 .

Consequently,	if	there	is	a	Kirkman	triple	system	of	order	n,	then	n	=	6k	+	3	for
some	nonnegative	integer	k.	In	fact,	there	is	a	Kirkman	triple	system	of	order	6k
+	3	if	and	only	if	there	is	a	(2k	+	1)K3-factorization	of	K6k	+	3.	In	1971	Dijen
Ray-Chaudhuri	and	Richard	Wilson	established	the	existence	of	a	Kirkman	triple
system	for	every	nonnegative	integer	k.

Theorem	8.19	A	Kirkman	triple	system	of	order	n	≥	3	exists	if	and	only	if	n	≡
3	(mod6).

Although	 it	 is	 impossible	 for	K2k,	k	≥	2,	 to	be	Hamiltonian-factorable	since
K2k	is	(2k	−	1)-regular,	K2k	is	very	close	to	being	Hamiltonian-factorable.

Theorem	 8.20	 For	 every	 integer	 k	 ≥	 1,	 the	 complete	 graph	 K2k	 can	 be
factored	into	k	−	1	Hamiltonian	cycles	and	a	1-factor.

Proof.	Since	the	result	is	true	for	k	=	1	and	k	=	2,	we	assume	that	k	≥	3.	Let	G
=	K2k,	where	V(G)	=	{v0,	v1,	…,	v2k	−	1}.	Let	v1,	v2,	…,	v2k	−	1	be	the	vertices
of	a	regular	(2k	−	1)-gon	and	place	v0	 in	the	center	of	the	(2k	−	1)-gon.	Join
each	 two	 vertices	 of	G	 by	 a	 straight	 line	 segment.	 Let	G1	 be	 the	 spanning
subgraph	 of	G	 whose	 edges	 consist	 of	 (1)	 v0v1	 and	 v0	 vk	 +	 1,	 (2)	 all	 edges
parallel	to	v0v1	and	(3)	all	edges	parallel	to	v0	vk	+	1.	Then	G1	=	C2k.	For	1	≤	i	≤
k	−	1,	let	Gi	be	the	spanning	subgraph	of	G	whose	edges	consist	of	(1)	v0vi	and



v0vk	+	i,	(2)	all	edges	parallel	to	v0vi	and	(3)	all	edges	parallel	to	v0vk	+	i.	Then
Gi	 =	C2k	 for	 each	 i	 (1	 ≤	 i	 ≤	 k	 −	 1)	 and	 every	 edge	 of	G	 belongs	 to	 some
subgraph	Gi	(1	≤	i	≤	k	−	1)	except	for	the	edges	v1v2k	−	1,	v2v2k	−	2,	…,	vk	−	1vk	+
1	and	v0vk,	which	are	the	edges	of	a	1-factor	Gk	of	G.	Thus	G	can	be	factored
into	G1,	G2,	…,	Gk.	(See	Figure	8.17	for	the	case	k	=	4.)

Figure	8.17:	A	factorization	of	K8

Exercises	for	Section	8.2

8.17	Determine	which	of	the	cubic	graphs	G1,	G2	and	G3	in	Figure	8.18

(a)	has	a	1-factor,
(b)	is	1-factorable.

Figure	8.18:	The	graphs	in	Exercise	8.17

8.18	Give	an	example	of	a	5-regular	graph	that	contains	no	1-factor.

8.19	 Nine	 members	 of	 a	 book	 club	 meet	 for	 dinner	 each	 week	 (4	 times	 a



month)	to	discuss	the	book	they	have	read	the	preceding	week.	How	can
the	 nine	 people	 be	 seated	 at	 a	 circular	 dinner	 table	 for	 each	 of	 the	 four
meetings	during	a	month	so	that	every	two	members	sit	next	to	each	other
exactly	once	during	the	month?

8.20	 Use	 the	 technique	 employed	 in	 the	 proof	 of	 Theorem	 8.11	 to	 prove
Theorem	8.12:	Every	3-regular	graph	with	at	most	two	bridges	contains	a
1-factor.

8.21	Use	Tutte’s	 characterization	 of	 graphs	with	 1-factors	 (Theorem	8.10)	 to
show	that	K3,5	does	not	have	a	1-factor.

8.22	 (a)	 Show	 that	 Petersen’s	 theorem	 (Theorem	 8.11)	 can	 be	 extended
somewhat	by	proving	 that	 if	G	 is	a	bridgeless	graph,	every	vertex	of
which	has	degree	3	or	5	and	such	 that	G	has	at	most	 two	vertices	of
degree	5,	then	G	has	a	1-factor.

(b)	Show	 that	 the	 result	 in	 (a)	 cannot	 be	 extended	 further	 by	giving	 an
example	of	a	bridgeless	graph	G	containing	exactly	three	vertices	of
degree	5	such	that	all	remaining	vertices	of	G	have	degree	3	but	G	has
no	1-factor.

8.23	Prove	that	if	the	bridges	of	a	3-regular	graph	lie	on	a	single	path,	then	G
has	a	1-factor.

8.24	Show	that	every	3-regular	bridgeless	graph	contains	a	2-factor.

8.25	Show	that	Cn	×	K2	is	1-factorable	for	n	≥	4.

8.26	Show,	for	the	4-regular	graph	G	Figure	8.19,	that	for	any	2-factorization	of
G	exactly	one	of	the	2-factors	is	a	Hamiltonian	cycle	of	G.

Figure	8.19:	The	graph	G	in	Exercise	8.26

8.27	Figure	8.11	 shows	a	2-factorization	of	 the	graph	G	=	K2,	 2,	 2	 into	 the	2-
factors	F1	=	2C3	and	F2	=	C6.	Give	an	example	of	a	2-factorization	of	this



graph	 into	 two	2-factors	 	 and	 	where	 	 for	 i	 =	 1,	 2	 and,
employing	 the	 proof	 of	 Theorem	 8.16,	 give	 an	 example	 of	 an	 Eulerian
circuit	C*	in	G	that	produces	this	2-factorization	of	G.

8.28	Let	G	be	a	6-regular	graph.	Show	that	if	G	contains	two	edge-disjoint	1-
factors,	then	G	is	3-factorable.

8.29	Show	for	every	positive	even	integer	n	that	the	complete	graph	Kn	can	be
factored	into	Hamiltonian	paths.

8.30	 Solve	 the	 following	 27-schoolgirl	 problem:	 A	 school	 mistress	 has	 27
schoolgirls	whom	she	wishes	to	take	on	a	daily	walk.	The	girls	are	to	walk
in	nine	 rows	of	 three	girls	 each.	Show	 that	 such	walks	 can	be	made	 for
thirteen	days	without	two	girls	walking	in	the	same	row	twice.

8.31	 Does	 there	 exist	 a	 2-factorization	 of	 K7	 in	 which	 no	 2-factor	 is	 a
Hamiltonian	cycle?

8.32	 Does	 there	 exist	 a	 2-factorization	 of	K9	 in	 which	 no	 two	 2-factors	 are
isomorphic?

8.3	Decompositions	and	Graceful	Labelings

If	a	graph	G	has	a	factorization	into	subgraphs	F1,	F2,	…,	Fk,	then,	by	definition,
each	subgraph	(factor)	Fi,	1	≤	i	≤	k,	is	required	to	be	a	spanning	subgraph	of	G.
There	is	a	related	concept	that	we	will	discuss	in	this	section.

A	graph	G	 is	said	to	be	decomposable	 into	the	subgraphs	H1,	H2,	…,	Hk	 if
{E(H1),	E(H2),	…,	E(Hk)}	 is	 a	 partition	 of	E(G).	 Such	 a	 partition	 produces	 a
decomposition	 of	G.	 In	 other	words,	 the	 subgraphs	Hi	 are	 not	 required	 to	 be
spanning	subgraphs	of	G.	If,	on	the	other	hand,	each	subgraph	Hi	is	a	spanning
subgraph	 of	G,	 then	 the	 decomposition	 is	 a	 factorization	 of	G.	 If	 each	Hi	 is
isomorphic	 to	 some	 graph	H,	 then	 the	 graph	G	 is	H-decomposable	 and	 the
decomposition	is	an	H-decomposable.

A	problem	concerning	this	concept	that	has	attracted	a	great	deal	of	attention
is:	Which	 complete	 graphs	Kn	 are	K3-decomposable?	 In	 order	 for	 a	 complete
graph	Kn	to	be	K3-decomposable,	the	size	of	Kn	must	be	divisible	by	3,	that	is,	3
must	divide	 	and	so	n(n	−	1)/6	must	be	an	integer.	Hence	either	3	|	n	or	3	|	(n



−	1).	Furthermore,	since	every	vertex	of	Kn	has	degree	n	−	1,	each	vertex	must
belong	to	(n	−	1)/2	triangles	and	so	n	must	be	odd.	This	says	that	either	n	=	3p
for	some	odd	integer	p	or	n	=	3q	+	1	for	some	even	integer	q.	Therefore,	either	n
=	6k	+	1	or	n	=	6k	+	3	for	some	integer	k	and	so	either	n	≡	1	(mod	6)	or	n	≡	3
(mod	6).

A	Steiner	triple	system	of	order	n	is	a	set	S	of	cardinality	n	and	a	collection
T	of	3-element	subsets,	called	triples,	such	that	every	two	distinct	elements	of	S
belong	to	a	unique	triple	in	T.	Therefore,	there	is	a	Steiner	triple	system	of	order
n	 if	 and	 only	 if	Kn	 is	K3-decomposable.	 Consequently,	 in	 order	 for	 a	 Steiner
triple	system	of	order	n	to	exist,	either	n	≡	1	(mod	6)	or	n	≡	3	(mod	6).	In	1846
Kirkman	showed	that	the	converse	holds	as	well.

Theorem	8.21	A	Steiner	triple	system	of	order	n	≥	3	exists	if	and	only	if	n	≡	1
(mod	6)	or	n	≡	3	(mod	6).

Trivially,	 there	 is	 a	 Steiner	 triple	 system	of	 order	 3	 as	K3	 is	 obviously	K3-
decomposable.	The	first	interesting	and	nontrivial	case	is	K7.	One	way	to	see	that
K7	is	K3-decomposable	is	to	let	v1,	v2,	…,	v7	be	 the	vertices	of	a	regular	7-gon
and	 join	each	pair	of	vertices	by	a	 straight	 line	 segment.	Consider	 the	 triangle
with	vertices	v1,	v2	and	v4,	which	we	denote	by	H1	(see	Figure	8.20).	Proceeding
as	we	have	earlier,	we	see	that	exactly	one	edge	of	H1	is	labeled	with	one	of	1,	2
and	 3.	 As	 we	 rotate	H1	 clockwise	 through	 an	 angle	 of	 2 /7	 radians,	 another
triangle	 H2	 is	 produced.	 Continuing	 in	 this	 manner,	 we	 obtain	 a	 K3-
decomposition	of	K7.	From	the	K3-decomposition	of	K7,	we	have	now	produced
a	Steiner	triple	system	of	order	7	from	the	set	{1,	2,	…,	7},	namely:

The	K3-decomposition	is	a	cyclic	decomposition	of	K7.



Figure	8.20:	A	cyclic	K3-decomposition	of	K7

Steiner	 triple	 systems	 are	 named	 for	 Jakob	 Steiner,	 who	 was	 born	 in
Utzenstorf,	Switzerland	on	March	18,	 1796.	Steiner,	 a	 son	of	 farming	parents,
did	 not	 learn	 to	 read	 or	write	 until	 he	was	 14	 years	 old.	Within	 the	 next	 four
years,	 his	 mathematical	 ability	 was	 recognized	 and	 he	 was	 permitted	 to	 start
attending	 a	 prestigious	 school	 in	 Switzerland	 at	 age	 18,	 even	 then	 against	 the
wishes	 of	 his	 parents.	 In	 1818	 Steiner	 went	 to	 the	 University	 of	 Heidelberg,
where	 he	 gave	 private	 lessons	 in	 mathematics.	 In	 1821	 he	 went	 on	 to	 the
University	of	Berlin,	where	he	continued	to	support	himself	by	teaching.	While
in	Berlin,	he	became	acquainted	with	Niels	Abel	(after	whom	abelian	groups	are
named),	Carl	Jacobi	(after	whom	Jacobians	are	named)	and	August	Crelle.

Although	 not	 as	well	 known	 or	 as	 brilliant	 as	 other	mathematicians	 of	 his
time,	 Crelle	 nevertheless	made	 important	 contributions	 to	mathematics.	 Crelle
was	an	extremely	enthusiastic	mathematician	who	had	a	gift	for	organization	and
who	recognized	mathematical	ability	in	others.	In	1826	Crelle	founded	a	journal
entirely	devoted	to	mathematics	(often	referred	to	as	Crelle’s	Journal)	and	titled
Journal	für	reine	und	angewandte	Mathematik	(the	journal	still	exists).	Prior	to
1826	other	mathematics	 journals	ordinarily	 reported	on	meetings	of	academies
and	societies	where	papers	were	read.	In	Crelle’s	Journal,	however,	the	emphasis
was	on	 the	mathematics.	Crelle	was	 in	complete	charge	and	was	 the	editor-in-
chief	for	the	first	52	volumes.

Crelle	recognized	the	importance	of	Abel’s	work	and,	in	the	first	volume	of
his	 journal,	 published	Abel’s	proof	of	 the	 insolvability	of	quintic	 equations	by
radicals.	 Steiner	 was	 also	 a	 major	 contributor	 to	 the	 first	 volume	 of	 Crelle’s
journal.	 In	 addition	 to	 Abel	 and	 Steiner,	 other	mathematicians	 had	 their	 early
works	 made	 famous	 by	 publishing	 their	 first	 paper	 in	 the	 journal,	 including
Lejeune	 Dirichlet	 and	 August	 Möbius.	 Almost	 all	 of	 Möbius’	 research	 was



published	in	Crelle’s	Journal.
Kirkman	 triple	 systems	 (introduced	 in	 the	 preceding	 section)	 are	 more

demanding	 than	 Steiner	 triple	 systems.	 Indeed,	 by	 Theorem	 8.21	 there	 is	 a
Steiner	 triple	 system	of	order	n	 ≥	 7	 if	n	 ≡	 1	 (mod	6);	 however,	 none	 of	 these
integers	 n	 is	 the	 order	 of	 a	 Kirkman	 triple	 systems	 as	 n	 ≡	 3	 (mod	 6)	 is	 a
necessary	and	sufficient	condition	for	 the	existence	of	a	Kirkman	triple	system
of	order	n,	as	we	saw	in	Theorem	8.19.	Kirkman’s	first	paper	was	published	in
1846.	In	this	paper,	Kirkman	solved	a	problem	that	appeared	the	previous	year	in
the	 Lady’s	 and	 Gentleman’s	 Diary,	 namely,	 the	 existence	 of	 Steiner	 triple
systems	was	verified	(Theorem	8.21).	The	curiosity	of	 this	paper	 is	 that	 it	was
published	seven	years	before	a	paper	of	Steiner’s	appeared	in	Crelle’s	Journal	in
which	Steiner	asked	whether	such	systems	exist.	Despite	the	fact	that	Kirkman’s
work	 preceded	 Steiner’s,	 these	 systems	 are	 named	 for	 Steiner,	 not	 Kirkman.
Recall	 also	 that	Kirkman	 thought	 of	 the	 concept	 of	Hamiltonian	 cycles	 before
Hamilton.	Such	was	the	fate	of	Kirkman.

Thomas	 Penyngton	 Kirkman	 was	 born	 on	 March	 31,	 1806	 in	 Bolton,
England.	Although	Kirkman’s	father	did	not	want	Kirkman	to	attend	college,	he
did	so	and	entered	Trinity	College	Dublin	in	Ireland.	In	1835	Kirkman	returned
to	 England	 and	 entered	 the	 Church	 of	 England.	 By	 1839	 he	 was	 vicar	 in	 the
Parish	of	Southworth	in	Lancashire,	a	position	he	held	for	the	next	52	years.	The
Reverend	Thomas	Kirkman	became	increasingly	 interested	 in	mathematics	and
made	 contributions	 to	 combinatorics,	 quaternions,	 geometry	 and	 knot	 theory,
although	 he	 is	 best	 remembered	 for	 his	 schoolgirl	 problem.	 Kirkman	 died	 on
February	4,	1895	in	Bowdon,	England.

Another	 important	 type	 of	 decomposition	 problem	 concerns	 trees.	 In	 1967
Gerhard	Ringel	(1919-2008)	conjectured	that	if	T	is	a	tree	of	size	m,	then	K2m	+	1
is	T-decomposable.	This	conjecture	has	never	been	settled.	However,	it	is	related
to	another	conjecture.

Let	G	be	a	graph	of	order	n	and	size	m.	A	one-to-one	function	f	:	V(G)	→	{0,
1,	2,	…,	m}	 is	called	a	graceful	 labeling	of	G	 if	 the	 induced	edge	 labeling	 f′:
E(G)	→	{1,	2,	…,	m}	defined	by

is	also	one-to-one.	If	f	is	a	graceful	labeling	of	a	graph	G	of	order	n,	then	so	too
is	the	complementary	labeling	g:	V(G)	→	{0,	1,	2,	…,	m}	of	f	defined	by	g(v)	=
m	−	f(v)	for	all	v	 	V(G)	since,	for	e	=	uv,



A	graph	G	possessing	a	graceful	labeling	is	called	a	graceful	graph.
Figure	8.21	shows	five	graceful	graphs,	including	the	complete	graphs	K3	and

K4	and	the	cycle	C4,	along	with	a	graceful	labeling	of	each	of	these	graphs.

Figure	8.21:	Graceful	graphs

There	are	many	graphs	that	are	not	graceful,	however.

Example	8.22	The	cycle	C5	is	not	a	graceful	graph.

Solution.	Let	H	=	C5	(see	Figure	8.22(a)).	Assume,	to	the	contrary,	that	H	is
graceful.	Then	 there	exists	a	graceful	 labeling	 f	 :	V(H)	→	{0,	1,	2,	3,	4,	5}.
Since	some	edge	of	H	is	labeled	5	by	the	induced	edge	labeling,	there	are	two
adjacent	vertices	of	H	labeled	0	and	5.

The	only	way	for	an	edge	of	H	to	be	labeled	4	is	for	its	incident	vertices	to	be
labeled	0	and	4	or	1	and	5.	Since	either	f	or	its	complementary	labeling	assigns
adjacent	vertices	the	labels	0	and	4,	we	may	assume	that	three	of	the	five	vertices
of	H	are	labeled	as	in	Figure	8.22(b).	The	vertex	w	cannot	be	labeled	1	as	there
is	 already	an	 edge	 labeled	4.	 If	x	 is	 labeled	1,	 then	w	must	 be	 labeled	 2	 or	 3,
neither	 of	which	 results	 in	 a	 graceful	 labeling	 of	H.	Hence	 one	 of	 x	 and	w	 is
labeled	 2	 and	 the	 other	 is	 labeled	 3.	 However,	 neither	 produces	 a	 graceful
labeling	of	H.

Figure	8.22:	The	graph	H	in	Example	8.22



The	rightmost	graph	shown	in	Figure	8.21	is,	of	course,	a	tree;	in	fact,	it	is	a
double	star.	The	labeling	given	there	shows	that	this	tree	is	a	graceful	graph.	In
fact,	there	is	a	well-known	conjecture	due	to	Gerhard	Ringel	and	Anton	Kotzig.

Conjecture	8.23	Every	tree	is	graceful.

If	 Conjecture	 8.23	 is	 true,	 then	 for	 each	 tree	 T	 of	 order	 n	 say,	 there	 is	 a
graceful	labeling	f	:	V(T)	→	{0,	1,	2,	…,	n	−	1},	which	is	necessarily	a	bijective
function.	Added	interest	in	this	conjecture	lies	in	the	fact	that	its	truth	implies	the
truth	 of	 the	 earlier	 decomposition	 conjecture	 of	 Ringel.	 This	 implication	 was
established	 by	 Alexander	 Rosa,	 who	 is	 credited	 with	 founding	 the	 subject	 of
graph	labelings.	While	the	concept	of	graceful	graphs	is	due	to	Rosa,	who	used
the	 terminology	 -valuation,	 the	 term	 “graceful”	 was	 introduced	 by	 Solomon
Golomb.

Theorem	8.24	If	T	is	a	graceful	tree	of	size	m,	then	K2m	+	1	is	T-decomposable.

Proof.	Since	T	is	a	graceful	tree,	there	exists	a	graceful	labeling	f	:	V(T)	→	{0,
1,	2,	…,	m}.	Let	V(T)	=	{v0,	v1,	…,	vm}	where	we	may	assume	that	f(vi)	=	i	for
0	≤	i	≤	m.	The	induced	edge	labeling	assigns	the	labels	1,	2,	…,	m	to	the	edges
of	T.	Let	G	=	K2m	+	1,	where	V(G)	=	{v0,	v1,	…,	v2m}.	Let	the	vertices	of	G	be
the	vertices	of	a	 regular	 (2m+	1)-gon	and	draw	each	edge	of	G	as	a	straight
line	 segment.	 Consequently,	T	 is	 a	 subgraph	 of	G,	 where	 one	 edge	 of	 T	 is
labeled	 i	 for	each	 integer	 i	with	1	≤	 i	≤	m.	Rotating	T	clockwise	 through	an
angle	 of	 2 /(2m	 +	 1)	 radians	 a	 total	 of	 2m	 times	 produces	 2m	 +	 1	 trees
isomorphic	to	T	that	form	a	cyclic	T-decomposition	of	K2m	+	1.

To	illustrate	the	proof	of	Theorem	8.24,	consider	the	tree	T	shown	in	Figure
8.23,	 where	 a	 graceful	 labeling	 is	 given.	 A	 subgraph	 T1	 of	 G	 =	 K9	 that	 is
isomorphic	to	T	is	also	shown	in	Figure	8.23.	A	subgraph	T2	of	G	isomorphic	to
T	 (whose	 edges	 are	 indicated	 by	 dotted	 lines)	 is	 obtained	 by	 rotating	 T1
clockwise	through	an	angle	of	2 /9	radians.



Figure	8.23:	A	cyclic	T-decomposition	of	K9

Theorem	8.24	is	not	only	true	for	graceful	trees,	it	holds	for	graceful	graphs
in	general	(see	Exercise	8.38).

Exercises	for	Section	8.3

8.33	Show	that	the	graph	K2,	2,	2	is	not	K1,	4-decomposable.

8.34	Find	a	P4-decomposition	of	K7.

8.35	Determine	whether	C6	and	C8	are	graceful.

8.36	Determine	whether	the	graphs	in	Figure	8.24	are	graceful.

Figure	8.24:	Graphs	in	Exercise	8.36

8.37	For	the	tree	T	in	Figure	8.25,	show	that	K11	is	T-decomposable.

Figure	8.25:	The	tree	in	Exercise	8.37



8.38	Let	G	be	a	graceful	graph	of	size	m.

(a)	Prove	that	K2m	+	1	is	G-decomposable.

(b)	Prove	that	K2m	+	3	can	be	decomposed	into	2m	+	3	copies	of	G	and	a
Hamiltonian	cycle	of	K2m	+	3.

8.4	Excursion:	Instant	Insanity

Open	the	package.	Notice	that	there	are	four	different	colors	showing	on
each	side	of	 this	stack	of	blocks.	You	may	NEVER,	EVER	see	 them	this
way	 again.	 Now	mix	 them	 up	 and	 then	 restack	 them	 so	 that	 there	 are
again	four	colors,	all	different,	showing	on	each	side.

What	 is	written	 above	 appears	 on	 an	 insert	within	 packaging	 that	 contains
four	multicolored	cubes	that	make	up	a	puzzle	called	Instant	Insanity,	which	is
manufactured	by	Hasbro	Inc.	(makers	of	toys	and	games).	Each	of	the	six	faces
of	each	cube	is	colored	with	one	of	the	four	colors	red	(R),	blue	(B),	green	(G)
and	yellow	(Y).	The	object	of	the	puzzle	is	to	stack	the	cubes	as	in	Figure	8.26,
one	on	top	of	another,	so	that	all	four	colors	appear	on	each	of	the	four	sides.

On	the	reverse	side	of	the	insert	is	written:	Give	up?	An	address	is	supplied
where	a	solution	of	the	puzzle	can	be	obtained.	Reading	all	of	this	can	be	quite
intimidating.	 Indeed,	even	before	we	attempt	 to	solve	 the	puzzle,	we	are	being
informed	 that	 it	 is	 very	unlikely	 that	we	will	 be	 successful.	Let’s	 compute	 the
number	of	ways	in	which	four	cubes	can	be	stacked.

Figure	8.26:	The	stacking	of	four	cubes



Select	 one	 of	 the	 cubes	 (which	we’ll	 call	 the	 first	 cube)	 and	 place	 it	 on	 a
table,	 say.	 There	 are	 three	ways	 this	 can	 be	 done,	 according	 to	which	 pair	 of
opposite	 faces	will	 be	 the	 top	 and	bottom	of	 the	 cube.	These	 are	 the	 “buried”
faces.	Select	one	of	the	other	four	faces	as	the	front	face.	Now	place	the	second
cube	on	 top	 of	 the	 first	 cube.	Any	of	 the	 six	 faces	 of	 the	 second	 cube	 can	 be
chosen	to	appear	directly	above	the	front	face	of	the	first	cube	and	each	of	these
six	faces	can	be	positioned	(rotated)	in	one	of	four	ways.	That	is,	there	are	6	·	4
=	24	ways	to	place	the	second	cube	on	top	of	 the	first	cube.	Consequently,	 the
number	of	ways	to	stack	all	four	cubes	on	the	top	of	one	another	is	3	·	(24)3	=
41,	472.	Now	if	there	is	only	one	way	to	stack	the	cubes	so	that	all	four	colors
appear	on	all	four	sides,	then	using	a	trial-and-error	method	to	solve	the	puzzle
seems	like	a	frustrating	task	and	is	likely	to	result	in	…	instant	insanity.

Graph	theory	can	help	us	to	solve	this	tantalizing	puzzle.	Let’s	see	how	this
can	be	done.	For	this	purpose,	 it	 is	convenient	 to	have	a	way	of	representing	a
cube	and	the	locations	of	the	colors	on	its	faces.	See	Figure	8.27.

Figure	8.27:	The	six	faces	of	a	cube

We	are	now	prepared	to	present	an	example.

Example	8.25	Consider	the	four	multicolored	cubes	given	in	Figure	8.28.

Solution.	 With	 each	 of	 the	 four	 cubes	 of	 Figure	 8.28,	 we	 associate	 a
pseudograph	(therefore	allowing	both	parallel	edges	and	loops)	of	order	4	and
size	 3.	 The	 vertex	 set	 of	 each	 pseudograph	 is	 the	 set	 {R,	B,	G,	Y}	 of	 four
colors	 and	 there	 is	 an	 edge	 joining	 color	 c1	 and	 color	 c2	 (possibly	 c1	 =	 c2)
whenever	there	is	a



Figure	8.28:	The	four	cubes	in	an	Instant	Insanity	puzzle

pair	of	opposite	faces	colored	c1	and	c2.	If	there	are	two	(or	three)	opposite	faces
colored	c1	and	c2	where	c1	≠	c2,	then	the	pseudograph	has	two	(or	three)	parallel
edges	joining	the	vertices	c1	and	c2.	If	c1	=	c2,	then	there	are	two	(or	three)	loops
at	c1.	The	pseudographs	corresponding	to	the	cubes	of	Figure	8.28	are	shown	in
Figure	8.29.

Figure	8.29:	The	four	pseudographs	in	Example	8.25

A	composite	pseudograph	M	 of	order	4	 (with	vertex	 set	{R,	B,	G,	Y})	and
size	 12	 and	 whose	 edge	 set	 is	 the	 union	 of	 the	 edge	 sets	 of	 these	 four
pseudographs	is	shown	in	Figure	8.29.	In	order	to	distinguish	which	edges	of	M
came	from	Cube	#i	(i	=	1,	2,	3,	4),	those	three	edges	of	M	are	labeled	by	i.	The
pseudograph	M	 constructed	 from	 the	pseudographs	of	Figure	8.29	 is	 shown	 in
Figure	8.30.



Figure	8.30:	The	composite	pseudograph	of	Example	8.25

Let’s	pause	 for	a	moment	while	we	 review	what	we	are	 seeking.	Since	our
goal	is	to	stack	the	four	cubes	on	top	of	one	another	so	that	all	four	colors	appear
on	all	four	sides,	all	four	colors	must	of	course	appear	on	both	the	front	and	the
back	of	the	stack.	If	the	front	face	of	Cube	#i	(i	=	1,	2,	3,	4)	is	colored	c1	and	the
opposite	face	of	this	cube	(on	the	back	of	the	stack)	is	colored	c2,	then	there	must
be	an	edge	labeled	i	joining	c1	and	c2	in	the	pseudograph	M.
If	 c1	 =	 c2,	 then	 there	must	 be	 a	 loop	 labeled	 i	 at	 vertex	 c1.	 Since	 each	 color
appears	exactly	once	on	the	front	and	exactly	once	on	the	back	of	the	stack,	there
must	 be	 a	 2-regular	 spanning	 sub-pseudograph	M′	 (a	 2-factor)	 of	M	 (where	 a
loop	is	considered	to	have	degree	2)	such	that	there	is	exactly	one	edge	labeled
1,	 2,	 3	 and	4.	Similarly,	 corresponding	 to	 the	 right	 and	 left	 sides	 of	 the	 stack,
there	 is	 a	 2-regular	 spanning	 sub-pseudograph	 M″	 of	 M	 whose	 edge	 set	 is
disjoint	from	that	of	M′.	On	the	basis	of	these	observations,	we	seek	two	edge-
disjoint	spanning	2-regular	sub-pseudographs,	where	there	is	one	edge	labeled	1,
2,	3	and	4	in	each	of	these	two	sub-pseudographs.	If	such	a	pair	of	pseudographs
does	 not	 exist,	 then	 the	 puzzle	 can	 have	 no	 solution.	 If	 such	 a	 pair	M′,	M″	 of
pseudographs	exists,	then	they	can	be	used	to	solve	the	puzzle,	that	is,	to	stack
the	cubes	appropriately.	Any	2-regular	 spanning	 sub-pseudograph	must	be	one
of	the	seventeen	pseudographs	shown	in	Figure	8.31.

Figure	8.31:	The	seventeen	2-regular	spanning	pseudographs

Returning	 to	 our	 example,	 we	 see	 that	 the	 pseudograph	M	 of	 Figure	 8.30
contains	the	two	edge-disjoint	2-regular	spanning	sub-pseudographs	M′	and	M″,



where	the	edges	of	these	two	pseudographs	are	labeled	1,	2,	3	and	4	(shown	in
Figure	8.32(a)).	The	pseudograph	M′	will	correspond	to	the	front	and	back	of	the
stack	 to	 be	 produced	 and	M″	 will	 correspond	 to	 the	 right	 and	 left	 sides.	 (We
could	 reverse	M′	 and	M″	 if	 we	 desire.)	 For	 the	 purpose	 and	 convenience	 of
stacking	the	cubes,	we	direct	the	edges	of	each	component	of	M′	and	M″	so	that
a	 directed	 cycle	 results.	 Thus	 two	 (directed)	 pseudographs	 D′	 and	 D″	 are
produced,	as	shown	in	Figure	8.32(b).

With	the	aid	of	the	(directed)	pseudographs	D′	and	D″	of	Figure	8.32(b),	we
now	stack	the	cubes.	Since	the	arc	(G,	B)	is	labeled	1	in	M′,	we	place	Cube	#1	so
that	a	green	face	appears	in	the	front	and	a	blue	face	on	the	back.	Since	the	arc
(G,	R)	is	labeled	1	in	M″,	we	rotate	this	cube	(keeping	a	green	face	in	the	front
and	a	blue	face	on	 the	back)	until	we	have	a	green	face	on	 the	right	and	a	 red
face	on	the	left.	We	now	proceed	in	the	same	way	with	the	other	three	cubes	and
…	Voila!	The	puzzle	has	been	successfully	solved	(see	Figure	8.33).

Figure	8.32:	Two	2-regular	spanning	sub-pseudographs	for	Example	8.25

Figure	8.33:	A	solution	for	the	puzzle	in	Example	8.25



This	puzzle	was	conceived	in	1900	by	Fredrick	Schossow	using	the	four	suits
of	 playing	 cards	 (hearts,	 diamonds,	 clubs,	 spades)	 on	 the	 faces.	He	 introduced
another	version	during	World	War	 I	where	 the	 flags	of	 the	allied	nations	were
used	to	decorate	the	blocks.	In	1900	this	puzzle	was	called	The	Great	Tantalizer.
However,	by	far	the	best	known	and	most	popular	version	of	the	puzzle	is	based
on	the	design	by	Franz	(Frank)	Armbruster	in	1965	and	consists	of	four	plastic
cubes	 with	 each	 face	 having	 one	 of	 four	 different	 colors.	 (In	 those	 days,	 the
colors	used	were	red,	blue,	green	and	white.)

Frank	Armbruster	began	as	an	educational	consultant	in	1960.	While	working
on	 teaching	 machine	 designs,	 he	 saw	 similarities	 between	 what	 a	 teaching
machine	does	and	what	a	game	does.	In	particular,	 if	 the	rules	of	 the	game	are
structured	 from	 the	 rules	of	 the	 subject	matter,	 then	 the	game	will	 teach.	Each
has	a	set	of	structured	rules,	a	goal	and	an	opportunity	for	strategies.

Armbruster	 had	 been	 interested	 in	 puzzles	 for	much	 of	 his	 life	 and	 started
designing	games	as	teaching	tools	in	1965.	He	saw	Instant	Insanity	as	a	great	aid
for	teaching	permutations	and	combinations	at	the	high	school	level.	Originally
the	cubes	were	made	of	wood.	Thinking	that	the	grain	of	wood	used	was	giving
an	unintended	clue	to	the	solver,	he	turned	to	constructing	the	cubes	from	plastic.
Finding	a	way	to	hold	six	plastic	squares	in	place	while	they	were	cemented	was
the	 biggest	 challenge.	 Finally	 a	 method	 was	 devised	 and	 the	 puzzle	 was
constructed.	Armbruster	was	 able	 to	 schedule	 a	 lunch	with	 a	 representative	 of
Macy’s	 in	 San	 Francisco	 to	 discuss	 his	 puzzle.	 This	was	 the	 beginning	 of	 the
puzzle	as	a	commercial	enterprise.

The	 first	 version	 of	 his	 famous	 puzzle	 Instant	 Insanity	 was	 licensed	 to	 the
Parker	 Brothers	 Game	 Company,	 which	 sold	 over	 12	 million	 copies	 during
1966-1967.	 It	 was	 listed	 in	 the	 1966	 Guinness	 Book	 of	 Records	 as	 the	 best
selling	 toy	 of	 the	 year,	 outselling	 the	 board	 game	Monopoly.	 Although	 best
known	 for	 his	 Instant	 Insanity	 puzzle,	 Armbruster	 is	 an	 educator,	 spending
fifteen	 years	 at	 the	 Lockheed	 Corporation	 as	 an	 instructor	 and	 developing
training	methods.

Exercises	for	Section	8.4

8.39	Solve	the	Instant	Insanity	puzzle	in	Figure	8.34	by	providing

(a)	the	pseudographs	for	each	cube,
(b)	the	composite	pseudograph	for	these	four	cubes,



(c)	the	related	sub-pseudographs	(Front-Back	and	Right-Left),
(d)	a	solution.

Figure	8.34:	Instant	Insanity	puzzle	for	Exercise	8.39

8.40	Solve	the	Instant	Insanity	puzzle	in	Figure	8.35	by	providing	(a)	-	(d)	as	in
Exercise	8.39.

Figure	8.35:	Instant	Insanity	puzzle	for	Exercise	8.40

8.41	Solve	the	Instant	Insanity	puzzle	in	Figure	8.36	by	providing	(a)	-	(d)	as	in
Exercise	8.39.

8.42	Show	that	the	cubes	in	Figure	8.28	can	be	stacked	in	a	way	different	than
that	shown	in	Figure	8.33	so	that	all	four	colors	appear	on	all	four	sides.

8.43	Construct	a	set	of	four	multicolored	cubes	so	that	all	four	colors	appear	on
each	cube	and	such	that	the	corresponding	Instant	Insanity	puzzle	has	no
solution.

Figure	8.36:	Instant	Insanity	puzzle	for	Exercise	8.41

8.44	Construct	a	set	of	four	multicolored	cubes	so	that	all	four	colors	appear	on
each	 cube	 and	 such	 that	 the	 corresponding	 Instant	 Insanity	 puzzle	 has	 a



unique	solution.

8.45	For	an	integer	k	with	1	≤	k	≤	6	and	k	≠	4,	suppose	that	we	have	a	collection
of	k	cubes	where	each	face	of	each	cube	is	assigned	one	of	the	k	colors	{1,
2,	…,	 k}.	 Investigate	 the	 puzzle	 of	 stacking	 these	 cubes	 on	 top	 of	 one
another	such	that	on	each	of	the	four	sides	all	k	colors	appear.

8.5	Excursion:	The	Petersen	Graph

Peter	Christian	Julius	Petersen	was	born	on	June	16,	1839	in	Sorø,	Denmark.	As
a	 youngster,	 Petersen	 attended	 a	 private	 school	 and	 then	 the	 Sorø	 Academy,
founded	by	King	Frederick	II	of	Denmark	in	1586.

Petersen	left	school	in	1854	because	his	parents	couldn’t	afford	the	expense
of	 his	 education.	 He	 then	 went	 to	 work	 for	 his	 uncle.	 When	 his	 uncle	 died,
Petersen	was	left	enough	money	to	begin	his	studies	at	the	Polytechnical	School
in	Copenhagen.	By	1858	Petersen	had	already	published	a	book	(a	textbook	on
logarithms).	Despite	 the	 fact	 that	he	passed	 the	 first	part	of	a	civil	engineering
examination	 in	 1860,	 he	 decided	 to	 study	mathematics	 at	 the	 university	 rather
than	 to	 continue	 with	 engineering.	 At	 this	 time,	 however,	 the	 money	 that	 his
uncle	left	him	had	run	out	and	he	took	a	position	as	a	teacher	at	a	private	school.
During	the	next	few	years	Petersen	had	a	heavy	teaching	load,	was	married	and
had	a	family	but	he	continued	to	study	hard.

In	1866	Petersen	obtained	 the	degree	of	magister	of	mathematics.	While	he
was	 a	 high	 school	 teacher,	 Petersen	 learned	 the	 importance	 of	 geometric
reasoning	and	recognized	his	own	talent	for	writing	textbooks.	In	fact,	he	wrote
five	textbooks	in	the	1860s,	all	on	geometry.	At	the	age	of	30,	he	finally	started
to	work	seriously	on	his	doctoral	dissertation.

Petersen	 received	 his	 Ph.D.	 in	 1871	 from	 Copenhagen	 University.	 On	 the
occasion	of	receiving	his	doctorate,	Petersen	wrote	(translated	from	Danish):

Mathematics	had,	from	the	time	I	started	to	learn	it,	 taken	my	complete
interest	 and	most	 of	my	work	 consisted	of	 solving	problems	of	my	 own
and	of	my	 friends	and	 in	 seeking	 the	 trisection	of	 the	angle,	a	problem
that	has	had	a	great	influence	on	my	whole	development.

Soon	 afterwards,	 Petersen	 became	 a	 faculty	 member	 at	 Copenhagen
University.	 He	 was	 known	 as	 an	 outstanding	 teacher.	 One	 anecdote	 about
Petersen’s	 teaching	 refers	 to	 instances	when	he	was	baffled	during	his	 lectures



concerning	 textbooks	 he	was	 using	 in	which	 it	was	written	 “it	 is	 easy	 to	 see”
(and	he	was	referring	to	books	that	he	had	written).	Petersen	was	considered	a
masterful	 writer,	 however.	 As	 far	 as	 his	 research	 was	 concerned,	 there	 were
times	when	the	elegance	of	his	exposition	took	precedence	over	rigor.	Petersen
was	an	independent	thinker	and	in	order	to	be	original,	he	rarely	read	the	work	of
others	 with	 the	 unfortunate	 consequence	 that	 he	 occasionally	 obtained	 results
that	were	already	known.	He	was	also	quite	casual	about	referencing	the	work	of
others.

Although	 Petersen	 worked	 in	 and	 made	 contributions	 to	 many	 areas	 of
mathematics,	it	is	only	graph	theory	for	which	he	is	known.	Indeed	in	his	day	he
enjoyed	 an	 international	 reputation.	 Julius	 Petersen’s	 contributions	 to	 graph
theory	 were	 primarily	 contained	 within	 a	 single	 paper	 he	 wrote,	 published	 in
1891	and	titled	Die	Theorie	der	regulären	graphs.	Prior	 to	1891,	 the	important
results	 on	 graph	 theory	 (including	 Leonhard	 Euler’s	 work	 on	 Eulerian	 graphs
and	Gustav	Kirchhoff’s	work	on	 spanning	 trees)	were	not	 results	 expressed	 in
terms	of	graphs	as	there	really	was	no	graph	theory	at	 that	 time.	In	the	case	of
Petersen’s	paper,	however,	an	argument	could	be	made	 that	 for	 the	 first	 time	a
paper	had	been	written	containing	fundamental	results	on	the	theory	of	graphs.
Among	the	important	results	occurring	in	this	paper	were	Theorem	8.11,	referred
to	as	Petersen’s	theorem	(Every	3-regular	bridgeless	graph	contains	a	1-factor.)
and	Theorem	8.16	(A	graph	G	 is	2-factorable	 if	 and	only	 if	G	 is	 r-regular	 for
some	positive	even	integer	r)	although	these	theorems	appeared	in	reverse	order
in	Petersen’s	paper.

Petersen’s	1891	paper	was	nearly	co-authored	with	the	mathematician	James
Joseph	Sylvester	(whom	we	will	meet	again	 in	Chapter	10).	The	 two	had	been
working	on	the	same	problem	and	they	corresponded	extensively.	Sylvester	was
outstanding	at	making	conjectures,	while	Petersen	supplied	the	proofs.	Sylvester
provided	 the	 stimulus	 that	 Petersen	 needed.	 Petersen	 and	 Sylvester	 were
evidently	making	great	progress	towards	a	joint	paper.	In	fact,	Sylvester	wrote	to
Felix	Klein,	editor	of	Mathematische	Annalen,	of	their	intention	to	submit	a	joint
paper	 to	 the	 journal.	 When	 Petersen	 visited	 Sylvester	 in	 Oxford,	 however,	 it
became	 clear	 that	 the	 two	 mathematicians	 were	 looking	 at	 the	 problem
differently.	It	was	decided	that	the	two	would	write	separate	papers,	even	though
this	 didn’t	 appeal	 to	 Petersen.	 During	 Petersen’s	 visit,	 he	 recognized	 that
Sylvester	was	having	health	problems,	both	physical	and	mental.	Sylvester	never
wrote	his	paper	and	would	never	return	to	graph	theory	again.

Sylvester	was	the	first	to	use	the	term	graph	as	it	is	used	now.	This	occurred
in	an	1878	paper	of	his	but	Petersen’s	use	of	this	term	apparently	caused	it	to	be
used	more	widely	and	finally	it	was	adopted	by	the	mathematical	community.



Even	 though	 Petersen’s	 major	 contribution	 to	 graph	 theory	 was	 his	 1891
paper,	 that	 is	not	what	he	 is	known	for.	His	primary	 fame	 lies	not	 for	a	 single
paper	 he	wrote	 but	 for	 a	 single	 graph	 that	 appeared	 in	 one	 of	 his	 papers:	 the
Petersen	graph.	We	have	encountered	this	graph	several	times	already	and	we
will	continue	to	encounter	it.	Petersen	first	mentioned	this	graph,	not	in	his	28-
page	classic	1891	paper	but	in	his	3-page	1898	paper	“Sur	le	théorème	de	Tait”
in	 which	 he	 presented	 this	 graph	 as	 a	 counterexample	 to	 Peter	 Guthrie	 Tait’s
“theorem”:	Every	3-regular	bridgeless	graph	is	1-factorable.	His	graph	did	not
appear	in	the	aesthetic	way	in	which	it	is	commonly	drawn,	as	shown	in	Figure
8.37(a),	but	in	the	less	appealing	way	shown	in	Figure	8.37(b).	Petersen	died	on
August	5,	1910	in	Copenhagen,	Denmark.

Figure	8.37:	The	Petersen	graph

Curiously,	 Petersen	was	 not	 the	 first	 person	 to	 use	 the	 graph	 that	 bears	 his
name.	 Evidently,	 the	 first	 occurrence	 of	 this	 graph	was	 12	 years	 earlier	 in	 an
1886	paper	of	Alfred	Bray	Kempe.	(We	will	visit	both	Kempe	and	Tait	again	in
Chapter	 10.)	 We	 mentioned	 earlier	 that	 the	 Petersen	 graph	 consists	 of	 two
disjoint	5-cycles	 joined	by	a	particular	matching	of	cardinality	5.	 If	we	denote
the	two	5-cycles	by	C	=	(v1,	v2,	v3,	v4,	v5,	v1)	and	 ,
then	 the	 edges	 of	 the	 matching	 are	 .	 There	 are
numerous	interesting	ways	to	draw	the	Petersen	graph.	Two	additional	ways	are
shown	in	Figure	8.38.

Figure	8.38:	The	Petersen	graph	(again)



The	 fact	 that	 the	 Petersen	 graph	 was	 introduced	 by	 Petersen	 as	 a
counterexample	 would	 be	 a	 prelude	 to	 the	 way	 this	 graph	 is	 commonly
encountered,	 as	 it	 often	 appears	 as	 an	 example	 or	 counterexample	 to	 graph
theoretic	statements.

Let’s	look	at	a	few	characteristics	of	this	famous	graph.	The	Petersen	graph
is,	of	course,	a	3-regular	graph	of	order	10	and	therefore	has	size	15.	We	have
already	noted	that	the	length	of	a	smallest	cycle	in	this	graph	is	5.	The	length	of
a	smallest	cycle	in	a	graph	is	referred	to	as	its	girth.	For	an	integer	g	≥	3,	a	g-
cage	is	a	3-regular	graph	of	minimum	order	that	has	girth	g.	It	is	easy	to	see	that
K4	 is	 the	unique	3-cage	and	only	slightly	more	difficult	 to	see	 that	K3,	3	 is	 the
unique	4-cage.	 It	 turns	out	 that	 the	Petersen	graph	 is	 the	unique	5-cage.	These
three	graphs	are	shown	in	Figure	8.39.

Figure	8.39:	The	3-cage,	4-cage	and	5-cage

Theorem	8.26	The	Petersen	graph	is	the	unique	5-cage.

Proof.	Let	G	be	a	5-cage	and	 let	v1	be	a	vertex	of	G.	Since	deg	v1	=	3,	 the
vertex	 v1	 has	 three	 neighbors,	 say	 v2,	 v3	 and	 v4.	 Because	 G	 contains	 no
triangles,	 the	set	{v2,	v3,	v4}	 is	 independent.	Since	 the	vertices	v2,	v3	 and	v4
also	 have	 degree	 3,	 each	 of	 these	 vertices	 is	 adjacent	 to	 two	 vertices	 in
addition	to	v1,	say

The	 vertices	 v5,	 v6,	…,	 v10	 are	 distinct	 since	G	 contains	 no	 4-cycles.	 Thus	G
contains	the	subgraph	shown	H1	in	Figure	8.40(a).



Figure	8.40:	Subgraphs	of	a	5-cage	G

This	says	that	the	order	of	G	is	at	least	10.	Since	the	Petersen	graph	PG	is	a	3-
regular	graph	of	order	10	having	girth	5,	it	follows	that	every	5-cage	has	order
10	 and	 that	 PG	 is	 a	 5-cage.	 It	 remains	 to	 show	 that	 PG	 is	 the	 only	 5-cage.
Because	G	is	a	5-cage,	its	order	is	10	and	V(G)	=	{v1,	v2,	…,	v10}.	Consider	the
vertex	v5,	which	must	be	adjacent	to	two	vertices	in	the	set	{v6,	v7,	v8,	v9,	v10}.
Because	G	 contains	 no	 triangles	 or	 4-cycles,	 v5	 is	 not	 adjacent	 to	 v6	 and	 v5
cannot	be	adjacent	to	both	v7	and	v8	or	to	both	v9	and	v10.	Hence	v5	is	adjacent	to
exactly	 one	 of	 v7	 and	 v8	 and	 adjacent	 to	 exactly	 one	 of	 v9	 and	 v10.	 We	 may
assume	that	v5	is	adjacent	to	v7	and	v9.	Furthermore,	v6	is	adjacent	to	v8	and	v10.
Hence	G	contains	the	subgraph	H2	shown	in	Figure	8.40(b).

The	vertex	v7	is	not	adjacent	to	v8	or	v9	as	G	has	no	triangles,	so	v7	must	be
adjacent	to	v10.	Consequently,	v8	and	v9	must	be	adjacent	as	well	(see

Figure	8.41:	The	Petersen	graph:	the	unique	5-cage

Figure	8.41(a)).	Hence	 there	 is	only	one	possibility	 for	 the	graph	G,	namely
that	G	is	(isomorphic	to)	the	Petersen	graph	(Figure	8.41(b)).



The	6-cage,	7-cage	and	8-cage	are	also	unique	and	are	known,	respectively	as
the	Heawood	graph,	the	McGee	graph	and	the	Tutte-Coxeter	graph,	shown	in
Figure	8.42.

Figure	8.42:	The	6-cage,	7-cage	and	8-cage

We	 have	 already	 seen	 that	 the	 Petersen	 graph	 is	 neither	 1-factorable	 nor
Hamiltonian.	Even	though	the	Petersen	graph	PG	is	not	Hamiltonian,	it	is	close
to	having	this	property	as	PG	−	v	is	Hamiltonian	for	every	vertex	v	of	PG.

8.6	Exploration:	Bi-Graceful	Graphs

We	saw	in	Section	8.3	that	a	graph	G	is	graceful	if	it	has	a	graceful	labeling.	By
a	graceful	labeling	of	a	graph	G	of	size	m	is	meant	a	one-to-one	function	f	:	V(G)
→	{0,	1,	2,	…,	m}	having	the	property	that	the	induced	edge	labeling	f′	:	E(G)
→	{1,	2,	…,	m}	defined	by

is	one-to-one	as	well.	We	also	saw	that	if	G	 is	a	graceful	graph	of	size	m,	 then
the	complete	graph	K2m	+	1	is	G-decomposable.	In	fact,	K2m	+	1	 is	cyclically	G-
decomposable.	Consider	the	cycle	C	=	(v0,	v1,	v2,	…,	v2m,	v0)	of	length	2m	+	1
where	 the	 vertices	 of	C	 are	 arranged	 cyclically	 in	 a	 regular	 (2m	 +	 1)-gon.	 A
vertex	 labeled	 i	 in	G,	where	 i	 	 {0,	 1,	 2,	…,	2m}	 is	 placed	 at	vi	 in	C.	This	 is
illustrated	 for	 the	 graceful	 graph	G	 in	 Figure	 8.43.	 By	 rotating	G	 clockwise
through	an	angle	of	2 /9	radians	a	total	of	eight	times,	a	G-decomposition	of	K9
is	obtained.



Figure	8.43:	Placing	the	vertices	of	a	graceful	graph	G	of	size	m	on	regular	(2m
+	1)-gon

Alexander	Rosa	determined	which	cycles	are	graceful.

Theorem	8.27	A	cycle	Cn	is	graceful	if	and	only	if

We	saw	in	Example	8.22	that	C5	is	not	graceful.	Despite	this,	K11	is	cyclically
C5-decomposable	however.	See	Figure	8.44.

Figure	8.44:	A	cyclic	C5-decomposition	of	K11

Let	G	be	a	graph	of	size	m	and	let	Si	=	{i,	2m	+	1	−	 i}	for	1	≤	 i	≤	m.	A	bi-
graceful	labeling	of	G	is	a	one-to-one	function	f	:	V(G)	→	{0,	1,	2,	…,	2m}	that
induces	the	edge	labeling	f′	:	E(G)	→	{1,	2,	…,	2m}	defined	by



such	that	the	set	S	=	{f′(e)	:	e	 	E(G)}	has	the	property	that	|S	 	Si|	=	1	for	all	i	(1
≤	 i	 ≤	m).	 A	 bi-graceful	 labeling	 was	 called	 a	 ρ-valuation	 by	 Rosa.	 A	 graph
admitting	a	bi-graceful	labeling	is	a	bi-graceful	graph.	In	particular,	C5	is	a	bi-
graceful	graph	(see	Figure	8.45).

Figure	8.45:	A	bi-graceful	labeling	of	C5

A	co-graceful	labeling	of	a	graph	G	is	a	bi-graceful	labeling	for	which	S	 	Si
=	{2m	+	1	−	i}	for	all	i	(1	≤	i	≤	m).	A	graph	admitting	a	co-graceful	labeling	is	a
co-graceful	graph.	In	particular,	C4	is	a	co-graceful	graph	(see	Exercise	8.52).

Exercises	for	Section	8.6

8.46	 Prove	 that	 every	 graceful	 graph	 has	 a	 bi-graceful	 labeling	 that	 is	 not
graceful.

8.47	Prove	that	if	G	is	a	bi-graceful	graph	of	size	m,	then	K2m	+	1	is	cyclically
G-decomposable.

8.49	Is	C6	bi-graceful?

8.50	Is	C7	bi-graceful?

8.51	Is	C9	bi-graceful?

8.52	Show	that	C4	is	a	co-graceful	graph.



Chapter	9
Planarity

9.1	Planar	Graphs

The	directors	of	an	amusement	center	have	decided	to	open	a	new	theme	park	in
the	center.	The	 initial	plan	for	 the	 theme	park	 is	 to	build	six	attractions,	which
are	 temporarily	 denoted	 by	 A1,	 A2,	 …,	 A6.	 Figure	 9.1(a)	 shows	 the	 initial
location	of	the	attractions.

Figure	9.1:	Six	attractions	in	a	theme	park

In	 the	 summer,	 the	 amusement	 center	 often	 becomes	 very	 hot	 and	walking
between	attractions	can	be	uncomfortable.	Preliminary	studies	 indicate	 that	 the
least	amount	of	traffic	is	likely	to	occur	between	attractions	(1)	A1	and	A4,	(2)
A2	and	A5	and	(3)	A3	and	A6.	The	designers	feel	 that,	despite	 the	expense,	 it
would	be	good	 for	business	 to	build	an	air-conditioned	 tube	enclosing	moving



walkways	in	both	directions	between	all	pairs	of	attractions	except	those	in	(1)–
(3).	 One	 possible	 concern	 is	 whether	 this	 can	 be	 done	without	 any	 two	 tubes
interfering	 with	 each	 other.	 Figure	 9.1(b)	 shows	 that	 the	 tubes	 can	 indeed	 be
built	without	any	pair	intersecting.	Figure	9.1(c)	shows	that	if	the	attractions	are
relocated,	then	an	even	better	design	for	the	location	of	the	tubes	can	be	given.

After	time	passes,	it	is	decided	that	the	attractions	A1,	A2,	…,	A6	need	to	be
modified	and	they	are	now	called	B1,	B2,	…,	B6.	Furthermore,	it	is	decided	to
add	 a	 seventh	 attraction	 B7.	 (See	 Figure	 9.2.)	 In	 addition,	 it	 is	 decided	 that
moving	walkway	tubes	should	be	built	between	every	pair	of	attractions,	except
the	 pairs	 {B1,	B4},	 {B1,	B5},	 {B2,	B5},	 {B2,	B6},	 {B3,	B6},	 {B3,	B7}	 and
{B4,	B7}.	How	should	this	be	done?

Figure	9.2:	Seven	attractions	in	a	theme	park

There	 is	 a	 graph	 theory	 question	 (or	 two)	 here.	 The	 theme	 park	 with	 six
attractions	can	be	modeled	by	the	graph	G6	of	Figure	9.3(a)	whose	vertices	are
the	attractions	and	whose	edges	are	 the	walkways.	 In	a	similar	way,	 the	 theme
park	with	seven	attractions	can	be	modeled	by	a	graph	G7.	The	question	that	we
are	asking	is:	Is	it	possible	to	draw	G6	and	G7	in	the	plane	so	that	none	of	their
edges	 cross.	 The	 answer	 for	G6	 is	 certainly	 yes	 and	 such	 a	 drawing	 for	G6	 is
shown	in	Figure	9.3(b).	The	answer	for	G7	is…	well,	we	don’t	know	(at	least	not
yet).



Figure	9.3:	The	graphs	G6	and	G7

A	graph	G	is	called	a	planar	graph	if	G	can	be	drawn	in	the	plane	so	that	no
two	of	its	edges	cross	each	other.	Therefore,	the	graph	G6	of	Figure	9.3	is	planar.
We	have	 yet	 to	 determine	whether	 the	 graph	G7	 is	 planar.	A	 graph	 that	 is	 not
planar	is	called	nonplanar.	A	graph	G	is	called	a	plane	graph	 if	it	is	drawn	in
the	plane	so	that	no	two	edges	of	G	cross.	Thus,	while	a	graph	may	be	planar,	as
drawn	it	may	not	be	a	plane	graph,	such	as	the	graph	G6	in	Figure	9.3(a).

There	 is	 a	 well-known	 puzzle	 that	 has	 appeared	 in	 a	 number	 of	 books,
magazines	and	comic	books.	There	are	three	utilities	(gas,	water	and	electricity)
that	need	to	be	connected	to	three	houses	by	gas	lines,	water	mains	and	electrical
lines.	Can	 this	be	done	without	 any	of	 the	 lines	or	mains	crossing	each	other?
This	situation	is	shown	in	Figure	9.4(a).	This	problem	is	referred	to	as	the	Three
Houses	and	Three	Utilities	Problem.	There	are	reports	 that	 this	problem	may
have	been	introduced	by	the	American	puzzle-maker	Sam	Loyd,	Sr.	in	1900.	The
situation	described	in	this	problem	can	be	modeled	by	the	graph	of	Figure	9.4(b),
which,	 in	 fact,	 is	 the	graph	K3,3.	 In	graph	 theory	 terms	 then,	 the	Three	Houses
and	Three	Utilities	Problem	asks	whether	the	graph	K3,3	is	planar.

Figure	9.4:	The	Three	Houses	and	Three	Utilities	Problem



Before	 providing	 a	 solution	 to	 this	 problem,	 it	 is	 useful	 to	 make	 some
observations	about	planar	graphs	(actually	connected	planar	graphs).	First	there
are	some	well-known	classes	of	planar	graphs.	Every	cycle	is	planar.	Every	path
and	every	star	are	planar.	Indeed,	every	tree	is	planar.	Of	course,	every	graph	that
can	be	drawn	in	the	plane	without	any	two	of	its	edges	crossing	is	planar,	as	this
is	the	definition	of	a	planar	graph.	It	may	appear	that	K3,3	is	not	planar	but	if	it	is
not	planar,	then	how	do	we	show	this?	After	all,	just	because	we	don’t	see	how
to	 draw	 a	 graph	 without	 its	 edges	 crossing	 doesn’t	 mean	 that	 the	 graph	 is
nonplanar.	We	are	about	to	deal	with	questions	such	as	this.

Consider	the	graph	H	shown	in	Figure	9.5(a).	Of	course,	H	is	connected.	But
H	is	also	planar	as	we	can	see	from	Figure	9.5(b),	where	H	 is	drawn	as	a	plane
graph.

A	 plane	 graph	 divides	 the	 plane	 into	 connected	 pieces	 called	 regions.	 For
example,	in	the	case	of	the	plane	graph	H	of	Figure	9.5(b),	there	are	six	regions.
This	graph	H	is	redrawn	in	Figure	9.6,	where	the	six	regions	are	denoted	by	R1,
R2,	…,	R6.	 In	every	plane	graph,	there	is	always	one	region	that	 is	unbounded.
This	 is	 the	 exterior	 region.	 For	 the	 graph	H	 of	 Figure	 9.6,	R6	 is	 the	 exterior
region.	The	subgraph	of	a	plane	graph	whose	vertices	and	edges	are

Figure	9.5:	A	planar	graph	and	a	plane	graph

incident	with	a	given	region	R	is	the	boundary	of	R.	The	boundaries	of	the	six
regions	of	the	graph	H	of	Figure	9.6	are	also	shown	in	that	figure.



Figure	9.6:	A	plane	graph	and	its	regions

Notice	that	uv	is	a	bridge	in	the	graph	H	of	Figure	9.6	and	is	on	the	boundary
of	one	region	only,	namely	the	exterior	region.	In	fact,	a	bridge	is	always	on	the
boundary	of	exactly	one	region	(though	not	necessarily	the	exterior	region).	An
edge	 that	 is	not	a	bridge	 lies	on	 the	boundary	of	 two	 regions.	For	example,	vy
lies	on	the	the	boundary	of	both	R2	and	R3.	 If	we	were	 to	 remove	 the	edge	vy,
then	the	resulting	graph	is	a	plane	graph	as	well	but	has	one	less	region	as	R2	and
R3	 become	 part	 of	 a	 single	 region.	 On	 the	 other	 hand,	 the	 graph	H	 −	 uv	 is
disconnected	 but	 there	 is	 no	 change	 in	 the	 number	 of	 regions.	 Another
observation	is	useful.

If	 G	 is	 a	 connected	 plane	 graph	 with	 at	 least	 three	 edges,	 then	 the
boundary	of	every	region	of	G	has	at	least	three	edges.

Looking	 at	 the	 plane	 graph	H	 of	 Figure	 9.6	 yet	 again,	 we	 see	 that	H	 is	 a
connected	 graph	 of	 order	 9	 and	 size	 13	 having	 six	 regions.	 Furthermore,	 the
bridge	 is	on	 the	boundary	of	a	 single	 region	 (the	exterior	 region)	and	all	other
edges	are	on	the	boundaries	of	two	regions.	Letting	n,	m	and	r	denote	the	order,
size	and	number	of	regions,	respectively,	we	then	have	n	=	9,	m	=	13	and	r	=	6.



So	in	this	case,	n	−	m	+	r	=	2.	 In	 fact,	n	−	m	+	r	=	2	 is	 true	for	all	connected
plane	graphs.	This	is	a	consequence	of	an	observation	made	by	Leonhard	Euler
who	 reported	 this	 to	 the	German	mathematician	Christian	Goldbach	 in	 a	 letter
dated	November	 14,	 1750.	 This	 result	 first	 appeared	 in	 print	 in	 1752.	 This	 is
referred	to	as	the	Euler	Identity.

Theorem	9.1	(The	Euler	Identity)	If	G	is	a	connected	plane	graph	of	order
n,	size	m	and	having	r	regions,	then	n	−	m	+	r	=	2.

Proof.	First,	if	G	is	a	tree	of	order	n,	then	m	=	n	−	1	(by	Theorem	4.4)	and	r	=
1;	so	n	−	m	+	r	 =	 2.	Therefore,	we	need	only	be	 concerned	with	 connected
graphs	 that	are	not	 trees.	Assume,	 to	 the	contrary,	 that	 the	 theorem	does	not
hold.	Then	there	exists	a	connected	plane	graph	G	of	smallest	size	for	which
the	 Euler	 Identity	 does	 not	 hold.	 Suppose	 that	G	 has	 order	 n,	 size	m	 and	 r
regions.	So	n	−	m	+	r	≠	2.	Since	G	is	not	a	tree,	there	is	an	edge	e	that	is	not	a
bridge.	 Thus	G	 −	 e	 is	 a	 connected	 plane	 graph	 of	 order	 n	 and	 size	m	 −	 1
having	 r	 −	 1	 regions.	 Because	 the	 size	 of	G	 −	 e	 is	 less	 than	m,	 the	 Euler
Identity	holds	for	G	−	e.	So	n	−	(m	−	1)	+	(r	−	1)	=	2	but	then	n	−	m	+	r	=	2,
which	is	a	contradiction.

Figure	9.7	shows	a	planar	graph	G	and	several	ways	of	drawing	G	as	a	plane
graph.	However,	since	G	has	a	 fixed	order	n	=	7	and	fixed	size	m	=	9	and	 the
Euler	Identity	holds	(n	−	m	+	r	=	7	−	9	+	r	=	2),	each	drawing	of	G	as	a	plane
graph	always	produces	the	same	number	of	regions,	namely	r	=	4.

Figure	9.7:	Different	drawings	of	a	planar	graph

The	 Euler	 Identity	 has	 many	 useful	 and	 interesting	 consequences.	 One	 of
these	(which	will	allow	us	to	prove	that	some	graphs	are	not	planar)	tells	us	that
planar	graphs	cannot	have	too	many	edges.

Theorem	9.2	If	G	is	a	planar	graph	of	order	n	≥	3	and	size	m,	then



Proof.	First,	suppose	that	G	is	connected.	If	G	=	P3,	then	the	inequality	holds.
So	we	can	assume	that	G	has	at	 least	three	edges.	Draw	G	as	a	plane	graph,
where	G	has	r	regions	denoted	by	R1,	R2,	…,	Rr.	The	boundary	of	each	region
contains	at	least	three	edges.	So	if	mi	is	the	number	of	edges	on	the	boundary
of	Ri	(1	≤	i	≤	r),	then	mi	≥	3.	Let

The	number	M	counts	an	edge	once	if	the	edge	is	a	bridge	and	counts	it	twice	if
the	edge	is	not	a	bridge.	So	M	≤	2m.	Therefore,	3r	≤	M	≤	2m	and	so	3r	≤	2m.

Applying	the	Euler	Identity	to	G,	we	have

Solving	the	inequality	(9.1)	for	m,	we	get	m	≤	3n	−	6.
If	G	 is	disconnected,	 then	edges	can	be	added	 to	G	 to	produce	a	connected

plane	 graph	 of	 order	 n	 and	 size	m′,	 where	m′	 >	m.	 From	 what	 we	 have	 just
shown,	m′	≤	3n	−	6	and	so	m	<	3n	−	6.

Theorem	9.2	provides	a	necessary	condition	for	a	graph	to	be	planar	and	so
provides	 a	 sufficient	 condition	 for	 a	 graph	 to	 be	 nonplanar.	 In	 particular,	 the
contrapositive	of	Theorem	9.2	gives	us	the	following:

If	G	is	a	graph	of	order	n	≥	3	and	size	m	such	that	m	>	3n	−	6,	then	G	is
nonplanar.

There	are	now	some	immediate	but	interesting	consequences	of	Theorem	9.2.

Corollary	9.3	Every	planar	graph	contains	a	vertex	of	degree	5	or	less.

Proof.	Suppose	that	G	is	a	graph	every	vertex	of	which	has	degree	6	or	more.
Let	G	have	order	n	and	size	m.	Certainly,	n	≥	7.	Then

Thus	m	≥	3n	>	3n	−	6.	By	Theorem	9.2,	G	is	nonplanar.

We	can	now	give	an	example	of	a	nonplanar	graph.



Corollary	9.4	The	complete	graph	K5	is	nonplanar.

Proof.	The	graph	K5	has	order	n	=	5	and	size	m	=	10.	Since	m	=	10	>	9	=	3n	−
6,	it	follows	that	K5	is	nonplanar	by	Theorem	9.2.

Let’s	 revisit	 the	 proof	 of	 Theorem	 9.2,	 where	 we	 were	 discussing	 the	 r
regions	R1,	R2,	…,	Rr	of	a	plane	graph	G.	We	mentioned	that	the	number	mi	of
edges	on	the	boundary	of	Ri	(1	≤	i	≤	r)	is	at	least	3.	Of	course,	if	there	are	exactly
three	edges	on	the	boundary	of	each	region,	then	mi	=	3	for	each	i	(1	≤	i	≤	r)	and
so	M	=	3r.	We	also	mentioned	that	M	counts	an	edge	once	if	the	edge	is	a	bridge
and	counts	it	twice	if	the	edge	is	not	a	bridge.	The	only	way	for	the	inequality	in
(9.1)	 to	be	an	equality	 is	 for	3r	=	M	=	2m,	which	means	 that	 the	boundary	of
every	region	must	contain	exactly	three	edges	and	that	there	are	no	bridges	in	G
(which	eliminates	the	possibility	that	G	=	K1,	3).	Under	these	conditions,	m	=	3n
−	6.	Therefore,	the	only	way	for	the	equality	m	=	3n	−	6	to	occur	in	a	connected
plane	graph	G	of	order	n	≥	3	and	size	m	is	that	the	boundary	of	every	region	of	G
(including	the	exterior	region)	is	a	triangle.	Three	examples	of	this	are	shown	in
Figure	9.8.

Figure	9.8:	Maximal	planar	graphs

Notice	 that	 the	graphs	 in	Figures	9.8(a)	and	9.8(b)	are	complete	graphs	but
the	 graph	 in	 Figure	 9.8(c)	 is	K5	 −	 e	 for	 some	 edge	 e.	 Indeed,	 if	 we	 have	 a
connected	planar	graph	G	of	order	n	and	size	m,	where	m	=	3n	−	6	and	n	≥	5,
then	 G	 is	 not	 complete.	 If	 we	 were	 to	 add	 an	 edge	 e	 between	 any	 two
nonadjacent	vertices	of	G,	then	the	graph	G+e	cannot	be	planar	because	its	size
m+1	exceeds	3n	−	6.	This	confirms	what	we	 learned	 in	Corollary	9.4,	namely,
that	K5	is	not	planar.

A	 graph	G	 is	maximal	 planar	 if	G	 is	 planar	 but	 the	 addition	 of	 an	 edge
between	any	two	nonadjacent	vertices	of	G	results	in	a	nonplanar	graph.	Another
way	to	say	this	is	that	a	graph	G	is	maximal	planar	if	G	is	planar	but	G	is	not	a
proper	 spanning	 subgraph	 of	 any	 other	 planar	 graph.	 For	 1	 ≤	n	 ≤	 4,	 the	 only



maximal	planar	graph	of	order	n	is	Kn.	Thus	all	of	the	graphs	in	Figure	9.8	are
maximal	planar.	Necessarily	 then,	 if	 a	maximal	planar	graph	G	 of	order	n	≥	3
and	size	m	is	drawn	as	a	plane	graph,	then	the	boundary	of	every	region	of	G	is	a
triangle	and	m	=	3n	−	6.

Now	 that	we	 have	 a	 sufficient	 condition	 for	 a	 graph	 to	 be	 nonplanar,	 let’s
return	to	the	Three	Houses	and	Three	Utilities	Problem,	which,	if	you	recall,	is
equivalent	 to	 determining	whether	K3,3	 is	 planar.	Attempts	 to	 draw	K3,3	 in	 the
plane	without	 edges	 crossing	were	 unsuccessful,	 thereby	 leading	 us	 to	 believe
that	K3,3	is	nonplanar.	The	graph	K3,3	has	order	n	=	6	and	size	m	=	9.	Thus	3n	−	6
=	12.	Therefore,	m	≤	3n	−	6,	which	says	…	nothing.	We	only	know	that	a	graph
is	 nonplanar	 if	m	 >	 3n	 −	 6.	 Therefore,	we	 can	make	 no	 conclusion	 about	 the
planarity	of	K3,3	from	Theorem	9.2.	On	the	other	hand,	 if	we	recall	 that	K3,3	 is
bipartite	(and	therefore	contains	no	odd	cycles)	and	look	at	the	proof	of	Theorem
9.2	 in	more	 detail,	 then	we	 can	 finally	 prove	what	we	 believed	 to	 be	 true	 all
along.

Theorem	9.5	The	graph	K3,3	is	nonplanar.

Proof.	Assume,	 to	 the	contrary,	 that	K3,3	 is	planar	and	draw	K3,3	 as	 a	plane
graph.	Since	n	=	6	and	m	=	9,	it	follows	by	the	Euler	Identity	that	n	−	m	+	r	=
6	−	9	+	r	=	2	and	so	r	=	5.	Let	R1,	R2,	…,	R5	be	the	five	regions	and	let	mi	be
the	 number	 of	 edges	 on	 the	 boundary	 of	Ri	 (1	 ≤	 i	 ≤	 5).	 Since	K3,3	 has	 no
triangles,	mi	≥	4	for	1	≤	i	≤	5	and	because	K3,3	contains	no	bridges,	it	follows
that

and	so	m	≥	10.	This	is	a	contradiction.

Therefore,	 the	 Three	 Houses	 and	 Three	 Utilities	 Problem	 is	 solved!	 It	 is
impossible	 to	connect	 the	 three	utilities	 to	 the	 three	houses	without	any	gas	or
electrical	lines	or	water	mains	crossing.

While	Theorem	9.2	provides	a	necessary	condition	for	a	graph	to	be	planar,	it
is	only	just	that:	a	necessary	condition.	This	theorem	can	help	us	to	prove	that	a
graph	 is	nonplanar	but	 there	are	nonplanar	graphs	 that	 cannot	be	proved	 to	be
nonplanar	 by	 this	 theorem	 (such	 as	 K3,3).	 However,	 there	 is	 a	 remarkable



theorem	that	gives	a	condition	that	is	both	necessary	and	sufficient	for	a	graph	to
be	 planar.	 The	 theorem	 that	 we	 are	 about	 to	 present	 is	 due	 to	 Kazimierz
Kuratowski.

Kazimierz	 Kuratowski	 was	 born	 in	Warsaw,	 Poland	 on	 February	 2,	 1896.
Because	of	the	political	situation	in	1913,	Kuratowski	left	Poland	then	to	study
engineering	 at	 the	 University	 of	 Glasgow	 in	 Scotland.	 He	 completed	 his	 first
year	at	the	university	but	while	back	home	preparing	to	begin	his	second	year	of
studies,	 World	 War	 I	 broke	 out,	 making	 it	 impossible	 for	 him	 to	 return	 to
Scotland.

The	 University	 of	 Warsaw	 in	 Poland	 had	 been	 under	 Russian	 control	 for
decades	and	even	became	an	underground	university.	However,	during	1915,	the
University	 of	Warsaw	was	 reformulated	 as	 a	Polish	university.	One	of	 its	 first
students	was	Kuratowski	who	took	up	mathematics.	He	was	greatly	 influenced
by	 the	 faculty	 there,	 several	 of	 whom	 were	 interested	 in	 the	 evolving
mathematical	 field	 of	 topology.	 Kuratowski	 wrote	 his	 first	 research	 paper	 in
1917	 and	 was	 awarded	 his	 Ph.D.	 in	 1921.	 In	 1927,	 Kuratowski	 became	 a
mathematics	professor	at	the	Technical	University	of	Lvov.	The	mathematicians
there	 did	 a	 great	 deal	 of	 research,	 often	working	 at	 tea	 shops	 and	 cafés.	 It	 is
while	 Kuratowski	 was	 in	 Lvov	 that	 he	 discovered	 and	 proved	 an	 important
theorem	 in	 graph	 theory,	 which	 we	 are	 about	 to	 state.	 In	 1934	 Kuratowski
returned	 to	Warsaw	and	became	a	professor	 at	 the	University	of	Warsaw.	Life
was	 disrupted	 greatly	 in	 1939	 during	 the	 German	 invasion	 of	 Poland.	 An
underground	 university	 was	 developed	 during	 World	 War	 II	 and	 Kuratowski
taught	there.	After	World	War	II	the	entire	Polish	educational	system	had	to	be
rebuilt	 and	 Kuratowski	 took	 a	 leadership	 role	 in	 doing	 this.	 Although
Kuratowski	 did	 a	 great	 deal	 of	 research	 throughout	 his	 life,	 primarily	 in	 set
theory	 and	 topology,	 it	 was	 his	 work	 in	 directing	 schools	 of	 mathematical
research	 and	 education	 that	 are	 perhaps	most	 notable.	 He	 died	 where	 he	 was
born,	in	Warsaw,	on	June	18,	1980.

So	what	 exactly	 is	 Kuratowski’s	 contribution	 to	 graph	 theory?	 It	 turns	 out
that	 to	 determine	 which	 graphs	 are	 planar	 and	 which	 are	 nonplanar,	 it	 is
Corollary	9.4	and	Theorem	9.5	that	provide	the	keys,	where	it	is	shown	that	K5
and	K3,3	are	nonplanar.	Certainly,	if	H	is	a	nonplanar	subgraph	of	a	graph	G,	then
G	 is	 nonplanar	 as	 well.	 In	 particular,	 if	 G	 contains	 either	 K5	 or	 K3,3	 as	 a
subgraph,	then	G	is	nonplanar.

We	now	know	that	a	graph	G	of	order	n	≥	3	and	size	m	is	nonplanar	if	any	of
the	 following	occurs:	 (1)	m	 >	 3n	 −	 6,	 (2)	G	 contains	K5	 as	 a	 subgraph,	 (3)	G
contains	K3,3	as	a	subgraph.	We	have	already	seen	that	K3,3	is	a	nonplanar	graph



of	 order	 n	 and	 size	 m	 for	 which	 the	 inequality	 m	 >	 3n	 −	 6	 does	 not	 hold.
Furthermore,	even	if	m	>	3n	−	6,	then	there	is	no	guarantee	that	G	contains	either
K5	or	K3,3	as	a	subgraph,	as	we	now	show.

Example	9.6	There	exists	a	graph	of	order	n	≥	3	and	 size	m	 >	 3n	 −	 6	 that
contains	neither	K5	nor	K3,3	as	a	subgraph.

Solution.	 Consider	 the	 graph	G	 of	 order	 n	 =	 7	 and	 size	m	 =	 16	 shown	 in
Figure	9.9.	Since	m	=	16	>	15	=	3n	−	6,	it	follows	that	G	is	nonplanar.	In	fact,
G	−	uv	is	a	maximal	planar	graph.

Figure	9.9:	A	nonplanar	graph

Assume,	to	the	contrary,	that	G	contains	a	subgraph	F	such	that	F	=	K5	or	F	=
K3,3.	Necessarily,	F	must	contain	the	edge	uv,	for	otherwise,	F	is	a	subgraph	of	G
−	uv,	which	is	 impossible.	If	F	=	K5,	 then	u,	v	 	V(F)	and	 the	remaining	 three
vertices	 of	 F	 must	 be	 adjacent	 to	 both	 u	 and	 v.	 However,	 only	 s	 and	 t	 are
adjacent	to	both	u	and	v.	Thus	F	≠	K5	and	so	we	must	have	F	=	K3,3.	Let	U	and
W	be	the	two	partite	sets	of	F.	Since	uv	 	E(F),	one	of	u	and	v	belongs	to	U	and
the	other	belongs	to	W,	say	u	 	U	and	v	 	W.	Since	the	remaining	two	vertices	of
W	are	adjacent	to	every	vertex	in	U,	either	W	=	{v,	s,	t}	or	W	=	{v,	s,	x}.	If	W	=
{v,	 s,	 t},	 then	 only	 u	 and	 z	 are	 adjacent	 to	 all	 three	 vertices	 of	W,	 which	 is
impossible.	If	W	=	{v,	s,	x},	then	only	u	and	t	are	adjacent	to	all	three	vertices	of
W,	again	which	is	impossible.	Thus	F	≠	K3,3,	which	produces	a	contradiction.

Because	the	graph	G	of	Figure	9.9	is	nonplanar	and	contains	neither	K5	nor
K3,3	as	a	subgraph,	it	follows	that	the	nonplanarity	of	a	graph	doesn’t	depend	on



the	graph	containing	K5	or	K3,3	 as	a	 subgraph.	As	we	are	about	 to	 see,	 it	does
depend	on	something	very	close	to	this	however.

Let’s	now	turn	our	attention	to	the	graph	G	of	Figure	9.10.	If	we	replace	the
edge	uv	by	a	vertex	s	of	degree	2	and	join	s	to	u	and	v,	then	we	obtain	the	graph
G1.	The	graph	G1	 is	 referred	 to	as	a	 subdivision	of	G.	We	might	also	 think	of
producing	G1	by	inserting	a	vertex	of	degree	2	into	the	edge	uv	of	G.

Figure	9.10:	Subdivisions	of	a	graph

More	formally,	a	graph	G′	is	called	a	subdivision	of	a	graph	G	if	G′	=	G	or
one	 or	 more	 vertices	 of	 degree	 2	 are	 inserted	 into	 one	 or	 more	 edges	 of	G.
Consequently,	 all	 of	G,	G1,	G2	 and	G3	 are	 subdivisions	 of	G.	 In	 fact,	G2	 is	 a
subdivision	of	G1	as	well.

Perhaps	it	is	clear	that	every	subdivision	of	a	planar	graph	is	planar	and	that
every	 subdivision	 of	 a	 nonplanar	 graph	 is	 nonplanar.	 This	 says	 that	 if	G′	 if	 a
subdivision	of	a	graph	G,	then	G′	is	planar	if	and	only	if	G	is	planar.	Therefore,
if	H	 is	 a	 graph	 that	 contains	 a	 subdivision	 of	K5	 or	 a	 subdivision	 of	K3,3	 as	 a
subgraph,	 then	H	 is	 nonplanar.	 Kuratowski’s	 amazing	 theorem	 states	 that	 the
converse	 of	 this	 statement	 is	 true	 as	 well.	 Proving	Kuratowski’s	 theorem	 is	 a
complex	task	and,	consequently,	no	proof	of	it	is	presented	here.

Theorem	9.7	(Kuratowski’s	Theorem)	A	graph	G	is	planar	if	and	only	if	G
does	not	contain	a	subdivision	of	K5	or	K3,3	as	a	subgraph.

Let’s	summarize	what	we’ve	learned	at	this	point.	Suppose	that	we	are	given
a	graph	G	 of	 order	n	 ≥	 3	 and	 size	m	 and	we	wish	 to	 determine	whether	G	 is
planar.	To	show	 that	G	 is	 planar,	 certainly	one	option	 is	 to	draw	G	 as	 a	 plane
graph.	 One	 way	 to	 verify	 that	 G	 is	 nonplanar	 is	 to	 show	 that	m	 >	 3n	 −	 6.
However,	if	m	≤	3n	−	6,	it	may	still	be	the	case	that	G	 is	nonplanar.	A	surefire
way	to	verify	that	G	is	nonplanar	is	to	show	that	a	subdivision	of	K5	or	K3,3	is	a



subgraph	of	G.	To	show	that	G	contains	a	subdivision	of	K5	as	a	subgraph,	we
need	 to	 find	 a	 subgraph	H	 containing	 five	 vertices	 of	 degree	 4,	 every	 two	 of
which	are	connected	by	a	path,	all	of	whose	interior	vertices	have	degree	2	in	the
subgraph	H	(see	Figure	9.11(a)).	To	show	that	G	contains	a	subdivision	of	K3,3
as	a	subgraph,	we	need	to	find	a	subgraph	F	containing	six	vertices	of	degree	3,
partitioned	into	two	sets	V1	and	V2	of	three	vertices	each,	such	that	every	vertex
in	V1	is	connected	to	every	vertex	in	V2	by	a	path,	all	of	whose	interior	vertices
have	degree	2	in	the	subgraph	F	(see	Figure	9.11(b)).	What	this	also	says	is	that
if	G	is	a	graph	that	contains	(1)	at	most	four	vertices	of	degree	4	or	more	and	(2)
at	most	five	vertices	of	degree	3	or	more,	then	G	must	be	planar.

Figure	9.11:	Subdivisions	of	K5	and	K3,3

We	now	present	an	application	of	Theorem	9.7.

Example	9.8	Determine	whether	the	graph	G	of	Figure	9.12	is	planar.

Figure	9.12:	The	graph	G	in	Example	9.8

Solution.	Certainly	as	drawn,	G	 is	not	a	plane	graph.	Of	course,	 this	neither
proves	nor	disproves	that	G	is	nonplanar	(although	one	may	be	suspicious	that
this	is	the	case).	The	graph	G	has	order	n	=	10	and	size	m	=	17.	Since	m	=	17
≤	3n	−	6	=	24,	we	cannot	use	Theorem	9.2	to	show	that	G	is	nonplanar.	On	the
other	hand,	 just	because	m	≤	3n	−	6,	 this	 certainly	does	not	 imply	 that	G	 is
planar	either.



Next,	let’s	see	if	we	can	find	a	subgraph	of	G	that	is	either	a	subdivision	of	K5
or	a	subdivision	of	K3,3.	Actually,	G	resembles	K5	as	it	is	drawn.	However,	only
four	 vertices	 of	G	 have	 degree	 4	 or	 more.	 Therefore,	 it	 is	 impossible	 that	G
contains	 a	 subdivision	 of	K5	 as	 a	 subgraph.	 On	 the	 other	 hand,	 the	 graph	 F
shown	 in	Figure	 9.13	 is	 a	 subgraph	 of	G.	 Since	F	 is	 a	 subdivision	 of	K3,3,	 it
follows	by	Kuratowski’s	theorem	that	G	is	indeed	nonplanar.

We	will	see	another	characterization	of	planar	graphs	(Theorem	9.15),	due	to
Klaus	Wagner,	in	Section	9.3.

Figure	9.13:	A	subdivision	of	K3,3	that	is	a	subgraph	of	the	graph	G	of	Figure
9.12

Exercises	for	Section	9.1

9.1	Show	 that	each	of	 the	graphs	 in	Figure	9.14	 is	planar	by	drawing	 it	as	a
plane	graph.	Verify	that	the	Euler	Identity	holds	for	each	graph.

Figure	9.14:	Graphs	for	Exercise	9.1

9.2	 A	 connected	 k-regular	 graph	 of	 order	 12	 is	 embedded	 in	 the	 plane,
resulting	in	eight	regions.	What	is	k?

9.3	(a)	The	vertices	of	a	certain	graph	G	have	degrees	3,	4,	4,	4,	5,	6,	6.	Prove
that	G	is	nonplanar.



(b)	The	vertices	of	a	certain	graph	G	have	degrees	4,	4,	4,	5,	5,	5,	6,	6,	6,
7,	7,	7.	Prove	that	G	is	nonplanar.

9.4	(a)	Find	all	integers	n	such	that	Kn	is	planar.

(b)	Find	all	pairs	r,	s	of	integers	for	which	Kr,	s	is	planar.

9.5	Show	that	there	exists

(a)	a	4-regular	planar	graph	and	a	4-regular	nonplanar	graph.
(b)	a	5-regular	planar	graph	and	a	5-regular	nonplanar	graph.
(c)	no	r-regular	planar	graph	for	r	≥	6.

9.6	Prove	or	disprove	the	following.

(a)	Every	subgraph	of	a	planar	graph	is	planar.
(b)	Every	subgraph	of	a	nonplanar	graph	is	nonplanar.
(c)	 If	 G	 is	 a	 nonplanar	 graph,	 then	 G	 contains	 a	 proper	 nonplanar

subgraph.
(d)	If	G	does	not	contain	K5	or	K3,3	as	a	subgraph,	then	G	is	planar.

(e)	If	G	is	a	graph	of	order	n	and	size	m	with	m	≤	3n	−	6,	then	G	is	planar.
(f)	If	G	is	a	graph	with	one	or	more	triangles	and	contains	no	subdivision

of	K5	as	a	subgraph,	then	G	is	planar.

9.7	Give	an	example	of	each	of	the	following	or	explain	why	no	such	example
exists.

(a)	a	planar	graph	of	order	4.
(b)	a	nonplanar	graph	of	order	4.
(c)	 a	 nonplanar	 graph	 of	 order	 6	 that	 contains	 neither	K5	 nor	K3,3	 as	 a

subgraph.
(d)	a	plane	graph	having	5	vertices,	10	edges	and	7	regions.
(e)	a	planar	graph	of	order	n	≥	3	and	size	m	with	m	=	3n	−	6.
(f)	a	nonplanar	graph	of	order	n	≥	3	and	size	m	with	m	=	3n	−	6.

9.8	Determine,	with	explanation,	whether	the	graph	K4	×	K2	is	planar.

9.9	Determine,	with	explanation,	whether	the	graph	of	Figure	9.15	is	planar.



Figure	9.15:	The	graph	in	Exercise	9.9

9.10	Determine,	with	explanation,	whether	the	graph	of	Figure	9.16	is	planar.

Figure	9.16:	The	graph	in	Exercise	9.10

9.11	Determine,	with	explanation,	whether	the	graph	G	of	Figure	9.17	is	planar.

9.12	Determine,	with	explanation,	whether	the	graph	G	of	Figure	9.18	is	planar.
(See	the	graph	G7	of	Figure	9.3(c).)

Figure	9.17:	The	graph	in	Exercise	9.11



Figure	9.18:	The	graph	in	Exercise	9.12

9.13	(a)	Prove	that	if	G	 is	a	connected	planar	graph	of	order	n	≥	3	and	size	m
without	triangles,	then	m	≤	2n	−	4.

(b)	Use	(a)	to	show	that	K3,3	is	nonplanar.

(c)	Prove	or	disprove:	If	G	is	a	planar	bipartite	graph,	then	G	has	a	vertex
of	degree	3	or	less.

9.14	Let	G	be	a	connected	plane	graph	of	order	n	≥	5	and	size	m.

(a)	Prove	that	if	the	length	of	a	smallest	cycle	in	G	is	5,	then	 .
(b)	Use	(a)	to	show	that	the	Petersen	graph	is	nonplanar.
(c)	 Use	 Kuratowski’s	 theorem	 to	 show	 that	 the	 Petersen	 graph	 is

nonplanar.
(d)	Prove	or	disprove:	If	n	<	20	and	the	length	of	a	smallest	cycle	in	G	is

5,	then	G	has	a	vertex	of	degree	2	or	less.

9.15	Prove	that	 if	G	 is	a	planar	graph	of	order	n	≤	11,	 then	G	has	a	vertex	of
degree	4	or	less.

9.16	Do	 there	 exist	 two	 non-isomorphic	maximal	 planar	 graphs	 of	 the	 same
order?

9.17	 It	 is	not	difficult	 to	 show	 that	 	 is	planar	 if	3	≤	n	≤	5	 and	 that	 	 is
nonplanar	if	n	≥	9.	This	leaves	only	 	and	 	in	question.	For	each
of	these	three	graphs,	determine,	with	justification,	whether	it	is	planar	or
nonplanar.

9.18	Prove	that	 there	exists	no	maximal	planar	graph	G	of	order	n	≥	3	whose
complement	 	is	also	maximal	planar.

9.19	 If	 a	maximal	 planar	 graph	 of	 order	 100	 is	 embedded	 in	 the	 plane,	 how
many	regions	result?

9.20	 Determine	 all	 maximal	 planar	 graphs,	 if	 any,	 where	 one-third	 of	 their
vertices	have	degree	3,	one-third	have	degree	4	and	one-third	have	degree
5.

9.21	Prove	that	if	G	is	a	maximal	planar	graph	of	order	at	least	4,	then	 (G)	≥	3.

9.22	Prove	that	there	exists	only	one	4-regular	maximal	planar	graph.



9.2	Embedding	Graphs	on	Surfaces

If	G	is	a	planar	graph,	then	we	know	that	G	can	be	drawn	in	the	plane	in	such	a
way	that	no	two	edges	cross.	Such	a	“drawing”	is	also	called	an	embedding	of	G
in	the	plane.	In	addition,	we	say	that	G	can	be	embedded	 in	 the	plane.	On	the
other	hand,	if	G	is	nonplanar,	then	G	cannot	be	embedded	in	the	plane,	that	is,	it
is	impossible	to	draw	G	in	the	plane	without	some	of	its	edges	crossing.

Perhaps	it	is	clear	that	if	a	graph	G	is	planar,	then	G	can	be	embedded	on	the
sphere	 as	well	 as	 the	plane.	Furthermore,	 if	 a	 graph	G	 can	 be	 embedded	on	 a
sphere,	 then	 it	 must	 be	 planar.	 Although	 these	 observations	 may	 not	 seem
particularly	 enlightening,	 this	 brings	 up	 the	 question	 of	 considering	 surfaces
other	 than	 the	 sphere	 on	 which	 a	 graph	 might	 be	 embedded.	 But	 what	 other
surfaces	are	 there?	A	common	surface	 is	 the	 torus,	a	doughnut-shaped	surface
(see	 Figure	 9.19(a)).	 In	 Figure	 9.19(b),	 we	 see	 that	 the	 graph	 K4	 can	 be
embedded	on	the	torus.	In	fact,	there	is	more	than	one	way	to	embed	K4	on	the
torus	(see	Figure	9.19(c)).

Figure	9.19:	Embedding	K4	on	the	torus

Not	only	can	K4	be	embedded	on	the	torus,	so	can	K5.	Figure	9.20(a)	shows
an	embedding	of	K5	on	the	torus;	Figure	9.20(b)	shows	an	embedding	of	K3,3	on
the	torus.

Embedding	graphs	on	 a	 torus,	 as	we	did	 in	Figure	9.20,	 can	 be	 difficult	 to
visualize.	However,	there	are	alternative	ways	to	represent	these	embeddings	as
we	will	now	explain.	How	 is	 a	 torus	 constructed?	One	way	 is	 to	begin	with	 a
rectangular	piece	of	material	(the	more	flexible	the	better)	as	in	Figure	9.21	and



Figure	9.20:	Embedding	K5	and	K3,3	on	the	torus

first	make	a	 cylinder	 from	 it	by	 identifying	 sides	a	and	c,	which	 are	 the	 same
after	 the	 identification	 occurs.	 The	 sides	 b	 and	 d	 then	 become	 circles.	 These
circles	are	then	identified	to	produce	a	torus.

Figure	9.21:	Constructing	a	torus

Now	that	we	have	seen	how	a	torus	can	be	constructed,	we	see	that	the	torus
can	be	represented	by	a	rectangle	whose	opposite	sides	have	been	identified.	In
Figure	9.22(a),	 the	rectangle	represents	a	 torus.	So	 the	points	 labeled	A	are	 the
same	point	on	the	torus,	the	points	labeled	B	are	the	same	point	on	the	torus	and
the	points	labeled	C	are	the	same	point.	Embeddings	of	K5	and	K3,3	on	the	torus
are	shown	in	Figures	9.22(b)	and	9.22(c),	respectively.



Figure	9.22:	Embedding	K5	and	K3,3	on	the	torus

There	is	another	way	to	represent	a	torus	and	embedding	a	graph	on	a	torus.
We	begin	with	a	sphere	and	drill	 two	holes	 in	 its	surface,	as	 in	Figure	9.23(a).
Then	we	attach	a	handle	on	the	sphere,	where	the	ends	of	handle	are	placed	over
the	 two	holes	 as	 in	Figure	9.23(b).	 The	 surface	 that	we	 have	 just	 constructed,
namely	 a	 sphere	 with	 one	 handle,	 is,	 in	 actuality,	 a	 torus,	 although	 it	 looks
different	 than	 the	 previous	 way	 we	 constructed	 a	 torus.	 In	 Figure	 9.23(c),	 an
embedding	of	K5	on	the	torus	is	shown,	where	one	of	the	edges	of	K5	passes	over
the	handle	of	the	torus.

Figure	9.23:	Embedding	K5	on	the	torus

Just	as	a	torus	is	a	sphere	with	a	handle,	we	can	consider	a	sphere	on	which	a
number	of	handles	have	been	attached.	We	denote	a	sphere	with	k	handles	by	Sk.
The	surface	Sk	is	also	called	a	surface	of	genus	k.	Thus,	S1	is	the	torus,	while	S0
is	the	sphere	itself.

We	 are	 now	prepared	 to	make	 an	 important	 observation.	Let	G	 be	 a	 graph
(any	graph)	and	draw	G	 on	 the	 sphere.	Of	 course,	 if	G	 is	 planar,	 then	we	 can
draw	G	on	the	sphere	in	such	a	way	that	no	two	of	its	edges	cross;	while	if	G	is
nonplanar,	then	we	cannot	do	this.	On	the	other	hand,	if	G	is	nonplanar,	then	we
can	 draw	 G	 on	 the	 sphere	 so	 that	 only	 two	 edges	 cross	 at	 any	 point	 of
intersection.	Whenever	 such	 a	 crossing	 of	 two	 edges	 occurs,	 we	 can	 attach	 a



handle	at	an	appropriate	position	and	pass	one	of	the	two	edges	over	the	handle
so	that	these	two	edges	no	longer	cross	in	the	surface	we	have	just	constructed.
What	we	have	just	observed	then	is	that	every	graph	can	be	embedded	on	some
surface.	 The	 smallest	 nonnegative	 integer	 k	 such	 that	 a	 graph	 G	 can	 be
embedded	on	Sk	is	called	the	genus	of	G	and	is	denoted	by	γ(G).	Therefore,	γ(G)
=	0	if	and	only	if	G	is	planar;	while	γ(G)	=	1	if	and	only	if	G	is	nonplanar	but	G
can	be	embedded	on	the	torus.	In	particular,	γ(K5)	=	1	and	γ(K3,3)	=	1.

Throughout	 this	 chapter,	 we	 have	 only	 discussed	 connected	 graphs.	 Of
course,	 disconnected	 graphs	 are	 either	 planar	 or	 nonplanar,	 just	 as	 connected
graphs	are.	In	fact,	perhaps	it	is	clear	that	a	disconnected	graph	G	is	planar	if	and
only	if	every	component	of	G	is	planar.	For	this	reason,	as	far	as	studying	planar
graphs	 is	 concerned,	 we	 need	 only	 be	 concerned	 with	 studying	 connected
graphs.	 However,	 as	we	 are	 about	 to	 see,	 this	 is	 not	 the	 only	 reason	why	we
restrict	ourselves	to	connected	graphs	when	studying	planar	graphs.	Consider	the
disconnected	plane	graph	G	=	2K3	shown	in	Figure	9.24.	Certainly	G	has	order	n
=	6,	size	m	=	6	and	r	=	3,	whose	 three	 regions	are	denoted	by	R1,	R2	 and	R3.
Therefore,	in	this	case,	n	−	m	+	r	=	6	−	6	+	3	=	3	and	so	the	Euler	Identity	does
not	 hold.	 This	 may	 not	 be	 surprising	 since,	 after	 all,	 in	 the	 hypothesis	 of
Theorem	9.1,	the	plane	graph	G	is	required	to	be	connected.

Figure	9.24:	A	disconnected	plane	graph

Let’s	return	to	the	two	embeddings	of	K4	on	the	torus	in	Figures	9.19(b)	and
9.19(c).	 These	 are	 shown	 again	 in	 Figures	 9.25(a)	 and	 9.25(b),	 respectively,
where,	 in	addition,	each	embedding	is	given	when	the	torus	is	represented	as	a
rectangle	with	opposite	sides	identified.	We	also	add	a	third	embedding	of	K4	on
the	 torus	 in	Figure	9.25(c).	 Just	as	 regions	of	 the	plane	 (or	 sphere)	are	created
when	a	planar	graph	is	embedded	in	the	plane	(or	sphere),	so	too	are	regions	of
the	torus	(or	any	other	surface)	created	when	a	graph	is	embedded	on	the	torus
(or	 other	 surface).	 Since	 these	 surfaces	 are	 more	 complex,	 it	 may	 be	 more
difficult	to	determine	what	the	regions	are	in	this	case.	A	fact	that	may	be	helpful
is	the	following:	Let	G	be	a	graph	that	is	embedded	on	some	surface.	If	a	point	A
lies	in	region	R	and	a	point	A′	lies	in	region	R′	and	A	can	be	connected	to	A′	by	a
curve	on	the	surface	that	never	intersects	a	vertex	or	an	edge	of	G,	then	R	and	R′



are	the	same	region.	If	no	such	curve	connecting	A	and	A′	exists,	then	R	and	R′
are	 different	 regions.	 Therefore,	 the	 embedding	 of	K4	 on	 the	 torus	 shown	 in
Figure	9.25(a)	produces	four	regions	(denoted	by	R1,	R2,	R3,	R4).	The	embedding
of	K4	on	the	torus	shown	in	Figure	9.25(b)	produces	 three	regions	(denoted	by
R1,	R2,	R3),	 while	 the	 embedding	 of	K4	 in	 Figure	 9.25(c)	 produces	 only	 two
regions	(denoted	by	R1,	R2).	So	the	number	of	regions	is	r	=	4	for	the	embedding
in	Figure	9.25(a),	r	=	3	 for	 the	embedding	 in	Figure	9.25(b)	and	r	 =	 2	 for	 the
embedding	shown	in	Figure	9.25(c).	That	 is,	 even	 though	K4	 is	 connected,	we
don’t	always	obtain	the	same	value	of	n	−	m	+	r	when	the	embedding	takes	place
on	the	torus.	Although	this	may	seem	disappointing,	there	is	a	property	that	the
embedding	 of	 K4	 on	 the	 torus	 has	 in	 Figure	 9.25(c)	 that	 the	 other	 two
embeddings	 in	 Figure	 9.25	 do	 not	 have	 and,	 as	 it	 turns	 out,	 this	 is	 a	 critical
difference.

Let	G	be	a	graph	that	is	embedded	on	some	surface	Sk,	where	k	≥	0.	Then,	of
course,	regions	on	Sk	are	produced.	A	region	is	called	a	2-cell	if	any	closed	curve
that	 is	 drawn	 in	 that	 region	 can	be	 continuously	 contracted	 (or	 shrunk)	 in	 that
region	 to	 a	 single	 point.	 An	 embedding,	 every	 region	 of	 which	 is	 a	 2-cell,	 is
called	a	2-cell	embedding.	Let’s	return	to	the	embedding	of	G	=	2K3	in	the	plane
(or	on	the	sphere)	that	we	considered	in	Figure	9.24.	In	that	embedding,	the	two
regions	 each	 of	whose	 boundary	 is	 a	 triangle	 are	 2-cells,	while	 the	 remaining
region	 is	 not	 a	 2-cell.	This	 embedding	 is	 shown	on	 the	 sphere	 in	Figure	 9.26.
Although	 the	 closed	 curve	 C	 in	 the	 exterior	 region	 can	 be	 continuously
contracted	to	a	single	point	in	that	region,	the	closed	curve	C′	cannot.

In	 general,	 no	 embedding	 of	 a	 disconnected	 graph	 in	 the	 plane	 is	 a	 2-cell
embedding,	while	every	embedding	of	a	connected	graph	in	the	plane	is	a	2-cell



Figure	9.25:	Embedding	K4	on	the	torus

Figure	9.26:	An	embedding	of	2K3	on	the	sphere	that	is	not	a	2-cell	embedding

embedding.	However,	if	G	is	a	connected	graph	that	is	embedded	on	a	surface	of
positive	genus,	then	the	embedding	may	or	may	not	be	a	2-cell	embedding.	Let’s
recall	 the	embeddings	of	K4	on	 the	 torus	given	 in	Figures	9.25(a)	 and	9.25(b).
Neither	of	these	embeddings	is	a	2-cell	embedding.	Indeed,	the	curves	C	and	C′
shown	 in	 Figures	 9.27(a)	 and	 9.27(b),	 respectively,	 cannot	 be	 continuously
contracted	in	that	region	to	a	single	point.

The	 embedding	 of	 K4	 on	 the	 torus	 given	 in	 Figure	 9.25(c)	 is	 a	 2-cell
embedding,	however.	In	that	embedding,	there	are	two	regions	and	so	n	−	m	−	r
=	4	−	6	+	2	=	0.	As	we	are	about	to	see,	whenever	a	connected	graph	of	order	n
and	size	m	is	2-cell	embedded	on	a	torus	resulting	in	r	regions,	then	n	−	m	−	r	=
0.	We	present	an	even	more	general	result.

Theorem	9.9	Let	G	be	a	connected	graph	that	is	2-cell	embedded	on	a	surface
of	genus	k	≥	0.	If	G	has	order	n,	size	m	and	r	regions,	then

Proof.	We	proceed	by	induction	on	k.	Let	G	be	a	connected	graph	of	order	n



Figure	9.27:	Embeddings	of	K4	on	the	torus	that	are	not	2-cell	embeddings

and	size	m	 that	 is	2-cell	embedded	on	a	surface	of	genus	0.	Then	G	 is	a	plane
graph.	Suppose	that	G	has	r	regions,	each	of	which	is	necessarily	a	2-cell.	Then
n	−	m	+	r	=	2	=	2	−	2	·	0	by	the	Euler	Identity.	Hence	the	theorem	holds	when	k
=	0.

Assume,	 for	every	connected	graph	G′	of	order	n′	 and	 size	m′	 that	 is	2-cell
embedded	on	a	surface	Sk,	where	k	≥	0,	resulting	in	r′	regions,	that	n′	−	m′	+	r′	=
2	−	2k.	Let	G	be	a	connected	graph	of	order	n	and	size	m	that	is	2-cell	embedded
on	Sk+1,	resulting	in	r	regions.

Let	H	be	one	of	the	k	+1	handles	of	Sk+1.	We	may	assume	that	no	vertices	of
G	lie	on	H.	However,	since	the	embedding	of	G	on	Sk+1	 is	a	2-cell	embedding,
there	 are	 edges	 of	 G	 on	 H.	 Draw	 a	 closed	 curve	 C	 around	 H,	 which	 must
intersect	some	edges	of	G.	Suppose	that	there	are	t	≥	1	points	of	intersection	of	C
and	edges	on	H.	Let	the	points	of	intersection	be	vertices,	where	then	each	of	the
t	 edges	 becomes	 two	 edges.	 Furthermore,	 the	 segments	 of	C	 between	vertices
become	 edges.	 We	 add	 two	 vertices	 of	 degree	 2	 along	 C	 to	 produce	 two
additional	 edges.	 (This	 guarantees	 that	 there	 are	 no	 parallel	 edges	 and	 that	 a
graph	results.)	Denote	the	resulting	graph	by	G1,	which	has	order	n1,	size	m1	and
r1	regions.	Observe	that	n1	=	n	+	t	+	2	and	m1	=	m	+	2t	+	2.	Since	each	portion	of
C	 that	became	an	edge	of	G1	 is	 in	a	 region	of	G,	 the	addition	of	such	an	edge
divides	that	region	into	two	regions,	each	of	which	is	a	2-cell.	Since	there	are	t
such	edges,	r1	=	r	+	t.



Figure	9.28:	A	step	in	the	proof	of	Theorem	9.9

Next	 we	 cut	 the	 handle	 H	 along	 C	 and	 “patch”	 the	 two	 resulting	 holes,
producing	 two	duplicate	 copies	 of	 the	 vertices	 and	 edges	 along	C.	 Denote	 the
resulting	graph	by	G2,	which	is	now	2-cell	embedded	on	Sk.	Let	G2	have	order
n2,	size	m2	and	r2	regions,	all	of	which	are	2-cells.	Then	n2	=	n1	+	t	+	2,	m2	=	m1
+	t	+	2	and	r2	=	r1	+	2.	Therefore,

By	the	induction	hypothesis,	n2	−	m2	+	r2	=	2	−	2k	and	so

Therefore,	n	−	m	+	r	+	2	=	2	−	2k	and	n	−	m	+	r	=	2	−	2(k	+	1).

It	 turns	out	 that	 if	G	 is	a	connected	graph	 that	 is	embedded	on	a	surface	of
genus	γ(G),	 then	 this	 embedding	 is	 necessarily	 a	 2-cell	 embedding.	Hence	we
have	the	following	corollary.

Corollary	 9.10	 If	 G	 is	 a	 connected	 graph	 of	 order	 n	 and	 size	 m	 that	 is
embedded	on	a	surface	of	genus	γ(G),	resulting	in	r	regions,	then

We	now	have	a	corollary	of	Corollary	9.10.

Corollary	9.11	If	G	is	a	connected	graph	of	order	n	≥	3	and	size	m,	then

Proof.	 First,	 let	G	 be	 embedded	 on	 a	 surface	 of	 genus	 γ(G)	 resulting	 in	 r
regions.	By	Corollary	9.10,	n	−	m	+	r	=	2	−	2γ(G).	Let	R1,	R2,	…,	Rr	be	 the
regions	of	G	and	let	mi	be	the	number	of	edges	on	the	boundary	of	Ri	(1	≤	i	≤
r).	So	mi	≥	3.	Since	every	edge	 is	on	 the	boundary	of	one	or	 two	regions,	 it
follows	that



and	so	3r	≤	2m.	Therefore,

Solving	(9.2)	for	γ(G),	we	have

as	desired.

If	the	graph	G	in	the	statement	of	Corollary	9.11	is	planar,	then	γ(G)	=	0	and
the	conclusion	of	this	corollary	states	that	 	or,	equivalently,	m	≤
3n	−	6,	which	returns	us	to	Theorem	9.2.

The	graph	K5	has	order	n	=	5	and	size	m	=	10.	By	Corollary	9.11,	γ(K5)	≥	1/6
and	so	once	again	we	see	that	K5	is	nonplanar.	Of	course,	we	have	already	seen
that	γ(K5)	=	1.	By	Corollary	9.11,	γ(K6)	≥	1/2	and	γ(K7)	≥	1.	 In	 fact,	 it	can	be
shown	 that	 γ(K6)	=	 γ(K7)	 =	 1.	 Indeed,	 the	 following	 formula	was	 obtained	 by
Gerhard	Ringel	and	J.	W.	T.	 (Ted)	Youngs	(1910–1970).	 (This	 formula	will	be
revisited	in	Chapter	10.)

Theorem	9.12	For	n	≥	3,

Exercises	for	Section	9.2

9.23	 Embed	 each	 of	 the	 following	 graphs	 in	 Figure	 9.29	 on	 the	 torus
(represented	as	a	rectangle	with	opposite	sides	identified).

Figure	9.29:	The	graphs	in	Exercise	9.23



9.24	Determine,	with	explanation,	the	genus	of	K6.

9.25	Determine,	with	explanation,	the	genus	of	K4,	4.

9.26	Determine,	with	explanation,	the	genus	of	the	Petersen	graph.

9.27	Prove	or	disprove:

(a)	There	exists	a	planar	graph	that	cannot	be	embedded	on	the	torus.
(b)	There	exists	a	nonplanar	graph	that	cannot	be	embedded	on	the	torus.
(c)	If	G	is	a	graph	of	order	n	and	size	m,	then	G	can	be	embedded	on	a

sphere	with	m	handles.
(d)	If	a	graph	G	can	be	embedded	on	the	torus,	then	γ(G)	=	1.

9.28	By	Theorem	9.12,	γ(K7)	=	1.

(a)	Show	that	the	boundary	of	every	region	in	an	embedding	of	K7	on	the
torus	is	a	triangle.

(b)	Let	there	be	an	embedding	of	K7	on	the	torus	and	let	R1	and	R2	be	two
neighboring	 regions.	Let	G	 be	 the	 graph	 obtained	 by	 adding	 a	 new
vertex	y	in	R1	and	joining	y	to	the	vertices	on	the	boundaries	of	both
R1	and	R2.	Prove	that	γ(G)	=	2.

9.3	Excursion:	Graph	Minors

As	 we	 have	 seen,	 Kuratowski’s	 theorem	 (Theorem	 9.7)	 provides	 a
characterization	of	planar	graphs:	A	graph	G	is	planar	if	and	only	if	G	does	not
contain	 a	 subdivision	 of	 K5	 or	 K3,3	 as	 a	 subgraph.	 This	 is	 not	 the	 only
characterization	of	planar	graphs,	however.

For	a	graph	G	and	an	edge	e	=	uv	of	G,	a	graph	G′	is	said	to	be	obtained	from
G	 by	 contracting	 the	 edge	 e	 (or	 identifying	 the	 vertices	 u	 and	 v)	 if	 G′	 is
(isomorphic	 to)	 the	 graph	 obtained	 by	 joining	 u	 in	 the	 graph	 G	 −	 v	 to	 any
neighbor	of	v	not	already	adjacent	to	u.	We	also	say	that	G′	is	obtained	from	G
by	an	edge	contraction.	(By	symmetry,	G′	is	also	the	graph	obtained	by	joining
v	in	G	−	u	to	any	neighbor	of	u	in	G	not	already	adjacent	to	v.)	This	is	illustrated
for	the	graph	G	of	Figure	9.30	and	the	edge	e	=	uv.	The	graph	G″	is	obtained	by
contracting	the	edge	xy	in	G′



Figure	9.30:	Contracting	an	edge

If	 we	 were	 to	 begin	 with	 a	 graph	G,	 contract	 an	 edge	 in	 the	 graph	G	 to
produce	the	graph	G′,	contract	an	edge	in	G′	to	produce	the	graph	G″	and	so	on,
until	finally	obtaining	a	graph	H,	 then	it	is	possible	to	describe	such	a	graph	H
more	simply.	Let	G	be	a	graph	where	{V1,	V2,	…,	Vk}	is	a	partition	of	V(G)	such
that	G[Vi]	 is	connected	for	every	integer	 i	(1	≤	i	≤	k).	Let	H	be	 the	graph	with
vertex	set	{V1,	V2,	…,	Vk}	where	V	is	adjacent	to	Vj	(i	≠	j)	if	some	vertex	in	Vi	is
adjacent	to	some	vertex	in	Vj	in	G.	For	example,	in	the	graph	G	of	Figure	9.30,	if
we	 let	V1	 =	 {x,	 y},	V2	 =	 {z},	V3	 =	 {u,	 v},	V4	 =	 {t}	 and	V5	 =	 {w},	 then	 the
resulting	graph	H	in	Figure	9.31	is	isomorphic	to	the	graph	G″	of	Figure	9.30.

Figure	9.31:	Edge	contractions

A	graph	H	is	called	a	minor	of	a	graph	G	if	(a	graph	isomorphic	to)	H	can	be
obtained	from	G	by	a	succession	of	edge	contractions,	edge	deletions	or	vertex
deletions	(in	any	order).	Consequently,	the	graph	H	of	Figure	9.31	is	a	minor	of
the	graph	G	of	that	figure.	Let’s	consider	another	example,	namely	the	graph	G1
of	Figure	9.32,	where	we	let	V1	=	{u1},	V2	=	{u2},	V3	=	{u3},	V4	=	{v1,	w1,	x1},
V5	 =	 {w2,	 x2},	V6	 =	 {v3,	w3,	 x3}	 and	 V7	 =	 {x4}.	 Then	 the	 graph	H1	 can	 be
obtained	from	G1	by	successive	edge	contractions.	The	graph	H1	is	consequently



a	minor	of	G1.	By	deleting	the	edge	V1V2	and	the	vertex	V7,	we	see	that	K3,3	 is
also	a	minor	of	G1.

Figure	9.32:	Minors	of	graphs

Minors	 of	 graphs	 have	 some	 interesting	 implications.	 As	 the	 example	 in
Figure	9.32	may	suggest,	we	have	the	following.

Theorem	9.13	If	a	graph	G	is	a	subdivision	of	a	graph	H,	then	H	is	a	minor	of
G.

Also,	if	G	is	a	graph	that	is	embeddable	on	a	surface	Sk,	where	k	≥	0,	then	any
graph	obtained	from	G	by	an	edge	contraction,	edge	deletion	or	vertex	deletion
can	also	be	embedded	on	Sk.	This	leads	to	the	following	observation.

Theorem	9.14	If	a	graph	H	is	a	minor	of	a	graph	G,	then	γ(H)	≤	γ(G).

With	 the	aid	of	 these	 two	observations,	 a	 characterization	of	planar	graphs,
due	to	Klaus	Wagner	(1910-2000),	can	now	be	stated.	In	1937,	only	a	year	after
obtaining	 his	 Ph.D.	 from	 Universität	 zu	 Köln	 (the	 University	 of	 Cologne),
Wagner	proved	the	following.

Theorem	 9.15	 (Wagner′s	 Theorem)	 A	 graph	 G	 is	 planar	 if	 and	 only	 if
neither	K5	nor	K3,3	is	a	minor	of	G.

In	 Example	 9.8	 we	 showed	 that	 the	 graph	 of	 Figure	 9.12	 (redrawn	 as	 the
graph	G	of	Figure	9.33)	is	nonplanar.	Despite	the	fact	that	the	appearance	of	G
might	 remind	one	of	K5,	 this	 graph	 does	 not	 contain	 a	 subdivision	 of	K5	 as	 a



subgraph.	In	fact,	we	verified	that	G	is	nonplanar	by	showing	that	G	contains	a
subdivision	of	K3,3	as	a	subgraph.	On	the	other	hand,	if	we	were	to	consider	the
parition	{V1,	V2,	V3,	V4,	V5}	of	V(G)	 for	which	V1	=	{u1,	v1,	w1,	x1,	y1},	V2	 =
{v2},	V3	=	{u2,	y2},	V4	=	{w2}	and	V5	=	{x2},	then	we	see	that	K5	is	a	minor	of	G
and	so	G	is	nonplanar	by	Wagner’s	theorem.

Figure	9.33:	The	graph	G	having	K5	as	a	minor

Undoubtedly,	 the	major	 theorem	concerning	minors	 is	one	obtained	by	Neil
Robertson	and	Paul	Seymour	in	1990.

Theorem	 9.16	 (The	 Graph	 Minor	 Theorem)	 For	 any	 infinite	 set	 S	 of
graphs,	there	exist	two	distinct	graphs	in	S	such	that	one	of	these	graphs	is	a
minor	of	the	other.

Paul	Seymour	received	his	doctoral	degree	from	Oxford	University	in	1975.
He	became	a	professor	at	Princeton	University	after	having	spent	several	years
working	at	Bellcore	(Bell	Communications	Research).	Neil	Robertson	received
his	 Ph.	 D.	 in	 1969	 from	 the	 University	 of	 Waterloo	 under	 the	 direction	 of
William	 Tutte	 and	 became	 a	 professor	 at	 Ohio	 State	 University.	 Much	 of
Robertson’s	motivation	comes	 from	furthering	 the	work	of	Tutte.	His	work	on
graph	minors	 is	 aimed	at	highlighting	 the	 structural	 features	of	graphs	 that	 are
obtained	by	excluding	a	fixed	graph	as	a	minor.	Robertson,	with	interests	in	the
fine	arts,	poetry	and	drama,	considered	 it	a	privilege	 to	work	 in	an	area	 that	 is
creativity	driven.

We	now	describe	a	 remarkable	consequence	of	Theorem	9.16.	Consider	 the
surface	Sk	of	genus	k	≥	0.	Certainly,	if	G	is	a	sufficiently	small	graph	(in	terms	of
order	 and/or	 size),	 then	G	 can	 be	 embedded	 on	 Sk.	 Hence	 if	we	 begin	with	 a



graph	 F	 that	 cannot	 be	 embedded	 on	 Sk	 and	 perform	 successive	 edge
contractions,	edge	deletions	and	vertex	deletions,	then	eventually	we	arrive	at	a
graph	F′	 that	also	cannot	be	embedded	on	Sk	but	such	that	any	additional	edge
contraction,	edge	deletion	or	vertex	deletion	of	F′	produces	a	graph	that	can	be
embedded	on	Sk.	We	say	that	such	a	graph	F′	is	minimally	nonembeddable	on
Sk.	Consequently,	every	minor	of	F′	that	is	distinct	from	F′	can	be	embedded	on
Sk.	In	particular,	the	graphs	K5	and	K3,3	are	minimally	nonembeddable	on	S0	(or
more	 simply,	 minimally	 nonplanar).	 Indeed,	 these	 are	 the	 only	 minimally
nonplanar	graphs.	This	leads	us	to	the	following	remarkable	consequence	of	the
Graph	Minor	Theorem	and	another	discovery	of	Robertson	and	Seymour.

Theorem	9.17	For	each	 integer	k	 ≥	 0,	 the	 set	 of	minimally	 nonembeddable
graphs	on	Sk	is	finite.

Proof.	By	Wagner’s	theorem,	the	statement	is	true	for	k	=	0.	Assume,	 to	 the
contrary,	that	there	exists	a	positive	integer	k	such	that	the	set	S	of	minimally
nonembeddable	 graphs	 on	 Sk	 is	 infinite.	 By	 the	 Graph	 Minor	 Theorem,	 S
contains	 two	 non-isomorphic	 graphs	G	 and	H	 such	 that	H	 is	 a	minor	 of	G.
However,	G	 is	minimally	nonembeddable	and	H	cannot	be	embedded	on	Sk.
This	is	a	contradiction.

Theorem	9.17	has	an	immediate	consequence.

Corollary	9.18	For	every	nonnegative	integer	k,	 there	exists	a	 finite	set	S	of
graphs	such	that	a	graph	G	is	embeddable	on	Sk	if	and	only	if	H	is	not	a	minor
of	G	for	every	graph	H	in	S.

Although	 the	 number	 of	 minimally	 nonembeddable	 graphs	 on	 the	 torus	 is
finite,	it	is	known	that	this	number	exceeds	800.

Exercises	for	Section	9.3

9.29	For	the	graphs	G	and	G′	in	Figure	9.34,	show	that	G′	is	a	minor	of	G.



Figure	9.34:	The	graph	G	in	Exercise	9.29

9.30	Show	that	the	graph	K5	is	a	minor	of	the	Petersen	graph,	thereby	showing
that	the	Petersen	graph	is	nonplanar.

9.31	Prove	that	every	nonplanar	graph	has	K5	or	K3,3	as	a	minor.

9.32	What	graph	results	from

(a)	a	single	edge	contraction	in	K5?

(b)	a	single	edge	contraction	in	K3,3?

(c)	two	edge	contractions	in	K3,3?

9.33	Theorem	9.13	states	that:	If	a	graph	G	is	a	subdivision	of	a	graph	H,	then
H	is	a	minor	of	G.	Show	that	its	converse	is	false.

9.4	Exploration:	Embedding	Graphs	in	Graphs

We	saw	in	Theorem	2.7	that	for	every	graph	G	and	every	integer	r	≥	Δ(G),	there
exists	an	r-regular	graph	H	containing	G	as	an	induced	subgraph.	We	say	that	G
is	embedded	as	an	induced	subgraph	in	H.	This	result	was	presented	by	Dénes
König	in	his	1936	book.	Let’s	recall	how	this	result	was	proved	when	r	=	Δ(G).

If	G	is	r-regular,	then	H	=	G	has	the	desired	properties.	Otherwise,	let	G′	be
another	copy	of	G	 and	 join	corresponding	vertices	 in	G	and	G′	whose	degrees
are	 less	 than	 r,	 producing	 the	 graph	G1.	 If	G1	 is	 r-regular,	 then	H	 =	G1	 has
desired	properties.	 If	G1	 is	not	r-regular,	 then	we	continue	 this	procedure	until
arriving	at	an	r-regular	graph	Gk,	where	k	=	Δ(G)	−	 (G).	This	is	illustrated	for
the	graph	G	of	Figure	9.35,	where	Δ(G)	=	3	and	 (G)	=	1.



Figure	9.35:	A	graph	H	containing	G	as	an	induced	subgraph

The	 construction	 presented	 by	 König	 to	 embed	 a	 graph	G	 with	 maximum
degree	r	as	an	induced	subgraph	in	an	r-regular	graph	H	doesn’t	produce	an	r-
regular	graph	of	smallest	order	in	general.	In	fact,	while	the	graph	H	of	Figure
9.35	has	order	16,	 the	minimum	order	of	a	3-regular	graph	containing	G	as	an
induced	subgraph	is	6.

In	1963	Paul	Erdös	and	Paul	J.	Kelly	developed	a	method	for	determining	the
minimum	order	of	an	r-regular	graph	H	in	which	a	given	G	with	r	=	Δ(G)	can	be
embedded	as	 an	 induced	 subgraph.	 In	order	 to	 state	 their	 theorem,	we	need	 to
present	a	few	definitions.

Let	G	be	a	graph	with	maximum	degree	r	whose	vertex	set	is	V(G)	=	{v1,	v2,
…,	vn}.	Let	di	denote	the	degree	of	vi	and	let	ei	=	r	−	di	denote	the	deficiency	of
vi.	 In	 addition,	 let	 e	 =	max{ei	 :	 1	 ≤	 i	 ≤	 n}	 be	 the	maximum	deficiency	 and	

	the	total	deficiency.	We	can	now	state	the	theorem	of	Erdös	and
Kelly.

Theorem	9.19	Let	G	be	a	graph	of	order	n,	where	r	=	Δ(G).	Then	k	+	n	is	the
minimum	order	of	an	r-regular	graph	H	in	which	G	can	be	embedded	as	an
induced	subgraph	where	k	is	the	least	integer	satisfying	(1)	kr	≥	s,	(2)	k2	−	(r	+
1)k	+	s	≥	0,	(3)	k	≥	e	and	(4)	(k	+	n)r	is	even.

Figure	9.36	shows	four	non-regular	graphs	Gi	(1	≤	i	≤	4)	and	graphs	Hi	that
are	Δ(Gi)-regular	graphs	of	smallest	order	containing	Gi	as	an	induced	subgraph.
The	 first	 three	 pairs	Gi,	Hi	 of	 graphs	 appear	 as	 illustrations	 in	 the	 article	 by
Erdös	and	Kelly.



Figure	9.36:	Four	Δ(Gi)-regular	graphs	Hi	(1	≤	i	≤	4)	of	minimum	order
containing	Gi	as	an	induced	subgraph

For	 each	 vertex	 v	 of	 each	 graph	Hi	 (1	 ≤	 i	 ≤	 4)	 of	 Figure	 9.36,	 there	 is	 an
induced	subgraph	of	Hi	containing	v	that	is	isomorphic	to	Gi.	Of	course,	if	v	is	a
vertex	of	the	original	graph	Gi,	then	this	is	obvious.	However,	this	is	also	true	for
each	vertex	added	to	Gi	to	produce	Hi.	Indeed,	it	is	often	the	case	that	for	every
vertex	v	of	a	Δ(G)-regular	graph	H	of	minimum	order	containing	a	given	graph
G	as	an	induced	subgraph,	there	is	an	induced	subgraph	of	H	containing	v	that	is
isomorphic	to	G.	This	does	not	always	happen,	however.

Figure	9.37	shows	a	graph	G	of	order	10	obtained	from	the	complete	bipartite
graph	K3,3	by	subdividing	 two	of	 its	edges.	Figure	9.37	also	shows	a	3-regular
graph	H	of	minimum	order	12	containing	G	as	an	induced	subgraph.	However,
there	is	no	induced	subgraph	of	H	containing	u	that	is	isomorphic	to	G.

Figure	9.37:	A	graph	H	having	no	induced	subgraph	containing	u	that	is



isomorphic	to	G

These	 observations	 lead	 to	 the	 following	 concept.	 A	 graph	 G	 is	 said	 to	 be
uniformly	embedded	in	a	graph	H	if	for	every	vertex	v	of	H,	there	is	an	induced
subgraph	 of	H	 containing	 v	 that	 is	 isomorphic	 to	 G.	 Therefore,	 each	 of	 the
graphs	Gi	(1	≤	i	≤	4)	of	Figure	9.36	is	uniformly	embedded	in	the	graph	Hi.

For	a	graph	G	with	maximum	degree	r,	the	r-regular	graph	H	constructed	by
König	has	the	property	that	G	is	uniformly	embedded	in	H.	However,	the	graph
G	of	Figure	9.37	is	not	uniformly	embedded	in	H.

Embeddings	 can	 be	 even	 more	 demanding.	 A	 graph	G	 is	 homogeneously
embedded	in	a	graph	H	if	for	each	vertex	x	of	G	and	each	vertex	y	of	H,	 there
exists	an	embedding	of	G	in	H	as	an	induced	subgraph	with	x	at	y.	Equivalently,
a	graph	G	is	homogeneously	embedded	in	a	graph	H	 if	for	each	vertex	x	of	G
and	 each	 vertex	 y	 of	 H	 there	 exists	 an	 induced	 subgraph	 H′	 of	 H	 and	 an
isomorphism	 	from	G	to	H′	such	that	 (x)	=	y.

A	graph	F	of	minimum	order	in	which	G	can	be	homogeneously	embedded	is
called	a	frame	of	 (or	 for)	G	and	 the	order	of	F	 is	called	 the	framing	number
fr(G)	of	G.	Therefore,	if	G	is	a	graph	of	order	n,	then	fr(G)	≥	n.

For	 example,	 the	 framing	 number	 of	 the	 path	 P3	 is	 4	 since	 P3	 can	 be
homogeneously	 embedded	 in	 C4	 (see	 Figure	 9.38)	 and	 P3	 cannot	 be
homogeneously	embedded	any	graph	of	order	3.	The	cycle	C4	also	has	framing
number	4	since	C4	can	be	homogeneously	embedded	in	itself.

Figure	9.38:	Homogeneously	embedding	P3	in	C4

The	graph	G	=	K1	 	K2	can	be	homogeneously	embedded	in	C5	(see	Figure
9.39);	however,	fr(G)	=	4	since	G	can	also	be	homogeneously	embedded	in	the
graph	2K2	of	order	4	and	G	cannot	be	homogeneously	embedded	in	any	graph	of
order	3.



Figure	9.39:	Homogeneously	embedding	K1	 	K2	in	C5	and	2K2

If	 a	 graph	G	 can	 be	 homogeneously	 embedded	 in	 a	 graph	H,	 then	 (H)	 ≥
Δ(G).	As	another	illustration,	consider	the	graph	G	of	Figure	9.40.

Example	9.20	The	graph	G	of	Figure	9.40	has	framing	number	6.

Solution.	Since	Δ(G)	=	3,	 it	 follows	 that	 if	H	 is	a	graph	 in	which	G	can	be
homogeneously	embedded,	 then	 (H)	≥	3.	Certainly,	 fr(G)	≥	5.	 If	 fr(G)	=	5,
then	 a	 frame	H	 of	G	 can	 be	 constructed	 by	 adding	 a	 new	 vertex	 y1	 that	 is
adjacent	to	at	least	u	and	v.	However,	degH	y1	≥	3;	so	y1	must	be	also	adjacent
to	 at	 least	 one	 of	 x	 and	 w,	 say	 y1	 is	 adjacent	 to	 x.	 Let	 H1	 be	 the	 graph
constructed	thus	far	(see	Figure	9.40).	However,	H1	fails	to	contain	an	induced
subgraph	 isomorphic	 to	G	with	u	 at	x1	 and	 so	G	 cannot	 be	 homogeneously
embedded	 in	 H1.	 Therefore,	 fr(G)	 ≥	 6.	 Since	 G	 can	 be	 homogeneously
embedded	in	the	graph	H2	=	K2,	2,	2	of	order	6	shown	in	Figure	9.40,	it	follows
that	fr(G)	=	6.



Figure	9.40:	Homogeneously	embedding	a	graph

There	is	an	important	question	that	might	have	occurred	to	you:	For	a	given
graph	 G,	 how	 do	 we	 know	 that	 the	 framing	 number	 of	 G	 exists?	 This	 is
answered	in	the	following	theorem.

Theorem	9.21	For	 every	 graph	G,	 there	 exists	 a	 graph	 in	which	G	 can	 be
homogeneously	embedded.

In	fact,	even	more	can	be	said.

Theorem	9.22	For	 every	 graph	G,	 there	 exists	 a	 regular	 graph	 in	which	G
can	be	homogeneously	embedded.

Exercises	for	Section	9.4

9.34	Consider	the	graph	G	of	Figure	9.41.

(a)	Show	that	G	can	be	homogeneously	embedded	in	the	3-cube	Q3.

(b)	Determine	the	framing	number	of	G.

9.35	Determine	the	framing	number	of	2K1	 	K2.

9.36	(a)	Determine	a	frame	for	the	graph	K1,	3.

Figure	9.41:	The	graphs	in	Exercise	9.34

(b)	 Does	 there	 exist	 a	 planar	 graph	 H	 in	 which	 K1,	 3	 can	 be
homogeneously	embedded?

9.37	Determine	the	framing	number	of	K1,t,	where	t	≥	4.

9.38	Prove	that	if	G	is	a	graph	of	order	n	with	fr(G)	=	n,	then	G	has	a	unique
frame.



9.39	Use	Theorem	9.21	to	prove	Theorem	9.22.

9.40	Let	G	=	 .	Give	an	example	of	an	r-regular	graph	Hr	of	minimum	order
such	that	G	can	be	homogeneously	embedded	in	Hr	when

(a)	r	=	0,(b)	r	=	1,(c)	r	=	2,(d)	r	=	3.

9.41	Let	G	=	P4.	Does	there	exist	a	graph	H	such	that	(1)	for	every	two	adjacent
vertices	x1	and	x2	of	G	and	every	two	adjacent	vertices	y1	and	y2	of	H	and
(2)	 for	 every	 two	 nonadjacent	 vertices	 x1	 and	 x2	 of	 G	 and	 every	 two
nonadjacent	vertices	y1	and	y2	of	H,	there	exists	an	embedding	of	G	in	H
as	an	induced	subgraph	with	x1	at	y1	and	x2	at	y2?

9.42	 Ask	 and	 answer	 a	 question	 of	 your	 own	 dealing	 with	 homogeneous
embeddings	of	graphs.



Chapter	10
Coloring

10.1	The	Four	Color	Problem

Wolfgang	Haken
Smote	the	Kraken
One!	Two!	Three!	Four!
Quoth	he:	‘The	monster	is	no	more’.

What	 is	 this	 all	 about?	 We	 are	 about	 to	 explain.	 In	 the	 article	 “The
mathematics	 of	 map	 coloring,”	 which	 was	 published	 in	 a	 1969	 issue	 of	 the
Journal	 of	 Recreational	 Mathematics,	 its	 author,	 the	 distinguished
mathematician	 H.	 S.	 M.	 (Donald)	 Coxeter,	 mentioned	 that	 in	 nearly	 every
instance	when	a	map	of	the	United	States	is	colored	to	distinguish	neighboring
states,	at	most	five	or	six	colors	are	used.	What	is	the	minimum	number	of	colors
that	can	be	used	to	color	the	states	in	the	United	States	if	every	two	states	that
share	a	 common	border	 are	 required	 to	be	colored	differently?	Two	states	 that
share	 only	 a	 common	 point,	 however,	 such	 as	 Utah	 and	 New	 Mexico,	 are
permitted	to	be	colored	the	same	(see	Figure	10.1).	Since	Nevada	and	Utah	are
neighboring	 states,	 that	 is,	 they	 share	 a	 common	 boundary,	 they	 must	 be
assigned	different	colors.	 In	 fact,	Nevada	has	a	 ring	of	 five	neighboring	states,
namely,	Utah,	 Idaho,	Oregon,	California	and	Arizona.	Therefore,	each	of	 these
five	states	must	be	assigned	a	color	different	from	that	used	for	Nevada.	On	the
other	hand,	three	colors	are	needed	to	color	the	five	states	bordering	Nevada.	So
four	 colors	 are	 needed	 in	 all	 to	 color	 these	 six	 states.	 Indeed,	 all	 states	 in	 the
United	States	can	be	colored	with	four	colors.

Coloring	 regions	 (whether	 these	 are	 states,	 countries	 or	 counties)	 in	 a	map
with	a	minimum	number	of	colors	such	that	neighboring	regions	(those	sharing	a
common	boundary)	are	colored	differently	does	not	appear	to	be	a	question	with



which	map-makers	of	the	past	were	concerned.	Indeed,	the	mathematical

Figure	10.1:	Western	United	States

historian	 Kenneth	May	 found	 no	 evidence	 of	 this	 when	 he	 studied	 books	 on
map-making.

So,	 if	 a	map	 is	divided	 into	 regions	 in	 some	manner,	what	 is	 the	minimum
number	of	colors	 required	 if	neighboring	regions	are	 to	be	colored	differently?
And	why	is	this	a	question	that	should	even	concern	us?	You	might	think	that	the
answer	 to	 the	first	question	depends	on	the	map	and	you’d	be	right	–	although
we	have	already	mentioned	that	coloring	the	states	in	the	United	States	requires
four	 colors	 and	 that	 four	 colors	 suffice.	 One	might	 expect,	 however,	 that	 this
question	 would	 have	 a	 very	 different	 answer	 if	 the	 map	 consisted	 of	 many
regions	(say	billions)	and	the	map	was	designed	so	that	many	of	the	regions	had
a	large	number	of	neighboring	regions.

Evidently,	 this	 question	 originated	 not	 with	 map-makers	 but	 with	 a
mathematician.	 In	 1852	 Francis	 Guthrie	 (1831–1899),	 a	 recent	 graduate	 of
University	 College	 London,	 observed	 that	 the	 counties	 of	 England	 could	 be
colored	with	 four	 colors	 so	 that	neighboring	 counties	were	 colored	differently.
Francis	Guthrie	found	maps	where	 three	colors	weren’t	enough	but	he	felt	 that
four	colors	were	enough	for	all	maps	and	he	attempted	to	prove	this.	He	showed
his	“proof”	to	his	younger	brother	Frederick,	who	was	taking	a	class	at	the	time
from	the	well-known	Augustus	De	Morgan.	Francis	was	not	completely	happy
with	 the	 proof	 he	 had	 given,	 however.	 With	 Francis’	 permission,	 Frederick



showed	 what	 Francis	 had	 written	 to	 De	 Morgan	 on	 October	 23,	 1852.	 De
Morgan	 was	 pleased	 with	 this	 and	 felt	 it	 was	 new.	 The	 very	 same	 day,	 De
Morgan	 wrote	 the	 following	 letter	 to	 the	 celebrated	 mathematician	 William
Rowan	Hamilton:

A	student	of	mine	asked	me	to	day	to	give	him	a	reason	for	a	fact	which	I
did	 not	 know	was	 a	 fact	 –	 and	 do	 not	 yet.	 He	 says	 that	 if	 a	 figure	 be
anyhow	divided	and	the	compartments	differently	coloured	so	that	figures
with	any	portion	of	common	boundary	line	are	differently	coloured	–	four
colours	may	be	wanted	but	not	more	–	the	following	is	his	case	in	which
four	are	wanted.

Query	cannot	a	necessity	for	five	or	more	be	invented.

Hamilton	replied	on	October	26,	1852:

I	am	not	likely	to	attempt	your	“quaternion”	of	colours	very	soon.

Although	 this	 problem	 (which	 was	 to	 become	 known	 as	 the	 Four	 Color
Problem)	 apparently	 did	 not	 excite	 Hamilton,	 De	 Morgan	 continued	 to	 be
interested	in	it.	Overall	interest	in	this	problem	subsided	during	the	next	several
years	however.

During	this	period,	 in	1865,	 the	London	Mathematical	Society	was	founded
at	 University	 College	 London	 and	 Augustus	 De	 Morgan	 served	 as	 its	 first
president.	 The	 second	 president	 of	 the	 Society	 was	 the	 mathematician	 James
Joseph	Sylvester	 and	Arthur	Cayley	became	 the	 third	president	of	 the	Society.
Much	of	Cayley’s	early	work	on	algebra	had	in	fact	been	done	with	Sylvester.

James	Joseph	Sylvester	was	born	in	London	on	September	3,	1814.	In	1833
Sylvester	 attended	 St.	 John’s	 College,	 Cambridge	 where	 he	 excelled	 in
mathematics.	This	was	 a	 time	when	 a	 student	was	 required	 to	 sign	 a	 religious
oath	to	the	Church	of	England	before	he	could	graduate.	Being	Jewish,	Sylvester
refused	to	take	the	oath	and	was	not	permitted	to	graduate.	For	the	same	reason,
he	was	ineligible	for	a	fellowship.	During	1838-1841	Sylvester	taught	physics	at
the	University	of	London	where	his	 religion	did	not	work	against	him.	One	of
his	colleagues	there	was	De	Morgan,	who	had	earlier	been	Sylvester’s	teacher.

After	a	short	stay	in	the	United	States	in	1841,	Sylvester	returned	to	England



where	 he	 worked	 as	 a	 lawyer	 and	 actuary.	 He	 did	 tutoring	 in	 mathematics,
however	 and,	 curiously,	 one	 of	 his	 students	 was	 Florence	 Nightingale,	 well
known	 for	 her	 pioneering	work	 in	 nursing	 and	hospital	 reform.	Arthur	Cayley
was	also	a	lawyer	at	that	time	and	he	and	Sylvester	often	discussed	mathematics.
Despite	having	very	different	personalities,	the	two	became	life-long	friends.

Sylvester	tried	hard	to	obtain	a	mathematics	position	and	only	secured	one,	at
the	Royal	Military	Academy	at	Woolwich,	when	 the	 successful	applicant	died.
Sylvester	 went	 on	 to	 do	 important	 work	 in	 matrix	 theory	 and	 the	 theory	 of
equations	and	he	introduced	the	terms	matrix	and	discriminant	into	mathematics.
Being	at	a	military	academy,	however,	Sylvester	was	 required	 to	 retire	at	half-
pay	at	age	55.

Sylvester	 was	 about	 to	 give	 up	 mathematics	 and	 concentrate	 on	 writing
poetry	 when	 his	 life	 took	 a	 major	 turn	 in	 1876,	 with	 the	 founding	 of	 a	 new
university	 in	 the	 United	 States:	 the	 Johns	 Hopkins	 University	 in	 Baltimore,
Maryland.	 He	 was	 offered	 the	 position	 of	 the	 University’s	 first	 professor	 of
mathematics.	 Sylvester	 became	 the	 most	 senior	 of	 the	 original	 faculty	 of	 this
university,	both	in	terms	of	age	and	prior	accomplishments.	Employing	Sylvester
turned	 out	 to	 be	 a	wise	 decision	 for	 the	University	 as	 he	was	 instrumental	 in
hiring	 many	 faculty	 members	 who	 became	 prominent	 mathematicians
themselves.	In	1878	he	founded	the	American	Journal	of	Mathematics,	the	first
mathematics	journal	in	the	United	States.	Cayley	was	among	the	first	to	publish
his	research	in	this	journal.

Meanwhile,	 interest	 in	 the	Four	Color	Problem	was	revived	during	an	1878
meeting	of	the	London	Mathematical	Society	presided	over	by	Henry	Smith	of
Exeter	College,	Oxford.	One	of	Smith’s	students	there	was	Percy	John	Heawood,
whom	we	will	soon	encounter.	On	June	13,	1878	Cayley	asked	if	 this	problem
had	 been	 solved.	 One	 of	 the	 people	 attending	 this	 meeting	 was	 a	 bright	 but
amateur	 mathematician	 by	 the	 name	 of	 Alfred	 Bray	 Kempe	 (pronounced
KEMP).

The	next	 year	 on	 July	17,	 1879	Kempe	 announced	 in	 the	magazine	Nature
that	he	had	solved	the	problem	and	that	every	map	could	indeed	be	colored	with
four	 or	 fewer	 colors.	 Kempe	 (1849–1922)	 had	 graduated	 from	 Cambridge
University	 in	 1872	 and	 studied	mathematics	 under	Cayley.	He	 later	 became	 a
barrister	(a	lawyer)	with	a	specialty	in	ecclestical	law.	He	continued	his	interest
in	 mathematics,	 however.	 Cayley	 suggested	 that	 Kempe	 should	 publish	 his
discovery,	which	he	did	in	1879	in	the	second	volume	of	the	American	Journal
of	Mathematics.

In	his	approach,	Kempe	used	a	technique	which	involved	a	concept	that	was



later	 to	be	called	Kempe	chains.	The	 idea	 goes	 something	 like	 the	 following:
Suppose	that	we	have	a	map	in	which	all	regions	except	one,	say	region	X,	have
been	colored	with	four	colors	(red,	blue,	green	and	yellow)	and	we	would	like	to
color	region	X	with	one	of	these	colors	as	well.	Of	course,	if	not	all	four	colors
have	 been	 used	 to	 color	 the	 regions	 that	 surround	 X,	 then	 there	 is	 a	 color
available	for	X.	Hence	we	may	assume	that	all	four	colors	have	been	used	for	the
ring	of	regions	that	surround	X.	It	may	occur	that	there	are	exactly	four	regions
in	such	a	ring,	say	A,	B,	C,	D	(in	clockwise	order),	which	are	colored	red,	blue,
green	and	yellow,	respectively.	(See	Figure	10.2.)

Figure	10.2:	A	region	surrounded	by	a	ring	of	four	regions

There	are	two	possibilities:	(1)	There	is	no	chain	of	neighboring	regions	from
A	 to	 C	 that	 are	 alternately	 colored	 red	 and	 green.	 (2)	 There	 is	 a	 chain	 of
neighboring	 regions	 from	 A	 to	C	 that	 are	 alternately	 colored	 red	 and	 green.
Should	 (1)	 occur,	 then	 interchange	 the	 colors	 red	 and	 green	 in	 all	 chains	 of
neighboring	regions	 beginning	 at	A	 and	which	 are	 alternately	 colored	 red	 and
green.	 Since	 C	 does	 not	 appear	 in	 any	 such	 chain,	 once	 the	 colors	 are
interchanged,	both	A	and	C	are	colored	green	and	the	color	red	is	available	for	X.
If	(2)	should	occur,	then	there	cannot	be	a	chain	of	neighboring	regions	from	B
to	D	whose	colors	are	alternately	blue	and	yellow.	The	technique	used	in	(1)	can
now	 be	 applied	 to	 chains	 of	 neighboring	 regions	 colored	 blue	 and	 yellow	 to
produce	a	new	coloring	of	all	regions	of	the	map	(except	X)	in	which	both	B	and
D	are	colored	yellow,	leaving	blue	available	for	X.

Of	 course,	 this	 only	 takes	 care	 of	 the	 situation	where	 exactly	 four	 regions
occur	 in	 the	 ring	 about	X	 (and	 where	 all	 four	 colors	 are	 used	 to	 color	 these
surrounding	regions).	What	if	there	are	more	than	four	regions	in	this	ring?	We
will	 see	 later	 that	we	can	assume	 that	 the	number	of	 regions	 in	a	 ring	about	X
does	not	exceed	5.	But	this	still	leaves	us	with	one	other	situation:	There	are	five
regions	in	a	ring	about	X	and	all	four	colors	are	used	to	color	these	surrounding
regions.	Of	course,	some	color	would	have	to	be	used	twice	in	this	case	(though
not	for	neighboring	regions).	Kempe	believed	that	an	argument	similar	to	the	one



used	for	when	four	regions	surround	X	could	be	used	for	the	situation	when	five
regions	surround	X	and	this	was	the	key	to	(and	the	downfall	of)	his	proof.

Kempe	was	honored	 for	his	accomplishment.	He	was	elected	Fellow	of	 the
Royal	 Society	 in	 1881	 and	 served	 as	 its	 treasurer	 for	 a	 number	 of	 years.	 He
published	two	refinements	of	his	proof,	one	of	which	sparked	the	interest	of	the
mathematician	Peter	Guthrie	Tait	(1831–1901),	who	provided	his	own	solutions
of	the	Four	Color	Problem.	Tait	had	many	interests	and	many	friends	(including
Hamilton).	Despite	being	involved	with	so	many	projects,	he	always	seemed	to
find	 time	 to	 get	 things	 done.	 One	 of	 Tait’s	 four	 sons,	 Frederick	 Guthrie	 Tait,
excelled	in	golf	and	was	known	to	the	golfing	world	as	Freddie	Tait.	Frederick
was	 the	amateur	champion	of	 the	British	Open	Golf	Tournaments	 in	1896	and
1898.	There	is	an	international	tournament	held	in	his	honor	in	Kimberley,	South
Africa	as	Frederick	was	killed	in	the	Anglo-Boer	War	of	1899-1902.	Peter	Tait,
in	 fact,	 wrote	 a	 research	 paper	 on	 the	 trajectory	 of	 golf	 balls.	 He	 was	 also
interested	 in	 knots	 and	 how	 they	 crossed.	 One	 of	 Tait’s	 personal	 problems,
however,	was	that	he	was	often	involved	in	arguments	with	his	colleagues.

The	next	major	event	in	the	history	of	the	Four	Color	Problem	involved	the
British	mathematician	Percy	John	Heawood	(pronounced	HAY-wood).	Heawood
(1861–1955)	studied	at	Oxford	University	and	was	a	faculty	member	at	Durham
College	 (later	 Durham	 University)	 for	 more	 than	 fifty	 years.	 Heawood	 was
known	for	his	large	moustache	and	for	permitting	his	dog	to	attend	his	lectures.
He	 did	 not	 retire	 until	 he	 was	 78	 and	 lived	 for	 another	 16	 years.	 In	 1890
Heawood	published	a	paper	“Map	colouring	theorem”	in	which	he	pointed	out	a
“defect”	in	Kempe’s	celebrated	solution	of	the	Four	Color	Problem	by	producing
a	counterexample	to	Kempe’s	proof	in	the	case	where	region	X	is	surrounded	by
five	regions.	(Additional	discussion	of	Heawood’s	paper	occurs	in	Section	10.4.)

Kempe	 agreed	 that	Heawood	had	discovered	 an	 error	 in	 his	 paper.	 In	what
must	have	been	a	very	difficult	thing	for	him	to	do,	Kempe	reported	Heawood’s
work	to	the	London	Mathematical	Society	himself	and	said	that	he	was	unable	to
correct	 the	error	he	had	made.	Heawood	couldn’t	correct	Kempe’s	error	either.
However,	Heawood	 became	 so	 intrigued	with	 the	 Four	Color	 Problem	 that	 he
continued	working	on	it	for	the	rest	of	his	life	–	another	six	decades.

It	 turned	 out	 that	 Tait’s	 “solutions”	 were	 also	 incorrect.	 In	 addition	 to	 the
“proofs”	by	Kempe	and	Tait,	 there	was	yet	another	published	incorrect	proof	–
by	Frederick	Temple,	who	was	Bishop	 of	London	 at	 the	 time	 and	who	would
later	become	the	Archbishop	of	Canterbury.

The	 conjecture	 that	 every	 map	 can	 be	 colored	 with	 four	 or	 fewer	 colors
became	known	as	the	Four	Color	Conjecture.	Many	believed	the	conjecture	to



be	true.	Heawood’s	example	was	only	a	counterexample	to	Kempe’s	technique,
not	 a	 counterexample	 to	 the	 Four	 Color	 Conjecture.	 Indeed,	 it	 was	 not	 that
difficult	 to	 show	 that	 the	map	 constructed	 by	Heawood	 could	 be	 colored	with
four	colors.	Even	though	Kempe’s	method	was	unsuccessful,	Heawood	was	able
to	use	this	method	to	prove	that	every	map	could	be	colored	with	five	or	fewer
colors.	(This	topic	will	be	discussed	in	more	detail	in	Section	10.4.)	On	the	other
hand,	whether	any	map	actually	required	five	colors	was	not	known	and	would
not	be	known	for	another	86	years.

After	Heawood’s	paper,	attempts	to	settle	the	Four	Color	Conjecture	slowed
considerably.	In	his	attempted	proof,	Kempe	used	the	fact	that	some	region	was
surrounded	by	a	ring	of	five	or	fewer	regions.	Only	the	case	where	there	was	a
region	surrounded	by	exactly	five	regions	caused	any	difficulties.	However,	the
obstacles	 in	 that	 case	 were	 severe.	 As	 time	 went	 on,	 mathematicians	 who
attempted	to	prove	the	conjecture	divided	the	proof	into	a	larger	number	of	more
detailed	 cases	 dealing	 with	 configurations	 of	 regions	 that	 might	 occur	 in	 the
map.	The	idea	was	to	find	a	set	of	configurations	of	regions	(rather	than	a	single
region)	surrounded	by	a	ring	of	regions	such	that	every	map	contains	at	least	one
of	these	configurations	and	such	that	if	the	regions	on	and	outside	the	ring	can	be
colored	with	 four	 colors,	 then	 the	 entire	map	 can	 be	 colored	with	 four	 colors.
Such	 a	 set	 was	 later	 referred	 to	 as	 an	 unavoidable	 set	 of	 reducible
configurations.

The	 concept	 of	 reducibility	 was	 introduced	 in	 a	 paper	 of	 one	 of	 the	 well-
known	 mathematicians	 of	 the	 20th	 century:	 George	 David	 Birkhoff	 (1884–
1944).	 His	 son,	 Garrett	 Birkhoff,	 would	 also	 become	 a	 prominent
mathematician.	Garrett	became	interested	in	algebra	and	obtained	a	Ph.D.	from
Cambridge	 University	 under	 the	 supervision	 of	 Philip	 Hall.	 Garrett	 Birkhoff
went	on	to	join	Saunders	Mac	Lane	to	co-author	the	popular	textbook	Survey	of
Modern	 Algebra,	 which	 introduced	 abstract	 algebra	 to	 many	 undergraduate
mathematics	students.

George	David	Birkhoff	received	his	Ph.D.	from	the	University	of	Chicago	in
1907,	with	his	thesis	in	the	areas	of	ordinary	differential	equations	and	boundary
value	problems.	He	went	 on	 to	become	a	 faculty	member	 at	 the	University	of
Wisconsin	 at	Madison,	 Princeton	 and	Harvard,	where	 he	 became	Dean	 of	 the
Faculty	of	Arts	and	Science.	Although	Birkhoff	worked	in	a	wide	range	of	areas,
he	was	fascinated	with	the	work	of	Jules	Henri	Poincaré	on	dynamical	systems,
an	area	 that	Birkhoff	studied	extensively.	Poincaré	died	 in	1912	and	 in	his	 last
paper,	 he	 showed	 that	 the	 existence	 of	 periodic	 solutions	 of	 the	 restricted
problem	of	three	bodies	could	be	deduced	from	a	certain	geometric	theorem.	He
was	unable	 to	prove	 this	 theorem,	however,	 except	 in	 a	 special	 case.	Within	 a



few	months,	Birkhoff	had	given	a	simple	but	insightful	proof	of	“Poincaré’s	Last
Geometric	 Theorem,”	 which	 was	 published	 in	 the	 January	 1913	 issue	 of	 the
Transactions	 of	 the	 American	 Mathematical	 Society,	 an	 accomplishment	 that
would	 bring	 Birkhoff	 lasting	 fame.	 In	 that	 same	 year,	 Birkhoff	 published	 his
paper	on	the	reducibility	of	graphs.

As	 we	 have	 mentioned,	 in	 Kempe’s	 attempted	 proof	 of	 the	 Four	 Color
Theorem,	he	used	the	fact	that	every	map	contains	a	region	surrounded	by	five
or	fewer	regions.	That	is,	such	configurations	were	“unavoidable.”	If	a	proof	by
minimum	counterexample	of	the	Four	Color	Theorem	was	being	attempted	and
we	were	 assured	 that	 a	map	with	 a	minimum	number	 of	 regions	 could	 not	 be
colored	with	four	or	fewer	colors	and	that	map	contained	a	region	surrounded	by
four	or	fewer	regions,	then	we	could	show	that	the	entire	map	could	be	colored
with	 four	colors,	producing	a	contradiction	and	arriving	at	 a	proof	of	 the	Four
Color	Theorem.	Therefore,	 in	a	minimum	counterexample,	all	 regions	must	be
surrounded	by	five	or	more	regions.

A	reducible	configuration	 is	any	arrangement	of	 regions	 that	cannot	occur
in	 a	 minimum	 counterexample.	 For	 example,	 a	 single	 region	 surrounded	 by
exactly	 four	 regions	 is	 reducible.	 This	 means	 that	 if	 some	 map	 under
consideration	contains	a	certain	reducible	configuration,	then	any	coloring	of	the
regions	of	 the	map	 that	 lie	outside	 this	configuration	with	four	or	 fewer	colors
can	 be	 extended	 to	 a	 coloring	 of	 the	 entire	 map	 with	 four	 or	 fewer	 colors.
Consequently,	if	an	unavoidable	set	of	reducible	configurations	could	be	found,
the	Four	Color	Theorem	would	be	proved.	This	was	the	approach	that	eventually
would	prove	to	be	successful.

Philip	Franklin	used	Birkhoff’s	idea	to	show	that	every	map	with	25	or	fewer
regions	 was	 4-colorable.	 This	 was	 increased	 to	 39	 by	 Oystein	 Ore	 and	 Joel
Stemple	in	1970	and	to	95	by	Jean	Mayer	in	1976.	By	the	1970s,	configurations
with	ring	sizes	ranging	from	13	to	15	were	being	studied.

The	German	mathematician	Heinrich	Heesch	(1906–1995)	developed	a	more
systematic	way	to	search	for	an	unavoidable	set	of	reducible	configurations.	He
became	 increasingly	 convinced	 that	 this	 was	 a	 method	 that	 would	 lead	 to	 a
solution	of	 the	Four	Color	Problem	and	presented	 this	view	at	 seminars	 at	 the
Universities	of	Hamburg	and	Kiel	shortly	after	World	War	II.	One	of	the	students
at	the	University	of	Kiel	who	attended	these	seminars	was	Wolfgang	Haken.

Heesch	 estimated	 that	 an	 unavoidable	 set	 of	 reducible	 configurations	 could
possibly	contain	as	many	as	10,000	elements.	Furthermore,	manually	verifying
that	such	a	 large	number	of	configurations	were	reducible	did	not	appear	 to	be
practical.	 One	 of	 Heesch’s	 techniques,	 called	 D-reducibility,	 to	 show	 that	 a



configuration	 is	 reducible	 was	 sufficiently	 algorithmic	 to	 lend	 itself	 to	 a
computerized	 approach.	 This	 technique	 required	 consideration	 of	 every	 4-
coloring	 of	 the	 regions	 in	 the	 ring	 and	 showing	 that	 each	 of	 these	 could	 be
extended	to	a	4-coloring	of	the	entire	map.	For	example,	if	the	ring	contained	14
regions,	then	there	would	be	a	total	of	199,291	different	colorings	of	the	regions
of	the	ring.	Computers	were	used	to	verify	D-reduction	in	the	1960s.	Even	for	a
single	 configuration,	 the	 computer	 took	many	 hours.	 To	make	matters	 worse,
even	if	the	D-reduction	program	failed	on	a	configuration,	this	did	not	mean	that
the	 configuration	 was	 not	 reducible.	 Heesch	 discovered	 another	 method	 for
establishing	 reducibility,	 which	 he	 called	 C-reducibility.	 This	 was	 a	 major
positive	step.

By	 the	 late	 1960s,	 a	 major	 effort	 was	 underway	 to	 solve	 the	 Four	 Color
Problem	 with	 the	 aid	 of	 computers.	 The	 people	 involved	 in	 this	 approach
included	 Heesch,	 Haken,	 Karl	 Dürre	 and	 Yoshio	 Shimamoto,	 Chair	 of	 the
Applied	 Mathematics	 Department	 of	 the	 United	 States	 Atomic	 Energy
Commission	at	 their	Brookhaven	Laboratory.	The	Commission	had	access	 to	a
Control	 Data	 6600	 (developed	 by	 Stephen	 Cray),	 the	 fastest	 computer	 at	 that
time.	Shimamoto	constructed	a	configuration	(that	eventually	became	known	as
the	Shimamoto	horseshoe)	which	if	D-reducible	would	establish	the	truth	of	the
Four	Color	Conjecture.	For	some	time	it	seemed	that	this	configuration	was	D-
reducible.	 In	 fact,	 Heesch	 had	 encountered	 this	 configuration	 earlier	 and	 had
been	 convinced	by	 testing	 it	 on	 a	 computer	 that	 it	was	D-reducible.	However,
William	 Tutte	 and	 Hassler	 Whitney	 had	 believed	 for	 some	 time	 that	 if
Shimamoto’s	 approach	was	 correct,	 then	 there	must	 be	 a	 considerably	 simpler
proof.	 Since	 they	 could	 find	 no	 error	 in	 Shimamoto’s	 logic,	 they	 became
convinced	that	the	problem	was	with	the	computer.	Since	the	proof	of	the	Four
Color	 Conjecture	 was	 now	 resting	 on	 the	 D-reducibility	 of	 this	 single
configuration,	 it	 became	 essential	 that	 its	D-reducibility	 be	 confirmed.	 Haken
had	 studied	 this	 and	 also	 found	 nothing	 wrong	 with	 Shimamoto’s	 reasoning.
Even	as	this	configuration	was	being	tested	for	D-reducibility,	a	rumor	surfaced
that	the	Four	Color	Problem	had	been	solved.	At	this	moment	the	final	step	in	a
proof	of	the	Four	Color	Conjecture	was	relying	on	a	computer.	Finally	the	Cray
computer	came	up	with	the	sad	news	that	the	Shimamoto	horseshoe	was	not	D-
reducible,	a	fact	that	Tutte	and	Whitney	would	also	establish.

During	 the	 early	 1970s,	 those	 attempting	 a	 reducibility	 proof	 of	 the	 Four
Color	 Conjecture	 included	 Heesch,	 Frank	 Allaire	 and	 Edward	 Swart,	 Frank
Bernhart	and	Haken.	After	the	failure	of	Shimamoto’s	attempt	to	find	an	easier
way	to	solve	the	Four	Color	Problem,	Haken’s	interest	in	using	the	computer	for
a	 solution	diminished.	However,	Haken	had	a	doctoral	 student	 at	 the	 time	and



one	of	the	members	of	the	thesis	committee	was	Kenneth	Appel.	Unlike	Haken,
Appel	 was	 a	 very	 knowledgeable	 computer	 programmer.	 Appel	 was	 more
optimistic	 and	 suggested	 to	 Haken	 that	 the	 two	 of	 them	 should	 return	 to	 a
computer	 approach.	 Appel	 and	 Haken	 developed	 an	 algorithm	 in	 which	 they
tested	for	“reduction	obstacles.”	This	gave	them	an	approach	that	saved	a	great
deal	 of	 computer	 time.	 They	 were	 also	 assisted	 by	 John	 Koch,	 a	 computer
science	graduate	 student,	who	wrote	 efficient	 programs	 to	 test	 for	 reducibility.
While	Appel	 and	Haken	were	working	 feverishly	 on	 the	 problem,	Appel	was
able	 to	gain	access	 to	 the	IBM	370-168,	an	extremely	powerful	computer	used
by	the	administration	at	the	University	of	Illinois.	While	all	of	this	was	going	on,
others	continued	working	on	a	solution	and	it	wasn’t	clear	who	would	obtain	a
proof	first.	In	June	1976,	Appel	and	Haken	finally	succeeded	in	constructing	an
unavoidable	set	of	1936	reducible	configurations,	which	was	verified	using	1200
hours	 of	 computer	 time	 on	 three	 computers.	 Appel	 (now	 retired	 from	 the
University	of	New	Hampshine)	and	Haken	(now	retired	from	the	University	of
Illinois)	 announced	 their	 success	 to	 the	world	at	 the	1976	Summer	Meeting	of
the	 American	 Mathematical	 Society	 and	 the	 Mathematical	 Association	 of
America	at	the	University	of	Toronto.

To	be	sure,	not	all	mathematicians	were	happy	with	this	proof.	In	fact,	many
were	 highly	 skeptical	 and	 uncomfortable	 with	 it.	 This	 initiated	 numerous
discussions	of	what	a	mathematical	proof	is.	A	major	step	in	the	acceptance	of
their	 proof,	 however,	 was	 its	 acceptance	 by	 the	 distinguished	 mathematician
William	Tutte,	who,	 as	Blanche	Descartes,	wrote	 in	 the	 third	 issue	 of	 the	 first
volume	of	the	Journal	of	Graph	Theory	the	poem	that	we	stated	earlier:

Wolfgang	Haken
Smote	the	Kraken
One!	Two!	Three!	Four!
Quoth	he:	‘The	monster	is	no	more’.

It	 is	 perhaps	 comical	 and	 an	understatement	of	major	proportions	 that	Tutte
titled	his	short	poem	“Some	Recent	Progress	in	Combinatorics.”

Thus	 the	 Four	Color	 Problem	 had	 been	 solved.	 In	 fact,	 a	 simpler	 solution
(still	 computer-assisted),	 employing	 an	 unavoidable	 set	 of	 633	 reducible
configurations,	was	 given	 in	 1993	 by	Neil	Robertson,	Daniel	 P.	 Sanders,	 Paul
Seymour	and	Robin	Thomas.



10.2	Vertex	Coloring

It	is	not	particularly	difficult	to	show	that	the	map	drawn	in	Figure	10.3	can	be
colored	with	four	colors,	that	is,	each	region	of	the	map	can	be	assigned	one	of
four	given	colors	such	that	neighboring	regions	are	colored	differently.	 Indeed,
one	such	coloring	is	shown	in	 the	figure,	where	r,	b,	g	and	y	denote	 red,	blue,
green	and	yellow,	respectively.	What	does	coloring	the	regions	of	a	map	have	to
do	with	graphs?	Actually,	 there	 is	 a	 close	connection.	With	each	map,	 there	 is
associated	a	graph	G,	called	the	dual	of	the	map,	whose	vertices	are	the	regions
of	 the	map	 and	 such	 that	 two	 vertices	 of	G	 are	 adjacent	 if	 the	 corresponding
regions	 are	 neighboring	 regions.	 The	 dual	 of	 the	 map	 in	 Figure	 10.3	 is	 also
shown	 in	 the	 figure.	 Observe	 that	 the	 graph	G	 of	 Figure	 10.3	 is	 a	 connected
planar	 graph.	 In	 fact,	 the	 dual	 of	 every	 map	 is	 a	 connected	 planar	 graph.
Conversely,	 every	 connected	 planar	 graph	 is	 the	 dual	 of	 some	 map.	 Indeed,
representing	the	regions	of	a	map	and	adjacency	of	regions	by	a	graph	actually
occurred	in	the	1879	paper	of	Kempe.	The	term	“graph”	was	evidently	used	for
the	first	time	only	a	year	earlier	by	James	Joseph	Sylvester.



Figure	10.3:	A	map	and	its	dual

Coloring	 the	 regions	 of	 a	 map	 suggests	 coloring	 the	 vertices	 of	 its	 dual.
Indeed,	it	suggests	coloring	the	vertices	of	any	graph.	By	a	proper	coloring	(or,
more	 simply,	 a	 coloring)	 of	 a	 graph	 G,	 we	 mean	 an	 assignment	 of	 colors
(elements	of	some	set)	 to	the	vertices	of	G,	one	color	 to	each	vertex,	such	that
adjacent	vertices	 are	 colored	differently.	The	 smallest	number	of	 colors	 in	 any
coloring	of	a	graph	G	is	called	the	chromatic	number	of	G	and	is	denoted	by	
(G).	 (The	 symbol	 	 is	 the	 Greek	 letter	 “chi.”)	 If	 it	 is	 possible	 to	 color	 (the
vertices	of)	G	from	a	set	of	k	colors,	then	G	is	said	to	be	k-colorable.	A	coloring
that	 uses	 k	 colors	 is	 called	 a	 k-coloring.	 If	 (G)	 =	 k,	 then	G	 is	 said	 to	 be	 k-
chromatic	and	every	k-coloring	of	G	is	a	minimum	coloring	of	G.

Figure	10.3	shows	a	coloring	of	a	graph	G,	namely,	a	coloring	of	the	dual	of
the	 map	 in	 Figure	 10.3.	 Necessarily	 then,	 G	 is	 4-colorable;	 indeed,	 G	 is	 4-
chromatic.	In	fact,	the	coloring	of	G	in	Figure	10.3	is	suggested	by	the	coloring
of	the	map.	Hence	the	Four	Color	Theorem	gives	us	the	following	result,	which
is	then	a	restatement	of	this	famous	theorem.

Theorem	10.1	 (The	Four	Color	Theorem)	The	 chromatic	 number	of	 every
planar	graph	is	at	most	4.

We	have	already	mentioned	that	the	origin	of	the	Four	Color	Conjecture	goes
back	 to	1852.	At	one	 time,	however,	 there	were	some	who	believed	 the	origin
went	back	even	farther.	This	is	not	so,	but	the	confusion	may	be	understandable.
In	1840	August	Möbius	(1790–1868)	posed	a	problem	that	is	sometimes	referred
to	as:

The	Problem	of	the	Five	Princes

There	once	was	a	king	who	had	five	sons.	In	his	will	he	stated	that	on	his
death	his	kingdom	should	be	divided	into	five	regions	for	his	sons	in	such
a	way	that	each	region	should	have	a	common	boundary	with	the	other
four.	How	can	this	be	done?

If	a	solution	to	this	problem	is	not	evident,	then	it	might	be	interesting	to	look
at	an	extension	of	this	problem	that	was	posed	by	Heinrich	Tietze	(1880-1964),	a
prominent	topologist:

The	Problem	of	the	Five	Palaces

The	king	additionally	required	each	of	his	five	sons	to	build	a	palace	in



his	region	and	the	sons	should	link	each	pair	of	palaces	by	roads	so	that
no	two	roads	cross.	How	can	this	be	done?

The	Problem	of	the	Five	Palaces	can	be	modeled	by	a	graph	G	whose	vertices
are	the	palaces	and	whose	edges	are	the	roads.	Then	G	=	K5.	A	solution	to	this
problem	requires	G	to	be	planar,	which	it	is	not.	The	graph	G	is	the	dual	graph	of
any	solution	to	the	Problem	of	the	Five	Princes.	This	says	that	neither	problem
has	 a	 solution.	 To	 divide	 the	 kingdom	 into	 five	 regions	 in	 this	manner	would
require	five	colors	to	color	the	regions.	However,	there	is	no	such	configuration
of	five	regions.	What	this	statement	says	is	that	no	map	can	contain	five	regions,
every	 two	 of	 which	 are	 neighboring.	 This	 does	 not	 solve	 the	 Four	 Color
Problem,	however,	because	what	the	statement	does	not	say	is	that	there	can’t	be
some	other	configuration	of	regions	that	might	require	five	colors.	This	is	where
the	difficulty	lies.

Let’s	 make	 a	 few	 observations	 about	 coloring	 graphs	 and	 the	 chromatic
numbers	 of	 some	 familiar	 graphs.	 First,	 if	 a	 graph	G	 contains	 even	 one	 edge,
then	at	least	two	colors	are	required	to	color	G.	That	is,	 (G)	=	1	if	and	only	if	

	for	some	positive	integer	n.
In	any	coloring	of	a	graph	G,	no	two	vertices	that	are	colored	the	same	can	be

adjacent.	 Sets	 of	 vertices,	 no	 two	 of	 which	 are	 adjacent,	 are	 necessarily	 of
interest	to	us	when	discussing	coloring.	Recall	that	a	set	S	of	vertices	in	a	graph
G	 is	 independent	 if	no	 two	vertices	of	S	 are	 adjacent.	Ordinarily,	 a	graph	has
many	independent	sets	of	vertices.	Recall	also	that	a	maximum	independent	set
is	 an	 independent	 set	 of	 maximum	 cardinality.	 The	 number	 of	 vertices	 in	 a
maximum	 independent	 set	 of	G	 is	 denoted	 by	 (G)	 and	 is	 called	 the	 vertex
independence	number	(or,	more	simply,	the	independence	number)	of	G.	For
the	graph	G	 =	C6	 of	Figure	10.4,	S1	 =	 {v1,	v4}	 and	S2	 =	 {v2,	 v4,	 v6}	 are	 both
independent	 sets.	 Since	 no	 independent	 set	 of	 G	 contains	 more	 than	 three
vertices,	 (G)	=	3.

If	 G	 is	 a	 k-chromatic	 graph,	 then	 it	 is	 possible	 to	 partition	 V(G)	 into	 k
independent	 sets	V1,	V2,	…,	Vk,	 called	 color	 classes,	 but	 it	 is	 not	 possible	 to
partition	V(G)	into	k	−	1	independent	sets.	Typically,	we	think	of	the	vertices	in
the	color	class	Vi	(1	≤	i	≤	k)	as	being	assigned	color	i.	Conversely,	if	G	is	a



Figure	10.4:	Independent	sets

graph	whose	vertex	set	can	be	partitioned	into	k	independent	sets,	but	no	fewer,
then	 (G)	=	k.	Therefore,	in	order	for	a	graph	G	to	have	chromatic	number	2,	the
graph	G	must	 be	nonempty	 and	 it	must	 be	possible	 to	partition	V(G)	 into	 two
independent	sets	V1	and	V2.	Consequently,	every	edge	of	G	must	join	a	vertex	of
V1	and	a	vertex	of	V2.	But	this	means	that	G	is	a	bipartite	graph	with	partite	sets
V1	and	V2.

Theorem	 10.2	 A	 graph	 G	 has	 chromatic	 number	 2	 if	 and	 only	 if	 G	 is	 a
nonempty	bipartite	graph.

By	Theorem	1.12,	a	graph	G	 is	bipartite	if	and	only	if	G	has	no	odd	cycles.
So	if	a	graph	G	contains	an	odd	cycle,	then	 (G)	≥	3.	Of	course,	if	G	=	Cn	 for
some	even	integer	n	≥	4,	 then	 (G)	=	2.	On	 the	other	hand,	 if	n	≥	3	 is	an	odd
integer,	then	 (Cn)	=	3.	We	already	know	that	 (Cn)	≥	3	when	n	≥	3	is	an	odd
integer.	To	show	that	 (Cn)	=	3,	we	need	only	show	that	there	exists	a	3-coloring
of	Cn.	Actually,	we	can	color	some	vertex	of	Cn	with	the	color	3	and	alternate	the
colors	1	and	2	for	the	remaining	vertices	(see	Figure	10.5).

Figure	10.5:	The	chromatic	numbers	of	odd	cycles

The	way	we	established	the	chromatic	number	of	Cn	for	each	odd	integer	n	≥
3	illustrates	how	to	establish	the	chromatic	number	of	any	graph.	To	show	that	
(G)	=	k	for	some	graph	G	and	some	integer	k	≥	3,	we	must	show	that

(1)	 at	 least	k	 colors	 are	needed	 to	 color	G	 (or,	 equivalently,	 show	 that	 it	 is
impossible	to	color	G	with	k	−	1	colors)	and

(2)	there	is	a	k-coloring	of	G.

Example	10.3	The	graph	G	shown	in	Figure	10.6	is	3-chromatic.



Figure	10.6:	A	3-chromatic	graph	G

Solution.	Since	G	contains	a	 triangle,	 it	 follows	that	 (G)	≥	3.	On	 the	other
hand,	 a	 3-coloring	 of	G	 is	 shown	 in	 Figure	 10.6,	 implying	 that	 (G)	 ≤	 3.
Therefore,	 (G)	=	3.

Some	comments	concerning	the	solution	of	Example	10.3	may	be	useful.	As
we	said,	G	contains	a	triangle,	which	implies	that	 (G)	≥	3.	Therefore,	to	show
that	 (G)	=	3,	it	suffices	to	present	a	3-coloring	of	G.	Of	course,	a	3-coloring	of
G	 is	 shown	 in	 Figure	 10.6.	 However,	 we	 didn’t	 initially	 know	 that	 such	 a
coloring	was	possible.	This	graph	G	also	contains	a	5-cycle,	which	requires	three
colors.	Perhaps	we	thought	of	3-coloring	this	5-cycle	first.	There	is	a	number	of
ways	to	3-color	this	5-cycle.	One	of	these	is	shown	in	Figure	10.7(a).	If	we	now
attempt	 to	color	 the	remaining	vertices	of	G	so	 that	only	 three	colors	are	used,
then	the	resulting	coloring	produces	two	adjacent	vertices	 that	are	colored	3	as
shown	 in	 Figure	 10.7(b),	 which	 is	 impossible.	 This	 might	 have	 led	 us	 to
conclude	(incorrectly)	that	 (G)	=	4.	This	indicates	that	care	must	be	taken	when
coloring	a	graph.

Figure	10.7:	Coloring	a	graph

A	 useful	 application	 of	 coloring	 occurs	 in	 certain	 kinds	 of	 scheduling
problems.



Example	 10.4	 The	 mathematics	 department	 of	 a	 certain	 college	 plans	 to
schedule	the	classes	Graph	Theory	(GT),	Statistics	 (S),	Linear	Algebra	 (LA),
Advanced	 Calculus	 (AC),	 Geometry	 (G)	 and	 Modern	 Algebra	 (MA)	 this
summer.	Ten	students	(see	below)	have	indicated	the	courses	they	plan	to	take.
With	this	information,	use	graph	theory	to	determine	the	minimum	number	of
time	periods	needed	to	offer	these	courses	so	that	every	two	classes	having	a
student	 in	 common	 are	 taught	 at	 different	 time	 periods	 during	 the	 day.	 Of
course,	 two	classes	having	no	students	 in	common	can	be	 taught	during	 the
same	period.

Solution.	 First,	we	 construct	 a	 graph	H	whose	 vertices	 are	 the	 six	 subjects.
Two	vertices	 (subjects)	are	 joined	by	an	edge	 if	 some	student	 is	 taking	both
classes	(see	Figure	10.8).	The	minimum	number	of	time	periods	is	 (H).	Since
H	contains	the	odd	cycle	(GT,	S,	AC,	G,	MA,	GT),	it	follows	that	three	colors
are	 needed	 to	 color	 the	 vertices	 on	 this	 cycle.	 Since	 LA	 is	 adjacent	 to	 all
vertices	 of	 this	 cycle,	 a	 fourth	 color	 is	 needed	 for	 LA.	 Thus	 (H)	 ≥	 4.
However,	 there	 is	a	4-coloring	of	H	 shown	in	Figure	10.8	and	 so	 (H)	=	4.
This	 also	 tells	 us	 one	 way	 to	 schedule	 these	 six	 classes	 during	 four	 time
periods,	 namely,	 Period	 1:	 Graph	 Theory,	 Advanced	 Calculus;	 Period	 2:
Geometry;	Period	3:	Statistics,	Modern	Algebra;	Period	4:	Linear	Algebra.

Figure	10.8:	The	graph	of	Example	10.4

Certainly,	every	graph	G	of	order	n	is	n-colorable.	If	G	=	Kn,	then	every	two
vertices	must	be	assigned	different	colors	and	so	 (Kn)	=	n.	If	G	has	order	n	and



G	≠	Kn,	then	G	contains	two	nonadjacent	vertices,	say	u	and	v.	Assigning	u	and	v
the	color	1	and	the	remaining	n	−	2	vertices	the	colors	2,	3,	…,	n	−	1	produces	an
(n	−	1)-coloring	of	G	 and	 so	 (G)	≤	n	−	1.	That	 is,	 a	 graph	G	 of	 order	n	 has
chromatic	number	n	if	and	only	if	G	=	Kn.

Another	 observation	 is	 useful.	 If	H	 is	 a	 subgraph	 of	 a	 graph	G,	 then	 any
coloring	of	G	produces	a	coloring	of	H	as	well.	Since	it	may	be	possible	to	color
H	with	even	fewer	colors,	it	follows	that

Opposite	 to	an	independent	set	of	vertices	 in	a	graph	is	a	clique.	A	clique	in	a
graph	G	is	a	complete	subgraph	of	G.	The	order	of	the	largest	clique	in	a	graph
G	is	its	clique	number,	which	is	denoted	by	ω(G).	(The	symbol	ω	is	the	Greek
letter	“omega.”)	In	fact,

In	general,	there	is	no	formula	for	the	chromatic	number	of	a	graph.	In	fact,
determining	 the	chromatic	number	of	even	a	 relatively	 small	graph	 is	often	an
extremely	 challenging	 problem.	 However,	 lower	 bounds	 for	 the	 chromatic
number	 of	 a	 graph	 G	 can	 be	 given	 in	 terms	 of	 the	 clique	 number	 and	 the
independence	number	and	order	of	G.

Theorem	10.5	For	every	graph	G	of	order	n,

Proof.	Let	H	be	a	clique	of	G	having	order	ω(G).	Then	 (H)	=	ω(G).	Since	H
is	a	subgraph	of	G,	it	follows	that	 (H)	≤	 (G),	that	is,	ω(G)	≤	 (G).

Suppose	that	 (G)	=	k.	Then	V(G)	can	be	partitioned	into	k	independent	sets
V1,	V2,	…,	Vk.	Hence

Therefore,	 (G)	=	k	≥	n/ (G).

To	 establish	 sharpness	 for	 the	 bounds	 given	 in	Theorem	10.5,	 consider	 the
graph	G	=	K3,	3,	3,	3	with	partite	sets	V1,	V2,	V3,	V4,	as	illustrated	in	Figure	10.9.



The	order	of	G	 is	n	=	12,	 its	 independence	number	 is	 (G)	=	3	 and	 its	 clique
number	is	ω(G)	=	4.	In	fact,	 (G)	=	4	=	ω(G)	=	n/ (G).	A	4-coloring	of	G	can	be
given	by	coloring	the	vertices	in	Vi	with	the	color	i	for	1	≤	i	≤	4.

Figure	10.9:	Coloring	the	graph	K3,	3,	3,	3

In	 Example	 1.5	 (in	 Chapter	 1)	 we	 showed	 how	 a	 graph	 could	 model	 the
traffic	 lanes	at	 the	 intersection	of	 two	streets.	We	now	revisit	 this	example	and
consider	a	question	that	is	relevant	to	this	situation.

Example	 10.6	 Figure	 10.10	 shows	 the	 traffic	 lanes	 L1,	 L2,	 …,	 L9	 at	 the
intersection	of	 two	busy	streets.	A	 traffic	 light	 is	 located	at	 this	 intersection.
During	a	certain	phase	of	 the	 traffic	 light,	 those	cars	 in	 lanes	 for	which	 the
light	 is	 green	 may	 proceed	 safely	 through	 the	 intersection.	 What	 is	 the
minimum	number	of	phases	needed	for	the	traffic	light	so	that	(eventually)	all
cars	may	proceed	through	the	intersection?

Figure	10.10:	Traffic	lanes	at	street	intersections



Solution.	 Construct	 a	 graph	G	 to	 model	 this	 situation	 (see	 Figure	 10.10),
where	V(G)	=	{L1,	L2,	…,	L9}	and	two	vertices	(lanes)	are	joined	by	an	edge
if	vehicles	in	these	two	lanes	cannot	safely	enter	the	intersection	at	the	same
time,	as	there	is	a	possibility	of	an	accident.

Answering	 this	 question	 requires	 determining	 the	 chromatic	 number	 of	 the
graph	G	in	Figure	10.10.	First	notice	that	if	S	=	{L2,	L4,	L6,	L8},	then	G[S]	=	K4
and	so	 (G)	≥	4.	Since	there	exists	a	4-coloring	of	G,	as	indicated	in	the	graph	of
Figure	10.10,	 (G)	=	4.

Since	the	vertex	set	of	the	graph	G	of	Figure	10.10	can	be	partitioned	quite
obviously	into	the	four	independent	sets	{L1,	L2,	L3},	{L4,	L5},	{L6,	L7}	and
{L8,	L9},	one	might	be	 led	 to	 say	 that	 the	answer	 to	 the	question	 in	Example
10.6	 is	 clearly	 4.	 However,	 this	 observation	 (while	 also	 providing	 another	 4-
coloring	of	G)	again	only	shows	that	 (G)	≤	4.

A	coloring	of	a	graph	G	can	also	be	thought	of	as	a	function	c	from	V(G)	 to
the	 set	N	 of	 positive	 integers	 (or	 natural	 numbers)	 such	 that	 adjacent	 vertices
have	distinct	functional	values,	that	is,	a	coloring	of	G	is	a	function	c	:	V(G)	→
N	such	that	uv	 	E(G)	implies	that	c(u)	≠	c(v).

We	now	present	an	upper	bound	for	the	chromatic	number	of	a	graph	in	terms
of	its	maximum	degree.	The	technique	used	in	the	proof	of	the	following	result
is	algorithmic	and	Greedy	in	nature,	in	the	sense	that	colors	are	assigned	to	the
vertices,	one	vertex	at	a	time,	in	what	appears	to	be	an	optimal	manner.

Theorem	10.7	For	every	graph	G,

Proof.	Let	V(G)	=	{v1,	v2,	…,	vn}.	Define	a	coloring	c	:	V(G)	→	N	recursively
as	follows:	c(v1)	=	1.	Once	c(vi)	has	been	defined,	1	≤	i	≤	n,	define	c(vi+1)	as
the	smallest	positive	integer	not	already	used	to	color	any	of	the	neighbors	of
vi+1.	Since	vi+1	has	deg	vi+1	neighbors,	at	least	one	of	the	integers	1,	2,	…,	1	+
deg	 vi+1	 is	 available	 for	 c(vi+1).	 Therefore,	 c(vi+1)	 ≤	 1	 +	 deg	 vi+1.	 If	 the
maximum	color	assigned	to	the	vertices	of	G	is	c(vj),	say,	then

as	desired.



We	have	already	noted	that	if	n	≥	3	is	odd,	then	 (Cn)	=	3.	Also,	 (Kn)	=	n.
Hence	 (Cn)	=	1	+	Δ(Cn)	if	n	≥	3	is	odd	and	 (Kn)	=	1	+	Δ(Kn).	Therefore,	the
bound	presented	in	Theorem	10.7	is	attained	for	odd	cycles	and	complete	graphs.
There	is	a	theorem	due	to	Rowland	Leonard	Brooks,	which	tells	us	that	these	are
the	only	connected	graphs	for	which	the	bound	is	attained.	Since	the	proof	is	a
bit	involved,	we	do	not	include	it.

Theorem	10.8	(Brooks’	Theorem)	For	every	connected	graph	G	that	 is	not
an	odd	cycle	or	a	complete	graph,

There	 is	 an	 upper	 bound	 for	 the	 chromatic	 number	 of	 a	 graph	 that	 is
ordinarily	 superior	 to	 that	given	 in	Theorems	10.7	 and	10.8	 and	which	 can	 be
proved	using	an	approach	similar	to	that	given	for	the	proof	of	Theorem	10.7.

Theorem	10.9	For	every	graph	G,

where	the	maximum	is	taken	over	all	induced	subgraphs	H	of	G.

Proof.	Among	all	induced	subgraphs	of	G,	let	k	denote	the	maximum	of	their
minimum	degrees.	Suppose	that	G	has	order	n	and	let	vn	be	a	vertex	of	Gn	=	G
such	that	degG	vn	=	 (G).	Thus	degG	vn	≤	k.	Therefore,	Gn−1	=	G	−	vn	contains
a	vertex	vn−1	such	that	 .	Continuing	in	this	manner,	we
construct	a	sequence	v1,	v2,	…,	vn	of	all	vertices	of	G	and	a	sequence	G1,	G2,
…,	Gn	 of	 induced	 subgraphs	 of	G	 such	 that	 vi	 	V(Gi)	 for	 1	 ≤	 i	 ≤	 n	 and	

.
Define	a	coloring	c	:	V(G)	→	N	recursively	as	follows:	c(v1)	=	1.	Once	c(vi)

has	 been	 defined,	 1	≤	 i	 <	n,	 define	c(vi+1)	 as	 the	 smallest	 positive	 integer	 not
already	used	to	color	any	of	the	neighbors	of	vi+1.	Since	vi+1	has	
vi+1	neighbors	among	the	vertices	v1,	v2,	…,	vi	and	 	vi+1	≤	k,	at	least	one
of	the	integers	1,	2,	…,	k	+	1	is	available	for	c(vi+1).	Hence	every	vertex	of	G	is
assigned	one	of	the	colors	1,	2,	…,	1	+	k	and	so	 (G)	≤	1	+	k,	as	desired.

Let’s	 return	 to	 the	 inequality	 (G)	 ≥	 ω(G)	 in	 Theorem	 10.5.	 Although	 the
lower	bound	ω(G)	for	 (G)	is	attained	when	G	=	K3,	3,	3,	3	and,	in	fact,	is	attained
for	every	complete	multipartite	graph,	there	are	numerous	examples	of	graphs	G



for	which	 (G)	≠	ω(G).	For	example,	for	G	=	C5,	we	have	seen	that	 (G)	=	3;

Figure	10.11:	The	Grötzsch	graph:	A	triangle-free	graph	with	chromatic	number
4

yet	ω(G)	=	2.	The	graph	G	 of	Figure	10.11	 is	 known	as	 the	Grötzsch	 graph.
This	graph	is	triangle-free	(it	has	no	triangles)	but	has	chromatic	number	4.	So	
(G)	=	4	and	ω(G)	=	2.
It	 may	 seem	 that	 graphs	 with	 a	 large	 chromatic	 number	 must	 have	 large

cliques,	but	this	is	not	so.	In	fact,	triangle-free	graphs	can	have	large	chromatic
numbers.	 This	 fact	 has	 been	 observed	 by	 a	 number	 of	 mathematicians.	 The
following	proof	is	due	to	Jan	Mycielski,	a	mathematician	who	spent	many	years
at	the	University	of	Colorado	and	who	is	known	for	his	work	in	sets	and	logic.	In
the	 proof,	 we	 make	 use	 of	 a	 graph,	 sometimes	 called	 the	 shadow	 graph	 of	 a
graph.	The	shadow	graph	S(G)	of	a	graph	G	is	obtained	from	G	by	adding,	for
each	vertex	v	of	G,	a	new	vertex	v′,	called	the	shadow	vertex	of	v,	and	joining	v′
to	the	neighbors	of	v	in	G.	Observe	that	(1)	a	vertex	of	G	and	its	shadow	vertex
are	 not	 adjacent	 in	S(G)	 and	 (2)	 no	 two	 shadow	vertices	 are	 adjacent	 in	S(G).
The	shadow	graph	S(C5)	of	C5	is	shown	in	Figure	10.12.	The	Grötzsch	graph	of
Figure	10.11	is	then	obtained	by	adding	a	new	vertex	z	to	S(C5)	and	joining	z	to
the	shadow	vertices	in	S(C5).



Figure	10.12:	The	shadow	graph	of	C5

Theorem	10.10	For	every	integer	k	≥	3,	there	exists	a	triangle-free	graph	with
chromatic	number	k.

Proof.	We	proceed	by	induction	on	k.	We	have	already	seen	that	the	result	is
true	for	k	=	3	and	k	=	4.	Assume	that	there	is	a	triangle-free	(k	−	1)-chromatic
graph	F,	where	k	≥	5	is	an	integer.	Let	G	be	 the	graph	obtained	by	adding	a
new	 vertex	 z	 to	 the	 shadow	 graph	 S(F)	 of	 F	 and	 joining	 z	 to	 the	 shadow
vertices	in	S(F).	We	show	that	G	is	a	triangle-free	graph	with	 (G)	=	k.

First,	we	verify	that	G	is	triangle-free.	Assume,	to	the	contrary,	that	there	is	a
set	U	of	three	vertices	of	G	such	that	G[U]	=	K3.	Since	no	two	shadow	vertices
are	adjacent	in	G,	it	follows	that	U	contains	at	most	one	shadow	vertex.	Because
z	 is	adjacent	only	 to	shadow	vertices	and	U	contains	at	 least	one	vertex	 that	 is
not	a	shadow	vertex,	z	 	U.	On	the	other	hand,	F	is	triangle-free	and	so	at	least
one	vertex	of	U	is	not	in	F.	Therefore,	U	=	{u,	v,	w′},	where	u	and	v	are	adjacent
vertices	of	F	and	w′	is	a	shadow	vertex	that	is	adjacent	to	u	and	v.	Thus	w	≠	u,	v.
However	 then,	w	 is	 adjacent	 to	 u	 and	 v,	 producing	 a	 triangle	 in	 F,	 which	 is
impossible	since	F	is	triangle-free.

It	remains	to	show	that	 (G)	=	k.	Let	c*	be	a	(k	−	1)-coloring	of	F.	We	extend
c*	to	a	k-coloring	of	G	by	defining	c*(x′)	=	c*(x)	for	each	x	 	V(F)	and	defining
c*(z)	=	k.	Thus	 (G)	≤	k.	Next	we	show	that	 (G)	≥	k.	Since	F	is	a	subgraph	of
G,	it	follows	that	k	−	1	=	 (F)	≤	 (G).	Assume,	to	the	contrary,	that	 (G)	=	k	−
1.	Let	there	be	given	a	(k	−	1)-coloring	c	of	G,	say	with	colors	1,	2,	…,	k	−	1.	We
may	assume	that	c(z)	=	k	−	1.	Since	z	is	adjacent	to	every	shadow	vertex	in	G,	it
follows	that	the	shadow	vertices	are	colored	with	the	colors	1,	2,	…,	k	−	2.	For
every	shadow	vertex	x′	of	G,	the	color	c(x′)	is	different	from	the	colors	assigned
to	 the	neighbors	of	x.	Therefore,	 if	 for	 each	vertex	y	of	G	 belonging	 to	F,	 the
color	 c(y)	 is	 replaced	 by	 c(y′),	 we	 have	 a	 (k	 −	 2)-coloring	 of	 F.	 This	 is



impossible,	however,	since	 (F)	=	k	−	1.

Theorem	10.10	therefore	shows	the	existence	of	graphs	G	for	which	 (G)	is
considerably	larger	than	ω(G).	While	there	has	been	much	interest	 in	graphs	G
for	which	 (G)	>	ω(G),	there	has	even	been	more	interest	in	graphs	G	for	which
not	only	 (G)	=	ω(G)	but	 (H)	=	ω(H)	 for	every	 induced	subgraph	H	of	G.	A
graph	G	 is	 called	perfect	 if	 (H)	=	ω(H)	 for	 every	 induced	 subgraph	H	 of	G.
This	 concept	 was	 introduced	 in	 1963	 by	 the	 French	 mathematician	 Claude
Berge.	 From	 our	 earlier	 remarks,	 every	 complete	multipartite	 graph	 is	 perfect
and	so	every	complete	bipartite	graph	is	perfect.	In	fact,	every	bipartite	graph	is
perfect	(see	Exercise	10.16).

Claude	Berge	made	two	conjectures	concerning	perfect	graphs.	The	first	of
these	was	verified	in	1972	by	László	Lovász	and	the	second	was	verified	in	2002
by	Maria	Chudnovsky,	Neil	Robertson,	Paul	Seymour	and	Robin	Thomas.

The	Perfect	Graph	Theorem	A	graph	is	perfect	if	and	only	if	its	complement
is	perfect.

The	 Strong	 Perfect	 Graph	 Theorem	 A	 graph	G	 is	 perfect	 if	 and	 only	 if
neither	G	nor	 	contains	an	induced	odd	cycle	of	length	5	or	more.

Exercises	for	Section	10.2

10.1	Determine	the	chromatic	number	of	each	of	the	graphs	in	Figure	10.13.

Figure	10.13:	Graphs	in	Exercise	10.1

10.2	Determine	the	chromatic	number	of	each	of	the	following:



(a)	the	Petersen	graph,	(b)	the	n-cube	Qn,	(c)	the	wheel	Wn	=	Cn	+	K1.

10.3	What	is	the	chromatic	number	of	a	tree?

10.4	Prove	or	disprove:

(a)	If	a	planar	graph	contains	a	triangle,	then	its	chromatic	number	is	3.
(b)	If	there	is	a	4-coloring	of	a	graph	G,	then	 (G)	=	4.
(c)	If	it	can	be	shown	that	there	is	no	a	3-coloring	of	a	graph	G,	then	 (G)

=	4.
(d)	If	G	is	a	graph	with	 (G)	≤	4,	then	G	is	planar.

10.5	Prove	that	every	graph	of	order	6	with	chromatic	number	3	has	at	most	12
edges.

10.6	Prove	or	disprove:

(a)	If	a	graph	G	contains	a	subgraph	isomorphic	to	the	complete	graph	Kr,
then	 (G)	≥	r.

(b)	If	G	is	a	graph	with	 (G)	≥	r,	then	G	contains	a	subgraph	isomorphic
to	the	complete	graph	Kr.

10.7	 Show	 that	 there	 exists	 no	 graph	G	with	 (G)	 =	 6	whose	 vertices	 have
degrees	3,	3,	3,	3,	3,	3,	4,	4,	5,	5,	5,	5.

10.8	Give	an	example	of	the	following	or	explain	why	no	such	example	exists:

(a)	a	planar	graph	with	chromatic	number	5,
(b)	a	nonplanar	graph	with	chromatic	number	3,
(c)	a	graph	G	with	Δ(G)	=	2	 (G),
(d)	a	graph	G	with	 (G)	=	2Δ(G),
(e)	a	noncomplete	graph	of	order	n	with	chromatic	number	n.

10.9	Prove	or	disprove:

(a)	There	exists	a	nonplanar	graph	G	such	that	G−v	is	planar	and	 (G)	=	
(G−v)	+	1	for	every	vertex	v	of	G.

(b)	There	exists	a	nonplanar	graph	G	such	that	G−v	is	planar	and	 (G)	=	
(G−v)	for	every	vertex	v	of	G.

10.10	 Eight	mathematics	majors	 at	 a	 small	 college	 are	 permitted	 to	 attend	 a
meeting	 dealing	 with	 undergraduate	 research	 during	 final	 exam	 week
provided	 they	make	up	all	 the	 exams	missed	on	 the	Monday	after	 they



return.	The	possible	time	periods	for	these	exams	on	Monday	are

Use	graph	theory	to	determine	the	earliest	 time	on	Monday	that	all	eight
students	can	 finish	 their	 exams	 if	 two	exams	cannot	be	given	during	 the
same	 time	 period	 if	 some	 student	 must	 take	 both	 exams.	 The	 eight
students	and	the	courses	[Advanced	Calculus	(AC),	Differential	Equations
(DE),	 Geometry	 (G),	 Graph	 Theory	 (GT),	 Linear	 Programming	 (LP),
Modern	Algebra	(MA),	Statistics	(S),	Topology	(T)]	each	student	is	taking
are	listed	below:

10.11	Eight	chemicals	are	to	be	shipped	across	country	by	air	express.	The	cost
of	doing	this	depends	on	the	number	of	containers	shipped.	The	cost	of
shipping	 one	 container	 is	 $125.	 For	 each	 additional	 container	 the	 cost
increases	by	$85.	Some	chemicals	interact	with	one	another	and	it	is	too
risky	to	ship	them	in	the	same	container.	The	chemicals	are	labeled	by	c1,
c2,	…,	 c8	 and	 chemicals	 that	 interact	 with	 a	 given	 chemical	 are	 given
below:

What	is	the	minimum	cost	of	shipping	the	chemicals	and	how	should	the
chemicals	be	packed	into	containers?

10.12	 The	 road	 intersection	 shown	 in	 Figure	 10.14	 needs	 a	 traffic	 signal	 to
handle	the	traffic	flow.	If	cars	from	two	different	lanes	could	collide,	then
cars	from	these	two	lanes	will	not	be	permitted	to	enter	the	intersection	at
the	 same	 time.	What	 is	 the	minimum	number	 of	 signal	 phases	 that	 are
needed	to	ensure	safe	traffic?



Figure	10.14:	A	road	intersection	in	Exercise	10.12

10.13	 A	 graph	 G	 of	 order	 n	 has	 (G)	 =	 (G)	 =	 k,	 where	 (G)	 is	 the
independence	number	of	G.	Furthermore,	for	every	k-coloring	of	G,	there
is	 a	 unique	 partition	 of	 V(G)	 into	 color	 classes	 such	 that	 every	 two
distinct	color	classes	have	different	cardinality.	Show	that	Δ(G)	=	n	−	1,
where	Δ(G)	is	the	maximum	degree	of	G.

10.14	 For	 a	 class	 	 of	 graphs,	 define	 ( )	 as	 the	maximum	value	 of	 (G)
among	all	graphs	G	in	 	(if	this	maximum	exists).	A	class	G	of	graphs
consists	of	all	graphs	G	of	order	n	and	size	m	for	which	m	≤	4n	−	4	and
having	 the	property	 that	 if	G	 	 	 and	H	 is	 an	 induced	 subgraph	of	G,
then	H	 	 .	Determine	 ( ).	[Hint:	First	determine	an	upper	bound	for	
( )	 from	 the	 fact	 that	 (G)	 ≤	 1	 +	max{ (H)},	where	 the	maximum	 is
taken	over	all	induced	subgraphs	H	of	G.]

10.15	Let	A	be	a	set	of	cardinality	n	≥	1,	say	A	=	{a1,	a2,	…,	an}	and	let	S	be	a
collection	of	pairs	of	elements	of	A.	Consider	those	functions	f	:	A	→	N
having	the	property	that	the	two	elements	in	each	pair	in	S	have	distinct
images.	Among	these	functions,	let	g	be	one	whose	range	has	minimum
cardinality.	How	is	this	related	to	a	problem	in	graph	theory?

10.16	(a)	Prove	that	every	bipartite	graph	is	perfect.

(b)	Determine	whether	the	complement	of	the	Petersen	graph	is	perfect.

10.3	Edge	Coloring



In	addition	to	coloring	the	regions	of	a	map	and	coloring	the	vertices	of	a	graph,
it	 is	 also	 of	 interest	 to	 color	 the	 edges	 of	 a	 graph.	 An	 edge	 coloring	 of	 a
nonempty	graph	G	 is	 an	 assignment	 of	 colors	 to	 the	 edges	 of	G,	 one	 color	 to
each	edge,	such	that	adjacent	edges	are	assigned	different	colors.	The	minimum
number	of	colors	that	can	be	used	to	color	the	edges	of	G	is	called	the	chromatic
index	(or	sometimes	the	edge	chromatic	number)	and	is	denoted	by	 ′(G).	An
edge	coloring	that	uses	k	colors	is	a	k-edge	coloring.	In	Figure	10.15,	a	4-edge
coloring	of	a	graph	G	is	given.

Figure	10.15:	A	4-edge	coloring	of	a	graph

Let	G	be	a	graph	containing	a	vertex	v	with	deg	v	=	k	≥	1.	Then	there	are	k
edges	 incident	with	 v.	 Any	 edge	 coloring	must	 assign	 k	 distinct	 colors	 to	 the
edges	incident	with	v	and	so	 ′(G)	≥	deg	v	=	k.	In	particular,

for	every	nonempty	graph	G.

Example	10.11	The	graph	G	of	Figure	10.15	has	chromatic	index	4.

Solution.	Since	Δ(G)	=	3	for	the	graph	G	of	Figure	10.15,	it	follows	that	 ′(G)
≥	3.	Since	 there	 is	a	4-edge	coloring	of	G	 shown	in	Figure	10.15,	 it	 follows
that	 ′(G)	≤	4.	Hence	 ′(G)	=	3	or	 ′(G)	=	4.	But	which	is	it?	We	show	that	
′(G)	=	4.

Assume,	 to	 the	contrary,	 that	 there	exists	 a	3-edge	coloring	of	G,	 using	 the
colors	 1,	 2	 and	 3,	 say.	 Then	 every	 vertex	 of	 degree	 3	 is	 incident	 with	 edges
colored	1,	2	and	3.	In	particular,	the	three	edges	incident	with	u	are	colored	1,	2
and	 3.	We	may	 assume,	without	 loss	 of	 generality,	 that	uv	 is	 colored	 1,	 ux	 is
colored	2	and	uz	is	colored	3.	Since	vx	is	adjacent	to	both	uv	and	ux,	the	edge	vx
must	be	colored	3.	Similarly,	vz	must	be	colored	2.	Since	xy	is	adjacent	to	both
ux	and	vx,	 the	edge	xy	must	be	 colored	1.	By	 the	 same	 reasoning,	 the	 edge	yz
must	 be	 colored	 1.	 However,	 xy	 and	 yz	 are	 adjacent	 edges	 colored	 1.	 This	 is



impossible.	Therefore,	 ′(G)	=	4,	as	we	claimed.

For	 the	graph	G	of	Figure	10.15,	we	now	know	 that	 ′(G)	=	1	+	Δ(G).	 Of
course,	we	 knew	 that	 ′(G)	 ≥	 Δ(G),	 as	 this	 inequality	 holds	 for	 all	 nonempty
graphs.	In	what	must	be	considered	the	fundamental	theorem	on	edge	colorings,
Vadim	G.	 Vizing	 showed	 that	 if	 one	 knows	 the	 maximum	 degree	 of	 a	 graph
(which,	of	course,	is	very	easy	to	determine),	then	we	are	very	close	to	knowing
the	chromatic	 index	of	 the	graph.	Since	 the	proof	of	Vizing’s	 theorem	 is	quite
involved,	we	omit	it.

Theorem	10.12	(Vizing’s	Theorem)	For	every	nonempty	graph	G,	either

Vadim	Vizing	was	born	on	March	25,	1937	in	Kiev	in	Ukraine.	After	World
War	 II	 his	 family	 was	 forced	 to	 move	 to	 the	 Novosibirsk	 region	 of	 Siberia
because	his	mother	was	half-German.	He	began	his	study	of	mathematics	at	the
University	 of	 Tomsk	 in	 1954	 and	 graduated	 in	 1959.	He	was	 then	 sent	 to	 the
famous	Steklov	 Institute	 in	Moscow	 to	 study	 for	 a	Ph.D.	His	 area	 of	 research
was	 function	 approximation,	 which	 he	 did	 not	 like.	 Because	 his	 request	 to
change	his	area	of	research	was	not	granted,	he	did	not	complete	his	degree	and
returned	to	Novosibirsk	in	1962.	He	then	studied	at	the	Mathemtical	Institute	of
the	Academy	of	Sciences	in	Academgorodoc,	where	he	obtained	a	Ph.D.	in	1966
without	a	 formal	supervisor	but	with	 the	assistance	of	Alexander	Zykov.	 (Like
many	mathematicians,	Vizing’s	interests	included	music,	books	and	chess.)

While	 in	 Novosibirsk,	 Vizing	 started	 working	 on	 a	 problem	 that	 involved
coloring	the	wires	of	a	network.	As	he	studied	the	problem,	he	became	interested
in	more	theoretical	questions.	He	then	proved	the	famous	theorem	which	bears
his	name	(Theorem	10.12).	This	paper	was	submitted	to	the	prestigious	journal
Doklady,	 only	 to	 have	 it	 rejected	 because	 of	 the	 referee	 found	 it	 to	 be
uninteresting.	 The	 paper	 was	 finally	 published	 in	 1964	 in	 the	 journal	Metody
Diskretnogo	Analiza,	a	local	journal	in	Novosibirsk.	By	the	time	it	appeared,	the
result	 had	 already	 become	 quite	 well	 known,	 primarily	 because	 it	 had	 been
mentioned	 to	 others	 by	 Zykov.	 When	 Vizing	 was	 asked	 what	 makes	 a
mathematical	result	outstanding,	he	replied:

A	mathematician	should	do	research	and	find	new	results,	and	then	time
will	decide	what	is	important	and	what	is	not!

By	Vizing’s	theorem	then,	the	chromatic	index	of	every	nonempty	graph	G	is
one	of	two	numbers,	namely	Δ(G)	or	Δ(G)	+	1.	Let’s	look	at	some	well-known



graphs,	beginning	with	cycles.	For	every	cycle	Cn,	n	≥	3,	we	have	Δ(Cn)	=	2,	so	
′(Cn)	=	2	or	 ′(Cn)	=	3.	If	n	is	even,	then	we	may	simply	alternate	the	colors	1

and	2	about	the	edges	of	Cn,	arriving	at	an	edge	coloring.	On	the	other	hand,	if	n
is	odd	and	we	attempt	to	alternate	the	colors	1	and	2	about	the	edges	of	Cn,	then
the	final	edge	of	Cn	will	be	colored	the	same	as	the	first	edge.	Since	these	two
edges	are	adjacent,	a	contradiction	is	produced.	Thus,	 ′(Cn)	=	3	if	n	≥	3	is	odd.
Edge	colorings	of	some	cycles	are	illustrated	in	Figure	10.16.

A	simple	observation	concerning	edge	colorings	will	be	useful.	Let	there	be
given	an	edge	coloring	of	a	graph	G	of	order	n.	Any	two	edges	of	G	that	are

Figure	10.16:	Coloring	the	edges	of	cycles

colored	the	same	cannot	be	adjacent,	of	course.	This	says	that	we	can	never	have
more	 than	 n/2	 edges	 of	 G	 that	 are	 colored	 the	 same.	 If	 n	 is	 odd,	 then	 the
maximum	number	of	edges	that	can	be	colored	the	same	is	therefore	(n	−	1)/2.	In
particular,	for	the	graph	Cn,	where	n	≥	3	is	odd,	no	more	than	(n	−	1)/2	edges	can
be	 colored	 the	 same	and	no	more	 (n	 −	 1)/2	+	 (n	 −	 1)/2	=	n	−	1	 edges	 can	be
colored	with	two	colors.	This	observation	says	that	 ′(Cn)	≥	3	if	n	≥	3	is	odd.

The	observation	above	provides	us	with	the	following	more	general	result.

Theorem	10.13	Let	G	be	a	graph	of	odd	order	n	and	size	m.	If

then	 ′(G)	=	1	+	Δ(G).

Proof.	In	any	edge	coloring	of	G,	no	more	than	(n	−	1)/2	edges	can	be	colored
the	same.	Therefore,	no	more	 than	(n	−	1)Δ(G)/2	edges	can	be	colored	with
Δ(G)	 colors.	 Since	 m	 >	 (n	 −	 1)Δ(G)/2,	 it	 follows	 that	 ′(G)	 >	 Δ(G).	 By
Vizing’s	theorem,	 ′(G)	≤	1	+	Δ(G)	and	so	 ′(G)	=	1	+	Δ(G).

Perhaps	you	have	already	observed	that	determining	the	chromatic	index	of	a



graph	G	is	the	same	as	attempting	to	partition	the	edge	set	of	G	into	a	minimum
number	 of	 independent	 sets	 of	 edges	 (matchings)	 or	 to	 decompose	G	 into	 a
minimum	 number	 of	 1-regular	 subgraphs.	 If	 each	 1-regular	 subgraph	 in	 the
decomposition	is	a	spanning	subgraph	of	G,	then	we	are	now	asking	is	whether
G	 is	 1-factorable.	 Consequently,	 there	 is	 a	 very	 close	 connection	 between	 the
chromatic	 index	 of	 a	 graph	 and	 several	 topics	we	 discussed	 in	 Chapter	 8.	As
with	 1-factorizations	 of	 graphs,	 there	 are	 applications	 of	 graphs	 involving
scheduling	that	are	related	to	edge	colorings.

Example	 10.14	Alvin	 (A)	has	 invited	 three	 married	 couples	 to	 his	 summer
house	for	a	week:	Bob	(B)	and	Carrie	 (C)	Hanson,	David	 (D)	and	Edith	 (E)
Irwin	and	Frank	(F)	and	Gena	(G)	Jackson.	Since	all	six	guests	enjoy	playing
tennis,	he	decides	 to	set	up	some	 tennis	matches.	Each	of	his	six	guests	will
play	 a	 tennis	 match	 against	 every	 other	 guest	 except	 his/her	 spouse.	 In
addition,	 Alvin	 will	 play	 a	 match	 against	 each	 of	 David,	 Edith,	 Frank	 and
Gena.	If	no	one	is	to	play	two	matches	on	the	same	day,	what	is	a	schedule	of
matches	over	the	smallest	number	of	days?

Solution.	 First,	 we	 construct	 a	 graph	 H	 whose	 vertices	 are	 the	 people	 at
Alvin’s	summer	house,	so	V(H)	=	{A,	B,	C,	D,	E,	F,	G},	where	two	vertices	of
H	 are	 adjacent	 if	 the	 two	vertices	 (people)	 are	 to	 play	 a	 tennis	match.	 (The
graph	H	is	shown	in	Figure	10.17.)	To	answer	the	question,	we	determine	the
chromatic	index	of	H.

Figure	10.17:	The	graph	H	in	Example	10.14

First,	observe	that	Δ(H)	=	5.	By	Theorem	10.12,	 ′(H)	=	5	or	 ′(H)	=	6.	Also,
the	order	of	H	is	n	=	7	and	its	size	is	m	=	16.	Since



it	follows	by	Theorem	10.13	that	 ′(H)	=	6.	Figure	10.17	gives	a	6-edge	coloring
of	H,	which	provides	a	schedule	of	matches

that	takes	place	over	the	smallest	number	of	days	(namely	six).

We	now	make	 an	observation	 about	 the	 chromatic	 index	of	 regular	 graphs.
By	Vizing’s	theorem,	if	G	is	an	r-regular	graph,	r	≥	1,	then	 ′(G)	=	r	or	 ′(G)	=	r
+	1.	Furthermore,	 ′(G)	=	r	if	and	only	if	G	is	1-factorable.	Specifically,

An	r-regular	graph	G,	r	≥1,	has	chromatic	index	r	if	and	only	if	G	is	1-
factorable.

Let’s	now	turn	to	edge	colorings	of	complete	graphs.	Certainly,	 ′(K2)	=	1	=
Δ(K2).	Since	K3	=	C3,	it	follows	that	 ′(K3)	=	3	=	1+	Δ(K3).	However,	 ′(K4)	=	3
as	the	edge	coloring	in	Figure	10.18	shows.

Since	Kn	 is	 (n	 −	 1)-regular,	 it	 follows	 that	 ′(Kn)	 =	 n	 −	 1	 or	 ′(Kn)	 =	 n.
Necessarily,	 ′(Kn)	=	n	−	1	if	and	only	if	Kn	 is	1-factorable.	By	Theorem	8.18,
this	only	occurs	when	n	is	even.

Figure	10.18:	An	edge	coloring	of	K4

Theorem	10.15	For	every	integer	n	≥	2,

We	now	consider	another	scheduling	problem.



Example	 10.16	Five	 individuals	 have	 been	 invited	 to	 a	 bridge	 tournament
(bridge	is	a	game	of	cards):	Allen	(A),	Brian	(B),	Charles	(C),	Doug	 (D),	Ed
(E).	A	game	of	bridge	is	played	between	two	2-person	teams.	Every	2-person
team	 {X,	 Y}	 is	 to	 play	 against	 all	 other	 2-person	 teams	 {W,	 Z},	 where,	 of
course,	neither	W	nor	Z	is	X	or	Y.	If	the	same	team	cannot	play	bridge	more
than	once	on	the	same	day,	then	what	is	the	fewest	number	of	days	needed	for
all	possible	games	of	bridge	to	be	played.	Set	up	a	schedule	for	doing	this	in
the	smallest	number	of	days.	What	graph	models	this	situation?

Solution.	 We	 construct	 a	 graph	 G	 whose	 vertices	 consist	 of	 all	 2-person
teams,	where	we	denote	a	vertex	by	XY	rather	than	{X,	Y}.	Two	vertices	(2-
person	teams)	XY	and	WZ	are	adjacent	in	G	if	they	will	be	playing	a	game	of
bridge.	The	graph	G	is	shown	in	Figure	10.19.	Observe	that	G	 is	 isomorphic
to	the	Petersen	graph.

Figure	10.19:	The	graph	in	Example	10.16

We	now	determine	the	chromatic	index	of	G.	Since	G	is	3-regular,	 ′(G)	=	3
if	and	only	if	G	is	1-factorable.	However,	as	Petersen	himself	pointed	out,	G	is
not	 1-factorable.	 Therefore,	 ′(G)	 =	 4.	 A	 4-edge	 coloring	 of	G	 is	 shown	 in
Figure	10.19.	This	creates	a	schedule	of	games

that	takes	place	over	the	smallest	number	of	days.

We	have	already	observed	that	 ′(Cn)	=	Δ(Cn)	if	n	≥	4	is	even.	Of	course,	Cn



is	a	bipartite	graph	if	n	≥	4	is	even.	Denes	König	observed	that	 ′(G)	=	Δ(G)	for
every	 bipartite	 graph.	 There	 are	 several	 different	 proofs	 of	 this	 result.	 In	 the
proof	given	below,	we	use	the	fact	that	every	r-regular	bipartite	graph,	r	≥	1,	is	1-
factorable	 (Theorem	8.15).	 This	 proof	 uses	 an	 argument	 that	 is	 reminiscent	 of
the	proof	of	Theorem	2.7.

Theorem	10.17	(König’s	Theorem)	If	G	is	a	nonempty	bipartite	graph,	then

Proof.	Suppose	that	Δ(G)	=	r	≥	1.	First,	we	show	that	there	exists	an	r-regular
bipartite	graph	H	containing	G	as	a	subgraph.	This	is	certainly	true	if	G	is	r-
regular,	in	which	case,	we	let	H	=	G.	So	we	can	assume	that	 (G)	<	r.	Suppose
that	the	partite	sets	of	G	are	UO	and	WO.	Let	G′	be	another	copy	of	G	where
the	partite	set	UO	is	denoted	by	U′O	and	WO	is	denoted	by	W′O	in	G′.	Join	each
vertex	 in	G	 whose	 degree	 is	 less	 than	 r	 to	 the	 corresponding	 vertex	 in	G′,
producing	a	bipartite	graph	G1	with	partite	sets	U1	=	UO W′O	and	W1	=	WO
U′O	such	that	 (G1)	=	 (G)	+	1.	If	G	is	r-regular,	then	H	=	G	has	the	desired
property.	If	 (G1)	‹	r,	then	let	G′1	be	another	copy	of	G1	where	the	partite	set
U1	is	denoted	by	U′1	and	W1	is	denoted	by	W′1	in	G′1.	Join	each	vertex	in	G1
whose	 degree	 is	 less	 than	 r	 to	 the	 corresponding	 vertex	 in	G′

1,	 producing	 a
bipartite	graph	G2	with	partite	sets	U2	=	U1 	W′1	and	W2	=	W1	 	U′1	such	that
(G2)	=	2	+	 (G).	We	 continue	 this	 until	we	 arrive	 at	 an	 r-regular	 bipartite
graph	Gk,	where	k	=	r	−	 (G),	containing	G	as	a	subgraph,	in	which	case	we
let	H	=	Gk.

By	Theorem	8.15,	H	is	1-factorable	and	so	contains	r	1-factors	F′1,	F′2,	…,	F
′r.	For	1	≤	 i	≤	 r,	 let	Fi	 be	 the	1-regular	 subgraph	of	G	where	E(Fi)	=	E(F′i)	
E(G).	Then	E(F1),	E(F2),	…,	E(Fr)	are	edge	color	classes	of	G	and	so	 ′(G)	≤	r.
Since	Δ(G)	=	r,	it	follows	that	 ′(G)	≥	r	and	so	 ′(G)	=	r.

Interest	 in	 edge	 colorings	 of	 graphs	was	 undoubtedly	 inspired	 by	 the	 Four
Color	Problem.	We	have	seen	that	coloring	the	regions	of	a	map	is	equivalent	to
coloring	the	vertices	of	a	certain	connected	planar	graph	(the	dual	of	the	map).
To	 be	 sure,	 research	 in	 coloring	 graphs	 was	 motivated	 by	 the	 Four	 Color
Problem.	We	 have	 seen	 that	 Alfred	 Bray	 Kempe’s	 “proof”	 of	 the	 Four	 Color
Theorem,	 although	 incorrect,	 contained	 some	 important	 ideas,	 which	 were
expanded	 upon	 and	 eventually	 led	 to	 a	 correct	 proof	 of	 the	 theorem.	 We
mentioned	earlier	that	another	mathematician	who	gave	an	incorrect	“proof”	of



the	 Four	 Color	 Theorem	 was	 Peter	 Guthrie	 Tait.	 However,	 he	 too	 developed
several	interesting	ideas	that	gave	rise	to	new	areas	of	study.

By	a	cubic	map	is	meant	a	connected	3-regular,	bridgeless,	plane	graph.	Tait
observed	that	if	the	regions	of	all	cubic	maps	can	be	colored	with	four	or	fewer
colors,	 then	 the	 regions	 of	 all	 plane	 graphs	 can	 be	 colored	with	 four	 or	 fewer
colors.	Certainly,	there	is	no	reason	to	consider	maps	(plane	graphs)	containing
vertices	 of	 degree	 1	 or	 2.	 If	 a	 plane	 graph	H	 contains	 vertices	 of	 degree	 4	 or
more,	then	a	cubic	map	G	can	be	constructed	from	H	by	drawing	a	sufficiently
small	circle	C	about	each	such	vertex	v	of	H,	 identifying	a	new	vertex	at	each
point	of	intersection	of	C	with	 the	edges	 incident	with	v	and	deleting	v	and	 its
incident	 edges	 (see	Figure	10.20(a)).	Now	 if	 the	 regions	of	 the	 resulting	cubic
map	G	 can	 be	 colored	with	 four	 or	 fewer	 colors,	 then	 such	 a	 coloring	 can	 be
used	 to	produce	a	coloring	of	 the	 regions	of	H	using	 four	or	 fewer	colors	 (see
Figure	10.20(b)).

Figure	10.20:	Coloring	the	regions	of	cubic	maps

Of	 course,	 concentrating	 on	 cubic	maps	 (rather	 than	 arbitrary	maps)	would
only	be	useful	if	it	could	be	proved	that	the	regions	of	every	cubic	map	could	be
colored	with	four	or	fewer	colors.	What	Tait	proved	is	the	following.

Theorem	10.18	 The	 regions	 of	 a	 cubic	map	G	 can	 be	 colored	with	 four	 or
fewer	colors	if	and	only	if	 ′(G)	=	3.

Indeed,	3-edge	colorings	of	3-regular	graphs	became	known	as	Tait	colorings.
Certainly,	every	3-regular	graph	G	has	even	order	and	if	G	is	Hamiltonian,	then



the	edges	of	a	Hamiltonian	cycle	C	can	be	colored	alternately	red	and	blue,	say.
Removing	these	edges	yields	a	1-factor,	whose	edges	can	be	colored	green,	say.
Tait	was	able	to	show	that	if	all	3-connected,	3-regular	planar	graphs	are	3-edge
colorable,	then	all	cubic	maps	are	3-edge	colorable.	By	Theorem	10.18,	to	prove
the	Four	Color	Theorem,	it	suffices	to	show	therefore	that	every	3-connected,	3-
regular	planar	graph	has	chromatic	index	3.	Of	course,	if	every	3-connected,	3-
regular	 planar	 graph	 is	 Hamiltonian,	 then	 the	 proof	 is	 complete.	 Since	 Tait
believed	these	graphs	were	Hamiltonian,	he	had	convinced	himself	 that	he	had
proved	 the	 Four	 Color	 Theorem.	 Although	 the	 defect	 in	 Tait’s	 “proof”	 was
eventually	 recognized,	 it	 wasn’t	 until	 1946	 when	William	 Tutte	 presented	 an
example	of	 a	 3-connected,	 3-regular	 planar	graph	 that	 is	 not	Hamiltonian.	See
Figure	10.21.

Figure	10.21:	The	Tutte	graph

Exercises	for	Section	10.3

10.17	Determine	the	chromatic	index	of	each	graph	in	Exercise	10.1.

10.18	For	a	positive	integer	k,	let	H	be	a	2k-regular	graph	of	order	4k	+	1.	Let	G
be	obtained	from	H	by	removing	a	set	of	k	−	1	independent	edges	from
H.	Prove	that	 ′(G)	=	Δ(G)	+	1.

10.19	Seven	softball	teams	from	Atlanta,	Boston,	Chicago,	Denver,	Louisville,
Miami	 and	 Nashville	 have	 been	 invited	 to	 participate	 in	 tournaments,
where	each	team	is	scheduled	to	play	a	certain	number	of	the	other	teams
(given	below).	No	team	is	to	play	more	than	one	game	each	day.	Set	up	a



schedule	of	games	over	the	smallest	number	of	days.

10.20	Let	G	be	a	bipartite	graph	with	partite	sets	U	and	W	where	Δ(G)	=	r	≥	1
and	 (G)	<	r.

(a)	Use	Theorem	8.15	to	show	that	if	there	is	an	r-regular	bipartite	graph
H	containing	G	as	a	subgraph	such	that	at	least	one	of	the	partite	sets
of	H	is	U	or	W,	then	 ′(G)	=	Δ(G)	(thereby	giving	an	alternative	proof
of	König’s	Theorem	10.17	for	such	graphs	G).

(b)	Show	that	there	need	not	be	an	r-regular	bipartite	graph	H	containing
G	as	a	subgraph	such	that	at	least	one	of	the	partite	sets	of	H	is	U	or
W.

10.4	Excursion:	The	Heawood	Map	Coloring
Theorem

We	mentioned	that	during	an	11-year	period	in	the	19th	century	(1879-1890),	the
Four	 Color	 Theorem	 was	 considered	 to	 have	 been	 verified	 by	 Alfred	 Bray
Kempe.	However,	all	this	changed	in	1890	when	Percy	John	Heawood	wrote	that
he	had	discovered	an	error	Kempe	had	made	in	the	way	he	interchanged	colors
in	what	were	to	be	called	Kempe	chains.	It	was	not	accidental	that	Heawood	had
read	Kempe’s	 paper.	When	Arthur	 Cayley	 asked,	 at	 a	meeting	 of	 the	 London
Mathematical	 Society	 in	 1878,	 for	 the	 status	 of	 the	 Four	 Color	 Conjecture,
Henry	 Smith	 was	 presiding	 over	 the	 meeting.	 Smith	 was	 a	 Professor	 of
Geometry	 at	Oxford	University	who	would	mention	 this	 conjecture	 during	his
lectures.	 Soon	 afterwards,	Heawood	 became	 a	 student	 of	 Smith	 and	Heawood
became	interested	in	this	problem	after	hearing	about	it	from	Smith.

In	his	paper,	Heawood	produced	a	counterexample	(see	Figure	10.22),	not	to
the	statement	Kempe	was	 trying	 to	prove	 (the	Four	Color	Theorem)	but	 to	 the
proof	 Kempe	 had	 given.	 Indeed,	 Kempe’s	 proof	 was	 quite	 ingenious	 and
Heawood	was	able	to	use	Kempe’s	technique	to	show	that	every	map	could	be
colored	with	five	or	fewer	colors.	We’ve	seen	that	this	is	equivalent	to	showing



that	every	planar	graph	can	be	colored	with	five	or	fewer	colors.

Figure	10.22:	A	counterexample	to	Kempe’s	proof

Theorem	 10.19	 (The	 Five	 Color	 Theorem)	 Every	 planar	 graph	 is	 5-
colorable.

Proof.	Assume,	 to	 the	 contrary,	 that	 this	 statement	 is	 false.	Then	 among	 all
planar	graphs	that	are	not	5-colorable,	let	G	be	the	one	of	smallest	order.	Since
G	is	not	5-colorable,	the	order	of	G	is	necessarily	6	or	more.

By	Corollary	9.3,	 the	minimum	degree	of	every	planar	graph	never	exceeds
5.	Now	let	v	be	a	vertex	of	G	such	that	deg	v	=	 (G).	Therefore,	deg	v	≤	5.	The
graph	G	−	v	is	clearly	planar	and	since	the	order	of	G	−	v	is	less	than	the	order	of
G,	the	graph	G	−	v	 is	5-colorable.	Let	a	5-coloring	of	G	−	v	be	given.	If	either
degv	≤	4	or	deg	v	=	5	and	the	number	of	colors	used	to	color	the	neighbors	of	v
is	 less	 than	5,	 then	one	of	 these	 five	colors	 is	available	 for	v.	Assigning	v	 this
color	 produces	 a	 5-coloring	 of	 G,	 which	 is	 a	 contradiction.	 Hence	 we	 may
assume	that	deg	v	=	5	and	all	five	colors	have	been	used	for	the	neighbors	of	v.
Consequently,	we	have	the	situation	pictured	in	Figure	10.23.



Figure	10.23:	A	step	in	the	proof	of	Theorem	10.19

Suppose	 that	 there	 is	 no	 v2	 −	 v5	 path	 in	G	 −	 v,	 all	 of	 whose	 vertices	 are
colored	 red	or	 blue	 (so	 there	 is	 no	 red-blue	Kempe	 chain	 in	G	 −	v	 containing
both	v2	to	v5).	In	this	case,	let	S	be	the	set	of	all	red	and	blue	vertices	of	G	−	v
connected	to	v5	by	a	red-blue	path.	Certainly,	v5	 	S	but,	by	assumption,	v2	 	S.
Now	interchange	the	colors	of	the	vertices	belonging	to	S.	Therefore,	v5	is	now
colored	 red	 but	 v2	 remains	 red.	 Hence	 the	 color	 blue	 is	 now	 available	 for	 v.
Coloring	v	blue	produces	a	5-coloring	of	G.	However,	this	is	impossible;	so	there
must	be	a	v2	−	v5	red-blue	path	in	G	−	v.

Since	G	−	v	 contains	 a	 red-blue	path	 from	v2	 to	v5,	 there	 can	be	no	green-
yellow	path	from	v1	to	v3.	Let	S′	be	the	set	of	vertices	in	G	−	v	connected	v1	by	a
green-yellow	 path.	 Then	 v1	 	S′	 but	 v3	 	 S′.	 Interchanging	 the	 colors	 of	 the
vertices	in	S′	results	in	v1	being	colored	yellow	but	does	not	change	the	color	of
v3.	However,	the	color	green	in	now	available	for	v.	Coloring	v	green	produces	a
5-coloring	of	G,	which	is	a	contradiction.

Heawood’s	paper,	which	pointed	out	Kempe’s	error	and	which	contained	a
proof	 of	 the	 Five	 Color	 Theorem,	 did	 not	 stop	with	 these	 however.	 Heawood
went	on	to	consider	other	ideas	in	his	paper.	Of	course,	a	major	consequence	of
Heawood’s	paper	is	that	doubt	had	returned	to	the	value	of	the	largest	chromatic
number	of	a	graph	that	could	be	embedded	on	the	sphere.	In	his	paper	Heawood
turned	his	attention	to	determining	these	values	for	other	surfaces.

For	a	nonnegative	integer	k,	let

where	 the	maximum	 is	 taken	 over	 all	 graphs	G	 that	 can	 be	 embedded	 on	 Sk.
After	Kempe’s	1879	paper,	it	was	believed	that	 (S0)	=	4.	Following	Heawood’s



1890	 paper,	 it	 was	 only	 known	 that	 (S0)	 =	 4	 or	 (S0)	 =	 5.	 After	 Appel	 and
Haken’s	announcement	in	1976,	it	was	known	once	and	for	all	that	 (S0)	=	4	(the
Four	Color	Theorem).	In	his	1890	paper,	Heawood	attempted	to	obtain	a	formula
for	 (Sk)	when	k	is	a	positive	integer;	in	fact,	he	thought	he	had	done	this.	What
he	did	do,	however,	was	to	obtain	an	upper	bound	for	 (Sk).

Theorem	10.20	For	every	positive	integer	k,

Proof.	Let	G	be	a	graph	that	can	be	embedded	on	Sk	and	let

From	this	definition	of	h,	one	can	show	that

(This	observation	will	be	useful	later.)	We	show	that	 (G)	≤	h.
Among	the	induced	subgraphs	of	G,	let	H	be	one	having	the	largest	minimum

degree.	By	Theorem	10.9,	 (G)	≤	1	+	 (H).	Suppose	that	H	has	order	n	and	size
m.	If	n	≤	h,	then	 (H)	≤	n	−	1	and	 (G)	≤	n	≤	h.	So	we	may	assume	that	n	>	h.

Since	G	is	embeddable	on	Sk,	so	too	is	H.	Hence	by	Corollary	9.11,

Thus	m	≤	3n	+	6	(k	−	1).	Therefore,

and	so

Consequently,



giving	the	desired	result.
According	 to	 Theorem	 10.20,	 (S1)	 ≤	 7.	 To	 show	 that	 (S1)	 =	 7,	 it	 is

necessary	to	show	that	there	is	a	graph	having	chromatic	number	7	that	can	be
embedded	on	 the	 torus.	As	 it	 turns	 out,	 there	 is	 such	 a	 graph,	 namely	K7	 (see

Figure	 10.24).	 Therefore,	 	 for	 k	 =	 1,	 as	 Heawood

showed.	To	show	that	this	formula	holds	for	every	positive	integer	k	would	take
another	78	years.	The	proof	was	accomplished	by	considering	a	large	number	of
cases	 involving	many	individuals.	The	 two	mathematicians	who	were	 the	most
instrumental	 in	 completing	 the	 proof,	 however,	 were	 Gerhard	 Ringel	 and	 Ted
Youngs.

Figure	10.24:	Embedding	K7	on	S1

Theorem	10.21	(The	Heawood	Map	Coloring	Theorem)	For	every	positive
integer	k,

Proof.	By	Theorem	10.20,	 .	Since	 (Sk)	is	an	integer,	it
follows	that

To	verify	that	 ,	we	need	only	show	that	there	exists	a	graph



that	can	be	embedded	on	Sk	and	has	chromatic	number	 .	There	 is	a
natural	candidate.	Let

Certainly,

Next,	we	show	that	Kn	can	be	embedded	on	Sk.	By	Theorem	9.12,

By	(10.1),

and	so	 .	Solving	this	inequality	for	k,	we	obtain

Since	k	is	an	integer,

that	is,	the	genus	of	Kn	is	at	most	k	and	Kn	can	be	can	be	embedded	on	Sk.	

Therefore,	we	see	that	the	proof	we	gave	of	Theorem	10.21	relies	on	knowing
a	formula	for	γ(Kn).	This	is	precisely	what	required	the	efforts	of	so	many	for	so
long.	Combining	Theorem	10.21	and	the	Four	Color	Theorem	allows	us	to	state
the	following.

Corollary	10.22	For	every	nonnegative	integer	k,



Exercises	for	Section	10.4

10.21	Show	that	the	proof	of	Theorem	10.20	fails	when	k	=	0.

10.22	 It	 is	 known	 that	 the	 Petersen	 graph	P	 is	 not	 planar.	 Thus	P	 cannot	 be
embedded	on	the	sphere.

(a)	Show	that	P	can	be	embedded	on	the	torus	however.
(b)	How	many	regions	does	P	have	when	it’s	embedded	on	the	torus?
(c)	What	is	the	minimum	number	of	colors	that	can	be	assigned	to	these

regions	so	that	every	two	adjacent	regions	are	colored	differently?

10.23	 Prove	 or	 disprove:	 If	G	 is	 a	 graph	 such	 that	 (G)	 ≤	 (Sk)	 for	 some
positive	integer	k,	then	G	can	be	embedded	on	Sk.

10.5	Exploration:	Modular	Coloring

The	 fundamental	 problem	 concerning	 coloring	 the	 vertices	 of	 a	 graph	G	deals
with	 finding	 the	 smallest	 positive	 integer	 k	 such	 that	 each	 vertex	 of	G	 can	 be
assigned	one	of	 the	“colors”	1,	2,	…,	k	 in	 such	a	way	 that	 every	 two	adjacent
vertices	 of	G	 are	 assigned	 different	 colors.	 This	 smallest	 integer	 k	 is	 then	 the
chromatic	 number	 (G)	 of	 G.	 The	 idea	 here	 is	 to	 distinguish	 every	 pair	 of
adjacent	vertices	of	G	in	some	way.	In	this	manner,	this	has	been	accomplished
by	means	 of	 a	 proper	 coloring	 the	 vertices	 of	G.	 That	 is,	 every	 two	 adjacent
vertices	are	distinguished	because	 they	are	colored	differently.	There	are	many
ways,	 however,	 of	 distinguishing	 every	 two	 adjacent	 vertices	 of	 a	 graph	 by
means	of	coloring	and	many	ways	of	generalizing	the	idea	of	coloring.	Some	of
these	ways	involve	different	choices	for	the	elements	that	are	used	for	colors.

For	an	integer	k	≥	2,	the	set	Zk	of	integers	modulo	k	consists	of	the	elements
0,	1,	2,	…,	k	−	1,	where	addition	in	Zk	is	defined	for	a,	b	 	Zk	by	a	+	b	=	c	if	0	≥
c	≥	k	−	1	and	c	=	a	+	b	(mod	k).	For	example,	1	+	1	=	0	in	Z2,	2	+	3	=	1	in	Z4
and	3	+	4	=	2	in	Z5.

For	a	nontrivial	connected	graph	G,	 let	c	 :	V(G)	→	Zk	be	a	vertex	coloring
where	adjacent	vertices	of	G	can	be	assigned	the	same	color.	By	the	color	sum
σ(v)	 of	 a	 vertex	 v	 in	G	 is	 meant	 the	 sum	 in	Zk	 of	 the	 colors	 of	 the	 vertices
adjacent	to	v,	that	is,



The	coloring	c	is	called	a	modular	k-coloring	if	σ(x)	≠	σ(y)	for	each	pair	x,	y	of
adjacent	vertices	of	G.	Thus	every	two	adjacent	vertices	of	G	are	distinguished
by	 the	 fact	 that	 they	 have	 different	 color	 sums.	 The	 modular	 chromatic
number	mc(G)	of	a	graph	G	 is	 the	minimum	k	 for	which	G	 has	 a	modular	k-
coloring.

Theorem	10.23	Every	nontrivial	connected	graph	has	a	modular	k-coloring
for	some	integer	k	≥	2.

Proof.	 Let	G	 be	 a	 nontrivial	 connected	 graph	 with	V(G)	 ={v1,	 v2,	 …,	 vn}.
Define	a	coloring	c	of	G	by	c(vi)	=	2i−1	for	1	≤	i	≤	n.	Let

Considering	c	:	V(G)	→	Zk,	it	follows	that	1	≤	σ(vi)	≤	k	for	all	i	(1	≤	i	≤	n)	and
σ(vi)	≠	σ(vj)	when	vi	and	vj	are	adjacent.	Hence	c	is	a	modular	k-coloring	of	G.

As	a	consequence	of	Theorem	10.23,	we	have	the	following.

Corollary	 10.24	 For	 every	 nontrivial	 connected	 graph	 G,	 the	 modular
chromatic	number	of	G	exists.

If	mc(G)	 =	 k	 for	 a	 nontrivial	 connected	 graph	 G,	 then	 every	 modular	 k-
coloring	c	of	G	results	in	a	vertex	coloring	using	the	elements	of	Zk	as	colors	and
such	that	every	two	adjacent	vertices	are	colored	differently.	Therefore,	this	is	a
proper	coloring	of	G	using	k	colors.	From	this,	it	follows	that

for	every	nontrivial	connected	graph	G.
For	 example,	 the	modular	 chromatic	 number	 of	 the	 graph	G	 =	P4	 ×	P2	 in

Figure	10.25	 is	 2.	The	 color	 assigned	 to	 a	 vertex	 v	 is	 placed	within	 the	 circle
representing	v	and	σ(v)	is	placed	next	to	the	vertex.



Figure	10.25:	A	modular	coloring	of	P4	×	P2

That	mc(P4	 ×	 P2)	 =	 2	 may	 not	 be	 surprising	 since	 P4	 ×	 P2	 is	 bipartite.
However,	the	graph	G	of	Figure	10.25	is	also	bipartite	but	mc(G)	≠	2.

Figure	10.26:	A	modular	coloring	of	a	bipartite	graph

While	 each	nontrivial	 path	 is	 a	 tree	with	modular	 chromatic	 number	 2,	 not
every	 tree	has	modular	chromatic	number	2.	We	show	for	 the	 tree	T	 in	Figure
10.27(a)	 that	mc(T)	 =	 3.	 Assume,	 to	 the	 contrary,	 that	mc(T)	 =	 2.	 Then	 there
exists	a	modular	2-coloring	c	of	T.	Because	of	the	symmetry	of	the	structure	of
T,	the	color	sums	of	the	vertices	of	T	are	those	shown	in	Figure	10.27(b).	Since
σ(w2)	=	σ(v8)	=	1,	it	follows	that	c(v5)	=	c(v7)	=	1.	This,	however,	contradicts	the
fact	that	σ(v6)	=	1.	Hence	mc(T)	≠	2	and	so	mc(T)	=	3.	A	modular	3-coloring	of	T
is	shown	in	Figure	10.27(c).	On	the	other	hand,	every	nontrivial	tree	has	modular
chromatic	number	2	or	3.



Figure	10.27:	A	tree	T	with	mc(T)	=	3

Theorem	10.25	If	T	is	a	nontrivial	tree,	then	mc(T)	=	2	or	mc(T)	=	3.

The	modular	chromatic	number	of	each	cycle	is	also	either	2	or	3.	However,
it	may	be	a	bit	surprising	which	cycles	have	modular	chromatic	number	3	(see
Exercise	10.25).

Theorem	10.26	For	each	integer	n	≥	3,

Exercises	for	Section	10.5

10.24	Prove	that	each	nontrivial	path	has	modular	chromatic	number	2.

10.25	For	each	n	≥	3,	prove	that	mc(Cn)	=	2	if	n	≡	0	(mod	4)	and	mc(Cn)	=	3	if
n	 	0	(mod	4).

10.26	Prove	that	if	G	is	a	complete	multipartite	graph,	then	mc(G)	=	 (G).



Chapter	11
Ramsey	Numbers

11.1	The	Ramsey	Number	of	Graphs

Except	 for	 a	 3-year	 period	 during	World	War	 II,	 the	William	 Lowell	 Putnam
mathematical	 competition	 for	 undergraduates	 has	 taken	 place	 every	 year	 since
1938.	 This	 exam,	 administered	 by	 the	Mathematical	 Association	 of	 America,
consists	 of	 (since	 1962)	 twelve	 challenging	 mathematical	 problems.	 This
competition	 was	 designed	 to	 stimulate	 a	 healthy	 rivalry	 in	 colleges	 and
universities	throughout	the	United	States	and	Canada.	The	1953	exam	contained
the	following	problem.

Problem	A2	The	complete	graph	with	 6	points	 (vertices)	and	 15	 edges	 has
each	edge	colored	red	or	blue.	Show	that	we	can	find	3	points	such	that	the	3
edges	joining	them	are	the	same	color.

This	problem	concerns	the	topic	of	Ramsey	numbers	in	graph	theory,	which
is	named	for	Frank	Plumpton	Ramsey,	who	was	born	on	February	22,	1903	 in
Cambridge,	 Cambridgeshire,	 England.	 Ramsey	 entered	Winchester	 College	 in
1915.	After	completing	his	education	there	in	1920,	he	went	to	Trinity	College,
Cambridge	on	a	scholarship	to	study	mathematics.	In	1924	he	was	elected	as	a
Fellow	 of	 King’s	 College,	 Cambridge,	 an	 especially	 notable	 honor	 since	 he
never	attended	King’s	College.

In	 1925	 Ramsey	 published	 his	 first	 major	 work:	 “The	 Foundations	 of
Mathematics.”	It	was	Ramsey’s	intent	to	improve	on	Principia	Mathematica	by
Bertrand	Russell	and	Alfred	North	Whitehead.	His	second	paper	“On	a	problem
of	formal	logic”	was	presented	to	the	London	Mathematical	Society.	It	was	this
paper	that	was	to	lead	to	concepts	and	a	theory	that	bear	his	name.

In	addition	to	mathematics,	Ramsey	was	deeply	interested	in	economics	and
philosophy.	His	work	on	economics	included	probability,	the	theory	of	taxation



and	optimal	 saving.	Philosophy	was	his	main	 interest,	however.	He	worked	 so
intensely	that	he	only	studied	four	hours	per	day,	which	left	him	time	to	do	other
things	 he	 enjoyed:	 tennis,	 walking,	 listening	 to	 music.	 His	 promising	 future
ended	abruptly	at	age	26	when	he	died	on	January	19,	1930.

Although	 Frank	Ramsey	 proved	 an	 even	more	 general	 theorem,	we	 state	 a
restricted	version	that	is	more	closely	connected	to	our	investigation	of	graphs.

Theorem	11.1	(Ramsey’s	Theorem)	For	any	k	+	1	≥	3	positive	integers	t,	n1,
n2,	…,	nk,	 there	exists	a	positive	 integer	n	such	 that	 if	each	of	 the	 t-element
subsets	of	the	set	{1,	2,	…,	n}	is	colored	with	one	of	the	k	colors	1,	2,	…,	k,
then	 for	 some	 integer	 i	with	 1	 ≤	 i	 ≤	 k,	 there	 is	 a	 subset	 S	 of	 {1,	 2,	…,	 n}
containing	ni	elements	such	that	every	t-element	subset	of	S	is	colored	i.

To	understand	how	Ramsey’s	Theorem	ties	in	with	graph	theory,	suppose	that
{1,	2,	…,	n}	is	the	vertex	set	of	the	complete	graph	Kn.	Let’s	see	what	Ramsey’s
Theorem	says	when	 t	=	1.	According	to	Ramsey’s	Theorem,	there	is	a	positive
integer	n	such	that	if	each	of	the	1-element	subsets	of	the	set	{1,	2,	…,	n},	that
is,	 if	each	of	 the	vertices	of	Kn,	 is	colored	with	one	of	 the	k	colors	1,	2,	…,	k,
then	there	are	ni	vertices	colored	i	for	some	integer	i	(1	≤	i	≤	k).	This	is	simply	a
variation	of	the	Pigeonhole	Principle	(see	Appendix	1).	In	fact,	the	integer

satisfies	the	condition.
What	Ramsey’s	Theorem	says	when	t	=	2	is	considerably	more	intriguing.	In

this	case,	each	2-element	 subset	of	 the	 set	{1,	2,	…,	n}	 is	assigned	one	of	 the
colors	1,	2,	…,	k,	which	can	be	interpreted	as	coloring	the	edges	of	the	complete
graph	Kn.	The	statement	of	Ramsey’s	Theorem	in	this	case	is	now	given.

Theorem	11.2	 (Ramsey’s	Theorem)	For	any	k	≥	2	positive	 integers	n1,	n2,
…,	nk,	there	exists	a	positive	integer	n	such	that	if	each	edge	of	Kn	is	colored
with	one	of	the	colors	1,	2,	…,	k,	then	for	some	integer	i	with	1	≤	i	≤	k,	there
exists	a	complete	subgraph	 	such	that	every	edge	of	 	is	colored	i.

A	nontechnical	interpretation	of	Ramsey’s	Theorem	might	go	something	like
this:	 Every	 sufficiently	 large	 structure,	 regardless	 of	 how	 disorderly	 it	 may
appear	to	be,	contains	an	orderly	substructure	of	any	prescribed	size.



The	special	case	of	Ramsey’s	Theorem	when	there	are	two	colors	(k	=	2)	will
be	of	particular	interest	to	us.	By	a	red-blue	coloring	of	a	graph	G	is	meant	an
assignment	of	the	colors	red	and	blue	to	the	edges	of	G,	one	color	to	each	edge.
Now	 let	F	 be	 a	 graph.	A	 subgraph	 of	G	 that	 is	 isomorphic	 to	F	 all	 of	whose
edges	are	colored	red	is	called	a	red	F.	If	all	of	the	edges	of	a	subgraph	of	G	that
is	isomorphic	to	F	are	colored	blue,	then	the	subgraph	is	called	a	blue	F.	Let	F1
and	F2	be	two	nonempty	graphs	and	let	Kn	be	the	complete	graph	of	order	n	for
some	 integer	n.	Now	let	 there	be	given	a	 red-blue	coloring	of	Kn.	 It’s	possible
that	a	red	F1	has	been	produced	in	Kn	or	a	blue	F2	or	both	−	or	neither!

By	Ramsey’s	theorem	then,	if	we	begin	with	two	complete	graphs	Ks	and	Kt
and	color	the	edges	of	a	sufficiently	large	complete	graph	Kn	red	or	blue	in	any
manner	whatsoever,	then	we	must	have	either	a	red	Ks	or	a	blue	Kt.	Therefore,	if
F1	 is	a	graph	of	order	s	and	F2	 is	a	graph	of	order	 t,	 then	 in	Kn	we	must	have
either	a	red	F1	or	a	blue	F2.

For	 two	 nonempty	 graphs	 F1	 and	 F2,	 the	 Ramsey	 number	 r(F1,	 F2)	 is
defined	as	the	smallest	positive	integer	n	such	that	if	every	edge	of	Kn	is	colored
red	 or	 blue	 in	 any	 manner	 whatsoever,	 then	 either	 a	 red	 F1	 or	 a	 blue	 F2	 is
produced.	 From	what	 was	mentioned	 above,	 the	 Ramsey	 number	 r(F1,	F2)	 is
defined.

In	order	to	show	that	r(F1,	F2)	=	n,	say,	two	statements	must	be	verified:

(1)	every	red-blue	coloring	of	Kn	contains	either	a	red	F1	or	a	blue	F2	 (which
shows	that	r(F1,	F2)	≤	n)	and

(2)	 there	exists	some	red-blue	coloring	of	Kn−1	having	neither	a	red	F1	nor	a
blue	F2	(which	shows	that	r(F1,	F2)	≥	n).

We	illustrate	this	by	determining	the	Ramsey	number	r(K3,	K3),	which	is	directly
related	to	the	problem	in	the	1953	Putnam	competition	mentioned	earlier.

Example	11.3	r(K3,	K3)	=	6.

Solution.	Let	there	be	given	a	red-blue	coloring	of	K6.	Consider	some	vertex
v1	 of	K6.	 Since	v1	 is	 incident	with	 five	 edges,	 it	 follows	 by	 the	 Pigeonhole
Principle	that	at	least	three	of	these	five	edges	are	colored	the	same,	say	red.
Suppose	that	v1	v2,	v1	v3,	v1	v4	are	red	edges,	as	shown	in	Figure	11.1.	If	any



of	 the	 edges	 v2	 v3,	 v2	 v4	 and	 v3	 v4	 is	 colored	 red,	 then	 we	 have	 a	 red	K3:
otherwise,	all	of	these	edges	are	colored	blue	and	a	blue	K3	is	formed.	Hence
r(K3,	K3)	≤	6.

Figure	11.1:	Three	red	edges	in	K6

To	 verify	 that	 r(K3,	K3)	 ≥	 6,	 we	 must	 show	 that	 there	 exists	 a	 red-blue
coloring	of	K5	that	produces	neither	a	red	K3	nor	a	blue	K3.	Suppose	that	V(K5)	=
{v1,	v2,	…v5}.	Define	a	red-blue	coloring	of	K5	by	coloring	each	edge	of	the	5-
cycle	 (v1,	v2,	…,	v5,	v1)	 red	and	 the	 remaining	edges	blue,	as	 shown	 in	Figure
11.2,	 where	 the	 red	 edges	 are	 drawn	 in	 bold.	 Since	 this	 red-blue	 coloring
produces	neither	a	red	K3	nor	a	blue	K3,	it	follows	that	r(K3,	K3)	≥	6.

Figure	11.2:	A	red-blue	coloring	of	K5	that	avoids	a	red	K3	and	a	blue	K3

For	 two	 nonempty	 graphs	 F1	 and	 F2,	 there	 is	 an	 important	 observation
concerning	the	Ramsey	number	r(F1,	F2).	Suppose	that	F1	has	order	n1	and	F2
has	order	n2	and	that	max{n1,	n2}	=	n1,	say.	If	we	were	to	color	all	of	the	edges
of	 	 red,	 then	 no	 red	F1	 can	 be	 produced	 because	 	 doesn’t	 have
enough	vertices.	No	blue	F2	can	be	produced	either	because	no	edges	of	
are	colored	blue.	Therefore,



That	is,	the	Ramsey	number	r(F1,	F2)	of	two	graphs	F1	and	F2	is	always	at	least
as	large	as	the	larger	of	the	orders	of	F1	and	F2.

We	now	determine	the	Ramsey	numbers	r(K2,	Kt)	for	every	integer	t	>	2.

Example	11.4	For	every	integer	t	≥	2,

Solution.	Since	t	 is	 the	maximum	of	 the	orders	of	K2	and	Kt,	 it	 follows	 that
r(K2,	Kt)	≥	t.	Now,	let	there	be	given	a	red-blue	coloring	of	Kt.	If	any	edge	of
Kt	 is	 colored	 red,	 then	 a	 red	K2	 is	 produced.	Otherwise,	 all	 edges	 of	Kt	 are
colored	blue	and	a	blue	Kt	is	produced.	Therefore,	r(K2,	Kt)	≤	t.

Let	 F1	 and	 F2	 be	 two	 nonempty	 graphs	 and	 suppose	 that	 r(F1,	 F2)	 =	 n.
Therefore,	n	is	the	smallest	positive	integer	for	which	every	red-blue	coloring	of
Kn	 produces	 either	 a	 red	F1	 or	 a	 blue	F2.	 Since	 the	 actual	 colors	 used	 when
discussing	Ramsey	numbers	are	irrelevant,	n	is	also	the	smallest	positive	integer
such	that	every	red-blue	coloring	of	Kn	produces	either	a	blue	F1	or	a	red	F2	(or
equivalently,	a	red	F2	or	a	blue	F1).	Therefore,

that	is,	the	order	of	the	graphs	F1	and	F2	in	r(F1,	F2)	doesn’t	matter.	In	particular,
r(Kt,	K2)	=	t	for	t	≥	2.

In	Example	11.3,	it	was	shown	that	r(K3,	K3)	=	6.	This	Ramsey	number	has	a
well-known	popular	interpretation:

How	many	people	must	be	present	at	a	party	to	be	guaranteed	that	there
are	three	mutual	acquaintances	or	three	mutual	strangers?

For	any	gathering	of	n	people,	say,	we	construct	 the	complete	graph	Kn	whose
vertices	are	 the	people	and	where	a	 red	edge	 joins	 two	vertices	 (people)	 if	 the
two	people	are	acquaintances	and	a	blue	edge	joins	two	vertices	(people)	if	the
two	 people	 are	 strangers.	 That	 is,	 the	 answer	 to	 this	 problem	 is	 the	 Ramsey
number	r(K3,	K3),	which	we	have	seen	is	6.	How	many	people	must	be	present	at
the	 party	 to	 be	 guaranteed	 that	 there	 are	 three	 mutual	 acquaintances	 or	 four
mutual	strangers?



Example	11.5	r(K3,	K4)	=	9.

Solution.	Let	there	be	given	a	red-blue	coloring	of	G	=	K9.	We	show	that	there
is	either	a	 red	K3	or	a	blue	K4.	First,	observe	 that	 it	cannot	occur	 that	every
vertex	 of	 K9	 is	 incident	 with	 exactly	 three	 red	 edges;	 for	 otherwise,	 the
subgraph	of	K9	 induced	 by	 the	 red	 edges	 of	K9	 is	 3-regular	 of	 order	 9,	 but
there	is	no	such	graph.	Therefore,	there	are	two	possibilities.

Case	1.	There	exists	a	vertex	v1	 that	 is	 incident	with	4	red	edges.	Let	v1v2,
v1v3,	v1v4	and	v1v5	be	red	edges	in	K9.	If	any	two	of	the	vertices	v2,	v3,	v4	and	v5
are	joined	by	a	red	edge,	then	a	red	K3	is	produced;	otherwise,	every	two	of	the
vertices	v2,	v3,	v4	and	v5	are	joined	by	a	blue	edge,	producing	a	blue	K4.

Case	2.	There	exists	a	vertex	v1	that	is	incident	with	6	blue	edges.	Let	v1v2,
v1v3,	v1v4,	v1v5,	v1	v6	and	v1	v7	be	blue	edges	and	let

Since	r(K3,	K3)	=	6,	 the	subgraph	H	=	G[S]	=	K6	contains	either	a	 red	K3	or	a
blue	K3.	 If	H	 contains	 a	 red	K3,	 so	does	K9.	 If	H	 contains	 a	 blue	K3,	 then	K9
contains	a	blue	K4.

Therefore,	r(K3,	K4)	≤	9.	Consider	 the	red-blue	coloring	of	K8	 in	which	 the
red	 and	 blue	 subgraphs	 of	 K8	 are	 shown	 in	 Figures	 11.3(a)	 and	 11.3(b),
respectively.	That	is,	the	blue	subgraph	is	the	graph	 	of	C8	(see	Section	5.5).
Since	there	is	neither	a	red	K3	nor	a	blue	K4,	it	follows	that	r(K3,	K4)	≥	9.

Figure	11.3:	A	red-blue	coloring	of	K8

Recall	 that	 the	 complement	 	 of	 a	 graph	G	 is	 that	 graph	 having	 the	 same



vertex	set	as	G	and	such	that	two	vertices	are	adjacent	in	 	if	and	only	if	these
vertices	 are	 not	 adjacent	 in	G.	 If	G	 has	 order	 n,	 then	 	 has	 order	 n	 as	 well.
Furthermore,	every	edge	of	Kn	belongs	either	 to	G	 or	 to	 .	 If	we	 think	of	 the
edges	of	G	as	being	colored	red	and	the	edges	of	 	as	being	colored	blue,	then
we	have	a	reformulation	of	the	Ramsey	number	of	two	graphs.	Let	F1	and	F2	be
two	nonempty	graphs.	The	Ramsey	number	r(F1,	F2)	 is	 the	 smallest	 positive
integer	 n	 such	 that	 if	G	 is	 any	 graph	 of	 order	 n,	 then	G	 contains	 a	 subgraph
isomorphic	 to	F1	 or	G	 contains	 a	 subgraph	 isomorphic	 to	F2.	Despite	 the	 fact
that	Ramsey	numbers	can	be	studied	in	terms	of	graphs	and	their	complements,
we	will	continue	study	them	by	means	of	red-blue	colorings	of	complete	graphs.

We	know	that	r(K2,	Kt)	=	t	for	every	integer	t	≥	2,	r(K3,	K3)	=	6	and	r(K3,	K4)
=	 9.	 The	 numbers	 r(Ks,	 Kt)	 were	 the	 first	 Ramsey	 numbers	 to	 be	 studied
extensively	 and,	 consequently,	 are	 often	 referred	 to	 as	 the	 classical	 Ramsey
numbers.	In	fact,	r(Ks,	Kt)	is	commonly	expressed	as	r(s,	t).	Despite	the	fact	that
the	Ramsey	numbers	r(Ks,	Kt)	have	been	studied	for	decades,	relatively	few	are
known	for	s,	t	≥	3.	Indeed,	the	only	known	Ramsey	numbers	r(Ks,	Kt)	for	3	≤	s	≥
t	are

In	particular,	r(K5,	K5)	is	not	known.	However,	it	is	known	that

For	many	 Ramsey	 numbers	 r(Ks,	Kt)	 whose	 values	 are	 unknown,	 bounds	 are
known	that	are	often	far	apart.	For	example,

Recall	 that	 a	 set	 S	 of	 vertices	 in	 a	 graph	 G	 is	 independent	 if	 every	 two
vertices	in	S	are	nonadjacent	in	G.	 In	particular,	 if	S	 is	a	set	of	s	vertices	of	G
such	that	G[S]	=	Ks,	then	S	 is	an	 independent	set	 in	 the	graph	 .	Expressed	 in
terms	 of	 graphs	 and	 their	 complements,	 the	 Ramsey	 number	 r(Ks,	Kt)	 is	 the
smallest	positive	integer	n	such	that	for	every	graph	G	of	order	n,	either	Ks	is	a
subgraph	of	G	or	Kt	is	a	subgraph	of	 .	Equivalently,	the	Ramsey	number	r(Ks,
Kt)	 is	 the	 smallest	positive	 integer	n	 such	 that	 every	graph	of	order	n	contains



either	 a	 complete	 subgraph	 of	 order	 s	 or	 an	 independent	 set	 of	 t	 vertices.	For
example,	since	r(K3,	K3)	=	6	and	r(K3,	K4)	=	9,	if	G	is	a	graph	of	order	6,	7	or	8
that	does	not	contain	a	triangle,	then	G	must	contain	an	independent	set	of	three
vertices;	 while	 if	 G	 is	 a	 graph	 of	 order	 9	 that	 does	 not	 contain	 a	 complete
subgraph	of	order	4,	then	G	must	contain	an	independent	set	of	three	vertices.

We	now	 look	 at	 some	Ramsey	numbers	 r(F1,	F2)	where	F1	 and	F2	 are	 not
both	complete.	Our	next	example	is	to	determine	the	Ramsey	number	r(P3,	K3).
The	 two	 graphs	 P3	 and	K3	 are	 shown	 in	 Figure	 11.4.	 How	 do	 we	 begin	 to
determine	 r(P3,	K3)?	 Since	 the	 maximum	 of	 the	 orders	 of	P3	 and	K3	 is	 3,	 it
follows	that	r(P3,	K3)	≥	3.	If	we	color	one	edge	of	K3	red	and	the	other	two	edges
blue,	 then	 there	 is	 neither	 a	 red	P3	 nor	 a	 blue	K3;	 that	 is,	 we’ve	 been	 able	 to
avoid	both	a	red	P3	and	a	blue	K3.	Therefore,	r(P3,	K3)	≥	4.

Figure	11.4:	Determining	r(P3,	K3)

On	the	other	hand,	the	red-blue	coloring	of	K4	shown	in	Figure	11.5	(where,
again,	a	bold	edge	represents	a	red	edge)	also	avoids	a	red	P3	and	a	blue	K3.	So
r(P3,	K3)	≥	5.	If	we	have	(great)	difficulty	finding	a	red-blue	coloring	of	K5	that
avoids	both	a	red	P3	and	a	blue	K3,	then	there	is	reason	to	suspect	that	r(P3,	K3)
=	5.	We	now	give	a	 formal	argument	 that	5	 is,	 in	 fact,	 the	Ramsey	number	of
these	two	graphs.

Figure	11.5:	A	red-blue	coloring	of	K4	that	avoids	a	red	P3	and	a	blue	K3

Example	11.6	r(P3,	K3)	=	5.

Solution.	First	we	show	that	r(P3,	K3)	≥	5.	As	we	saw,	the	red-blue	coloring
of	K4	shown	in	Figure	11.5	avoids	both	a	red	P3	and	a	blue	K3	and	so	r(P3,	K3)
≥	5.



It	remains	therefore	to	show	that	r(P3,	K3)	≤	5.	Let	a	red-blue	coloring	of	K5
be	given.	Consider	a	vertex	v1	in	K5.	If	v1	is	incident	with	two	red	edges,	then	a
red	P3	is	produced.	Otherwise,	v1	is	incident	with	at	most	one	red	edge.	So	there
are	 three	blue	edges	incident	with	v1,	say	v1v2,	v1v3	and	v1v4	are	blue	edges.	 If
there	 is	 a	blue	edge	 joining	any	 two	of	 the	vertices	v2,	v3	and	v4,	 a	blue	K3	 is
produced.	Otherwise,	v2v3	and	v3v4	are	red	edges,	producing	a	red	P3.	Therefore,
r(P3,	K3)	≤	5.

Of	course,	P3	=	K1,	2	and	so	r(K1,	2,	K3)	=	5.	We	now	determine	r(K1,	3,	K3)
by	providing	an	argument	different	from	those	that	we’ve	previously	given.

Example	11.7	r(K1,	3,	K3)	=	7.

Solution.	First	we	show	that	r(K1,	3,	K3)	≥	7.	Consider	the	red-blue	coloring	of
K6	shown	in	Figure	11.6,	where	again	each	red	edge	of	K6	is	drawn	as	a	bold
edge.	 Since	 the	 red	 subgraph	 is	 2K3	 and	 the	 blue	 subgraph	 is	K3,3,	 there	 is
neither	a	red	K1,	3	nor	a	blue	K3	in	this	coloring	and	so	r(K1,	3,	K3)	≥	7.

Next	we	show	that	r(K1,	 3,	K3)	≤	7.	Assume,	 to	 the	contrary,	 that	 there	 is	a
red-blue	coloring	of	K7	that	produces	neither	a	red	K1,	3	nor	a	blue	K3.	Consider
a	vertex	v1	in	K7.	Then	at	most	two	red	edges	are	incident	with	v1	and	so	at	least
four	blue	edges	are	incident	with	v1,	say	v1vi	(2	≤	 i	≤	5)	are	blue	edges.	 If	any
edge	joining	two	of	the	vertices	in	{v2,	v3,	v4,	v5}	is	colored	blue,	then	we

Figure	11.6:	A	red-blue	coloring	of	K6	that	avoids	a	red	K1,	3	and	a	blue	K3

have	a	blue	K3,	which	is	a	contradiction.	Hence	all	edges	joining	any	two	of	the
vertices	in	{v2,	v3,	v4,	v5}	are	colored	red.	In	particular,	the	edges	v2v3,	v2v4	and
v2v5	are	colored	red	and	so	we	have	a	red	K1,	3,	which	is	a	contradiction.



The	two	Ramsey	numbers	that	we	have	just	determined	are	of	the	type	r(F1,
F2),	where	F1	is	a	tree	and	F2	is	a	complete	graph.	Remarkably,	in	the	very	first
issue	 of	 the	 Journal	 of	 Graph	 Theory	 (in	 1977),	 Vašek	 Chvátal	 established	 a
simple	formula	for	r(F1,	F2),	where	F1	is	any	tree	and	F2	is	any	complete	graph.
Although	the	proof	is	a	bit	intricate,	it	is	simpler	than	one	might	expect	for	such
a	general	result.	Recall,	by	Theorem	4.9,	that	if	G	is	a	graph	such	that	deg	v	≤	k
−	1	for	every	vertex	v	of	G	and	T	is	a	tree	of	order	k,	then	the	graph	G	contains	a
subgraph	isomorphic	to	T.

Theorem	11.8	For	every	tree	Tm	of	order	m	≥	2	and	every	integer	n	≥	2,

Proof.	First,	we	show	that	r(Tm,	Kn)	≥	(m	−	1)(n	−	1)	+	1.	Let	there	be	given	a
red-blue	 coloring	 of	 the	 complete	 graph	K(m−1)(n−1)	 of	 order	 (m	 −	 1)(n	 −	 1)
such	that	the	resulting	red	subgraph	is	(n	−	1)Km−1,	 that	 is,	 the	 red	subgraph
consists	of	n	−	1	copies	of	Km−1.	Since	each	component	of	 the	red	subgraph
has	order	m	−	1,	it	contains	no	connected	subgraph	of	order	greater	than	m	−
1.	In	particular,	there	is	no	red	tree	of	order	m.	The	blue	subgraph	is	then	the
complete	 (n	 −	 1)-partite	 graph	 Km−1,m−1,	 …,	 m−1,	 where	 every	 partite	 set
contains	exactly	m	−	1	vertices.	There	is	no	blue	Kn	either.	Since	this	red-blue
coloring	avoids	every	red	tree	of	order	m	and	a	blue	Kn,	it	follows	that

Next,	we	show	that	r(Tm,	Kn)	≤	(m	−	1)(n	−	1)	+	1.	We	proceed	by	induction
on	the	order	of	the	complete	graph	Kn.	First,	we	let	n	=	2	and	show	that

Let	there	be	given	a	red-blue	coloring	of	Km.	If	any	edge	of	Km	is	colored	blue,
then	a	blue	K2	is	produced.	Otherwise,	every	edge	of	Km	is	colored	red	and	a	red
Tm	is	produced.	Thus	r(Tm,	K2)	≤	m.	Therefore,	the	inequality

holds	when	n	=	2.	Assume,	for	every	tree	Tm	of	order	m	and	an	integer	k	≥	2,	that



In	 particular,	 this	 says	 that	 every	 red-blue	 coloring	 of	 K(m−1)(k−1)+1	 contains
either	a	red	Tm	or	a	blue	Kk.	We	show	that

Let	there	be	given	a	red-blue	coloring	of	K(m−1)k+1.	We	consider	two	cases.

Case	 1.	 There	 exists	 a	 vertex	 v1	 in	 the	 complete	 graph	 K(m−1)k+1	 that	 is
incident	with	(m	−	1)(k	−	1)	+	1	blue	edges.	Suppose	that	v1vi	is	a	blue	edge	for	2
≤	i	≤	(m	−	1)(k	−	1)	+	2	and	let

Consider	the	subgraph

By	 the	 induction	 hypothesis,	H	 contains	 either	 a	 red	 Tm	 or	 a	 blue	 Kk.	 If	 H
contains	a	red	Tm,	then	so	does	K(m−1)k+1.	Otherwise	H	contains	a	blue	Kk.	Since
v1	 is	 joined	to	every	vertex	of	H	by	a	blue	edge,	 it	 follows	 that	 there	 is	a	blue
Kk+1	in	K(m−1)k+1

Case	2.	Every	vertex	of	K(m−1)k+1	is	incident	with	at	most	(m	−	1)(k	−	1)	blue
edges.	So	every	vertex	of	K(m−1)k+1	 is	 incident	with	at	 least	 (m	−	1)	 red	edges.
Thus	 the	 red	 subgraph	 of	K(m−1)k+1	 has	minimum	 degree	 at	 least	 (m	 −	 1).	 By
Theorem	4.9,	this	red	subgraph	contains	a	red	Tm.	Therefore,	K(m−1)k+1	contains	a
red	Tm.

As	 a	 consequence	 of	Theorem	 11.8,	 for	 every	 positive	 integer	 s	 and	 every
integer	t	≥	2,	it	follows	that

The	next	example	deals	with	a	Ramsey	number	r(F1,	F2),	where	neither	F1
nor	F2	is	complete.

Example	11.9	r(K1,	3,	C4)	=	6.

Proof.	 Since	 the	 red-blue	 coloring	 of	 K5	 shown	 in	 Figure	 11.7	 produces
neither	a	red	K1,	3	nor	a	blue	C4,	it	follows	that	r(K1,	3,	C4)	≥	6.



It	 remains	 to	 verify	 that	 r(K1,	 3,	C4)	 ≤	 6.	 Let	 a	 red-blue	 coloring	 of	K6	 be
given,	where	we	denote	the	vertices	of	K6	by	v1,	v2,	…,	v6.	Since	r(K3,	K3)	=	6,
either	a	red	K3	or	a	blue	K3	is	produced.	We	consider	these	two	cases.

Case	1.	There	 is	a	red	K3	 in	K6.	We	may	assume	that	v1,	v2	and	v3	are	 the
vertices	of	a	red	K3.	If	there	is	no	red	K1,	3,	then	every	edge	joining	a	vertex	in
{v1,	v2,	v3}	and	a	vertex	in	{v4,	v5,	v6}	is	colored	blue,	producing	a	blue	C4.

Figure	11.7:	A	red-blue	coloring	of	K5	that	avoids	a	red	K1,	3	and	a	blue	C4

Case	2.	There	is	a	blue	K3	in	K6.	Assume	that	v1,	v2	and	v3	are	the	vertices	of
a	blue	K3.	If	some	vertex	in	{v4,	v5,	v6}	is	joined	to	two	vertices	in	{v1,	v2,	v3}	by
blue	edges,	then	a	blue	C4	is	produced.	If	some	vertex	in	{v4,	v5,	v6}	is	joined	to
all	three	vertices	in	{v1,	v2,	v3}	by	red	edges,	then	a	red	K1,	3	is	produced.	Thus,
we	may	assume	that	each	vertex	in	{v4,	v5,	v6}	is	joined	to	one	vertex	in	{v1,	v2,
v3}	by	a	blue	edge	and	 two	vertices	 in	{v1,	v2,	v3}	by	 red	edges.	 If	any	of	 the
edges	v4v5,	v4v6	and	v5v6	is	red,	then	there	is	a	red	K1,	3.	So	we	may	assume	that
v4,	v5	and	v6	are	the	vertices	of	a	blue	K3.	Then	any	two	blue	edges	that	 join	a
vertex	in	{v1,	v2,	v3}	and	a	vertex	in	{v4,	v5,	v6}	lie	on	a	blue	C4.

Exercises	for	Section	11.1

11.1	 Let	 F1	 be	 a	 graph	 of	 order	 s	 and	 F2	 a	 graph	 of	 order	 t.	 Prove	 that	
.

11.2	It	was	stated	that	r(K4,	K5)	=	25.	Show	that	if	G	is	a	graph	of	order	25	that
does	not	contain	K4	as	a	subgraph,	then	G	contains	five	vertices	no	two	of
which	are	adjacent.



11.3	Show	that	r(K4,	K4)	≤	18.

11.4	Determine	r(P3,	P3).

11.5	Determine	r(2K2,	P3).

11.6	Determine	r(K1,	3,	P3).

11.7	Determine	r(2K2,	2K2).

11.8	Determine	r(2K2,	3K2).

11.9	Determine	r(K1,	3,	K1,	3).

11.10	Determine	r(P3,	P3	 	P2).

11.11	Determine	r	(K1,	4,	K1,	4).

11.12	Determine	r(P4,	P4).

11.13	Determine	r(C4,	C4).

11.14	 Prove	 that	 r(K1,	 3,	C4)	 =	 6	 by	 a	 method	 different	 from	 that	 used	 in
Example	11.9,	namely,	by	(1)	assuming	that	there	is	a	red-blue	coloring
of	K6	 that	has	no	red	K1,	3	and	(2)	using	the	fact	 that	 the	only	3-regular
graphs	of	order	6	are	K3,	3	and	K3	×	K2.

11.15	Let	G	be	a	complete	graph	of	order	r(Ks,	Kt)	−	1,	where	s,	t	≥	2.	Prove
that	every	red-blue	coloring	of	G	produces	either	a	red	Ks−1	or	a	blue	Kt
−1.

11.16	 Prove	 that	 	 for	 every	 integer	 n	 ≥	 2.
[Hint:	Observe	that	

11.17	According	to	Exercise	11.16,	every	red-blue	coloring	of	a	complete	graph
of	 order	 	 results	 in	 a	 red	K3	 or	 a	 blue	Kn.	 Use	 this	 fact	 and	 the
combinatorial	 identity	 	 to	 obtain	 a	 result
involving	Ramsey	numbers.	[Note:	For	integers	k	and	n	with	0	≤	k	≤	n,	

	and	 .]

11.2	Turán’s	Theorem



For	 integers	 s,	 t	 ≥	 2,	 suppose	 that	 r(Ks,	Kt)	=	n.	 Then	 every	 graph	 of	 order	 n
contains	either	an	independent	set	of	s	vertices	or	a	complete	subgraph	of	order	t.
Therefore,	every	graph	of	order	n	(or	more)	that	fails	to	contain	an	independent
set	 of	 s	 vertices	must	 contain	Kt	 as	 a	 subgraph.	 There	 is	 even	 a	more	 natural
sufficient	condition	for	a	graph	of	a	certain	order	to	contain	a	complete	graph	of
a	specified	order	as	a	subgraph.

Suppose	that	G	 is	a	graph	of	order	n	≥	3	and	size	m.	Then	 .
Of	course,	if	 ,	then	G	=	Kn.	Consequently,	for	any	graph	H	of	order	n,
the	graph	G	 contains	 a	 subgraph	 isomorphic	 to	H.	Therefore,	 if	G	 has	 enough
edges,	 then	G	 has	 a	 subgraph	 isomorphic	 to	H.	 In	 particular,	 if	G	 has	 enough
edges,	then	G	contains	a	triangle.	But	what	is	“enough”	in	this	case?	Of	course,
if	n	=	3,	then	G	needs	three	edges	to	guarantee	that	G	has	a	triangle.	Let’s	next
answer	this	question	for	n	=	4.

The	4-cycle	C4	in	Figure	11.8	certainly	doesn’t	contain	a	triangle.	Indeed,	C4
is	 the	 only	 graph	 of	 order	 4	 and	 size	 4	 that	 doesn’t	 contain	 a	 triangle.
Consequently,	if	a	graph	G	of	order	4	has	four	edges,	then	there	is	no	guarantee
that	G	contains	a	triangle.	There	is	only	one	graph	of	order	4	and	size	5	and	this
graph,	denoted	by	G1,	is	shown	in	Figure	11.8.	Since	G1	has	a	triangle,	it	follows
that	every	graph	of	order	4	whose	size	is	at	least	5	contains	a	triangle.

Figure	11.8:	The	graphs	C4,	G1	and	H

Let’s	 next	 consider	 graphs	 of	 order	 5.	 Notice	 that	 the	 graph	H	 =	K2,	 3	 of
Figure	11.8	has	order	5	and	size	6	but	does	not	contain	a	triangle.	But	what	about
graphs	of	order	5	and	size	7?	Let	G	be	such	a	graph	where	uv	 	E(G)	and	x,	y
and	z	are	the	remaining	three	vertices	of	G.	If	G	does	not	contain	a	triangle,	then
each	vertex	in	S	=	{x,	y,	z}	is	adjacent	to	at	most	one	of	u	and	v.	Furthermore,
G[S]	contains	at	most	two	edges.	Thus	the	size	of	G	is	at	most	6,	a	contradiction.
That	is,	every	graph	of	order	5	and	size	7	contains	a	triangle.	The	graph	H	=	K3,3
has	order	6	and	size	9	and	does	not	contain	a	triangle.	It	can	be	shown	that	every
graph	of	order	6	 and	 size	10	 contains	 a	 triangle.	Therefore,	 if	G	 is	 a	 graph	of
order	n	where	3	≤	n	≤	6	and	size	 ,	then	G	contains	a	triangle.	In	1907	the
Dutch	mathematician	Willem	Mantel	showed	that	this	is	true	in	general.



Theorem	11.10	If	G	is	a	graph	of	order	n	≥	3	and	size	 ,	then	G
contains	a	triangle.

Proof.	Suppose	that	the	theorem	is	false.	Then	there	is	a	smallest	integer	n	for
which	 the	 statement	 is	 false.	So	 there	 is	 some	graph	G	 of	 order	n	 and	 size	

	that	contains	no	a	triangle.
Let	uv	 	E(G)	and	let	v1,	v2,	…,	vn−2	be	the	remaining	vertices	of	G.	Since	G

contains	no	triangle,	at	most	one	u	and	v	is	adjacent	to	vi	for	each	i	with	1	≤	i	≤	n
−	2.	This	implies	that	deg	u	+	deg	v	≤	n.	Let	H	=	G	−	u	−	v.	Then	H	has	order	n	−
2	and	size	m	where

and	so

Consequently,	H	contains	a	triangle,	as	does	G.	This	is	a	contradiction.

If	n	 is	even	in	Theorem	11.10,	say	n	=	2k,	 then	every	graph	of	order	n	and
size	m	>	k2	contains	a	triangle.	This	bound	can’t	be	improved	because	the	graph
Kk,	k	has	order	2k,	size	k2	and	contains	no	triangles.	In	fact,	the	graph	Kk,	k	is	the
only	graph	of	order	2k	and	size	k2	containing	no	triangle.	The	proof	of	this	fact	is
similar	to	that	of	the	preceding	result.

Theorem	11.11	For	every	integer	k	≥	2,	the	only	graph	of	order	2k	and	size	k2
that	contains	no	triangle	is	Kk,	k.

Proof.	Suppose	that	the	theorem	is	false.	Then	there	is	a	smallest	integer	k	≥	2
such	 that	 there	 exists	 a	 graph	G	 ≠	Kk,	 k	 having	 order	 2k	 and	 size	 k2	 that
contains	no	 triangle.	Since	K2,	2	 is	 the	only	graph	of	order	4	and	size	4	 that
contains	no	triangle,	it	follows	that	k	≥	3.

Let	uv	be	an	edge	of	G.	Each	of	the	remaining	2k	−	2	vertices	different	from	u
and	 v	 is	 adjacent	 to	 at	 most	 one	 of	 u	 and	 v.	 Thus	 at	 most	 2k	 −	 2	 edges	 are
adjacent	to	uv.	Hence,	the	graph	H	=	G	−	u	−	v	contains	at	least	k2	−	(2k	−1)	=	(k
−	1)2	edges.	If	H	contains	at	least	(k	−	1)2	+	1	edges,	then	it	follows	by	Theorem
11.10	 that	 H	 contains	 a	 triangle	 and	 so	 G	 contains	 a	 triangle,	 which	 is



impossible.	Therefore,	H	must	contain	exactly	(k	−	1)2	edges.	Since	H	contains
no	triangles,	H	=	Kk−1,	k−1.	Let	U1	and	V1	be	the	partite	sets	of	H.	Furthermore,
every	vertex	of	V(H)	=	U1	 	V1	is	adjacent	to	exactly	one	of	u	and	v.	If	u	(or	v)	is
adjacent	 to	both	a	vertex	of	U1	 and	a	vertex	of	V1,	 then	G	 contains	 a	 triangle,
which	 is	 impossible.	 Thus	 u	 is	 adjacent	 only	 to	 the	 vertices	 in	U1	 or	 to	 the
vertices	in	V1;	while	v	 is	adjacent	only	 to	 the	vertices	 in	 the	other	set,	 say	u	 is
adjacent	to	the	vertices	in	V1	and	v	is	adjacent	to	the	vertices	in	U1.	Thus	G	=	Kk,
k,	whose	partite	sets	are	U1	 	{u}	and	V1	 	{v}.

Combining	Theorems	11.10	and	11.11,	we	have	the	following.

Theorem	11.12	Let	G	be	a	graph	of	order	2k	≥	4.	If	the	size	of	G	is	at	least	k2
+	1	or	if	the	size	of	G	is	k2	and	G	≠	Kk,	k,	then	G	contains	a	triangle.

By	 proceeding	 in	 the	 same	 manner	 as	 above	 for	 graphs	 of	 odd	 order,	 the
following	result	can	be	established.

Theorem	11.13	Let	G	be	a	graph	of	order	2k	+	1	≥	3.	 If	 the	size	of	G	 is	at
least	k2	+	k	+	1	or	the	size	of	G	is	k2	+	k	and	G	≠	Kk,	k+1,	 then	G	contains	a
triangle.

Theorems	11.10–11.13	can	be	then	combined	into	a	single	theorem.

Corollary	11.14	Let	G	be	a	graph	of	order	n	≥	3.	If	 the	size	of	G	is	at	least	
	or	the	size	of	G	is	 	then	G	contains	a	triangle.

For	example,	according	to	Corollary	11.14,	if	G	is	a	graph	of	order	7	and	the
size	of	G	 is	at	 least	13	or	 the	size	of	G	 is	12	and	G	≠	K3,	 4,	 then	G	contains	a
triangle.

We	have	been	discussing	the	number	of	edges	required	of	a	graph	G	of	order
n	≥	3	which	guarantees	that	G	contains	K3	as	a	subgraph.	There	are	more	general
questions.	For	example,	for	integers	k	and	n	with	2	≤	k	≤	n,	what	is	the	smallest
positive	integer	m	such	that	every	graph	of	order	n	and	size	m	contains	Kk+1	as	a
subgraph?

While	the	problem	for	the	case	k	=	2	was	solved	by	Mantel,	the	origin	of	the
more	general	problem	goes	back	to	Paul	Turán,	a	mathematician	we	encountered
earlier.	 Turán	 was	 born	 on	 August	 28,	 1910	 in	 Budapest,	 Hungary.	 While	 a



student,	he	became	friends	with	Paul	Erd s,	Tibor	Gallai,	George	Szekeres	and
Esther	 Klein.	 Although	 Turán	 was	 to	 become	 best	 known	 for	 his	 work	 in
probabilistic	and	analytic	number	theory,	what	he	accomplished	in	graph	theory
was	to	lead	to	the	creation	of	the	area	of	extremal	graph	theory.

In	 1940,	 Szekeres	 wrote	 a	 letter	 to	 Paul	 Turán	 in	 which	 he	 described	 his
unsuccessful	attempt	to	prove	a	conjecture	of	William	Burnside.	After	receiving
the	letter	and	thinking	about	it,	Turán	was	led	to	the	following	question:

What	 is	 the	maximum	 number	 of	 edges	 in	 a	 graph	with	 n	 vertices	 not
containing	a	complete	subgraph	with	k	vertices?

Although	Turán	 found	 the	 question	 interesting,	 he	was	mainly	 concerned	with
analytic	number	theory	at	that	time.	However,	in	September	1940	he	was	placed
in	a	labor	camp	for	the	first	time.	One	day,	one	of	his	comrades	in	the	labor	camp
mentioned	Turán	by	name.	An	officer	heard	this	and	recognized	the	name	as	that
of	a	mathematician.	This	officer	was	able	to	assign	tasks	to	Turán	that	were	not
as	 physical	 and	 which	 kept	 Turán	 outdoors.	 While	 this	 was	 occurring,	 the
problem	he	thought	of	returned	to	him;	however,	he	had	no	paper	to	explore	the
details	of	his	ideas.	Nevertheless,	he	felt	great	pleasure	dealing	with	this	unusual
and	 beautiful	 problem.	 Finally,	 he	 obtained	 a	 complete	 solution,	 which	 gave
Turán	a	sense	of	elation.	Paul	Turán	spent	some	32	months	during	World	War	II
in	a	labor	camp.	From	1949	he	was	a	professor	at	Budapest	University.	He	died
on	September	26,	1976.

We	consider	Turán’s	question	in	the	following	form:	For	integers	k	and	n	with
2	≤	k	<	n,	what	is	the	maximum	size	of	a	graph	of	order	n	 that	fails	 to	contain
Kk+1	as	a	subgraph?	First	we	show,	for	any	two	integers	k	and	n	with	2	≤	k	<	n,
that	among	the	graphs	of	order	n	which	fail	to	contain	Kk+1	as	a	subgraph,	one	of
those	of	maximum	size	is	a	k-partite	graph.	Recall	that	a	graph	G	is	k-partite	if
V(G)	can	be	partitioned	into	k	independent	subsets.	Before	presenting	this	result,
let’s	recall	some	other	facts.

If	G	is	a	graph	of	order	n	and	size	m,	then	the	First	Theorem	of	Graph	Theory
tells	us	that

Let	V1	be	a	nonempty	proper	set	of	V(G)	and	let	G1	=	G	[V1].	Suppose	 that	G1
has	size	m1	and	that	there	are	m2	edges	joining	the	vertices	in	V1	and	vertices	not
in	V1.	 Therefore,	 the	 sum	 	 counts	 each	 edge	 in	G1	 twice	 and



each	edge	joining	a	vertex	of	V1	and	a	vertex	of	V(G)	−	V1	once;	that	is

This	is	illustrated	in	Figure	11.9.

Theorem	11.15	Let	k	and	n	be	integers	with	2	≤	k	<	n.	Among	all	graphs	of
order	n	that	do	not	contain	Kk+1	as	a	subgraph,	at	 least	one	of	 those	having
maximum	size	is	a	k-partite	graph.

Figure	11.9:	Summing	the	degrees	of	the	vertices	in	a	subgraph

Proof.	Suppose	that	the	result	is	false.	Then	there	is	a	smallest	integer	k	≥	2
and	an	integer	n	>	k	such	that	among	the	graphs	of	order	n	and	not	containing
Kk+1	 as	 a	 subgraph,	 none	 of	 those	 having	maximum	 size	m	 is	 k-partite.	 By
Corollary	11.14,	k	≥	3.

Let	G	 be	 a	 graph	 of	 order	 n	 and	 size	m	 that	 does	 not	 contain	Kk+1	 as	 a
subgraph.	Therefore,	by	assumption,	G	is	not	a	k-partite	graph.	Let	v	be	a	vertex
of	maximum	degree	in	G,	say	deg	v	=	Δ,	and	let	F	be	the	subgraph	induced	by
the	 neighbors	 of	 v	 in	G,	 that	 is,	F	 =	G[N(v)].	 Therefore,	 the	 order	 of	F	 is	 Δ.
Suppose	that	the	size	of	F	is	s.	Since	G	does	not	contain	Kk+1	as	a	subgraph	and
v	 is	 adjacent	 to	 every	 vertex	 of	F,	 it	 follows	 that	F	 does	 not	 contain	Kk	 as	 a
subgraph.	By	assumption,	among	all	graphs	of	order	Δ	that	do	not	contain	Kk	as
a	subgraph,	one	of	those	of	maximum	size,	say	s′,	 is	a	(k	−	1)-partite	graph	F′.
Thus	s′≥	s.

Define	the	graph	H	to	be	the	join	of	F′	and	 ,	that	is,

Since	F′	is	a	(k	−	1)-partite	graph,	H	is	a	k-partite	graph	of	order	n	and	size	s′	+



Δ(n	−	Δ)	that	does	not	contain	Kk+1	as	a	subgraph.	Therefore,	m	>	s′	+	Δ(n	−	Δ).
Now	observe	that

which	is	a	contradiction.

Let	n	≥	3	be	an	integer.	For	each	positive	integer	k	≤	n,	let	t1,	t2,	…,	tk	be	k
integers	such	that

For	every	two	integers	k	and	n	with	1	≤	k	≤	n,	the	integers	t1,	t2,	…,	tk	are	unique.
For	example,	if	n	=	11	and	k	=	3,	then	t1,	t2,	t3	is	3,	4,	4;	while	if	n	=	14	and	k	=
6,	then	t1,	t2,	…,	t6	 is	2,	2,	2,	2,	3,	3.	The	complete	k-partite	graph	 	 is	 the
Turán	graph	Tn,	k.	Thus	the	Turán	graph	Tn,	k	is	the	complete	k-partite	graph	of
order	n,	the	cardinalities	of	whose	partite	sets	differ	by	at	most	1.	The	cardinality
of	each	partite	set	of	Tn,	k	is	either	 n/k 	or	 n/k .	If	n/k	is	an	integer,	then	 n/k 	=	
n/k ;	while	if	n/k	is	not	an	integer	and	r	is	the	remainder	when	n	is	divided	by	k,
then	exactly	r	of	the	partite	sets	of	Tn,	k	have	cardinality	 n/k .

Theorem	11.16	Let	k	and	n	be	integers	with	1	≤	k	≤	n	and	n	≥	3.	Among	all	k-
partite	 graphs	 of	 order	 n,	 the	 Turán	 graph	 Tn,	 k	 is	 the	 unique	 graph	 of
maximum	size.

Proof.	Among	all	k-partite	graphs	of	order	n,	let	G	be	one	of	maximum	size.
Suppose	that	the	partite	sets	of	G	are	V1,	V2,	…,	Vk,	where	|Vi	|	=	ni(1	≤	i	≤	k)
and	1	≤	n1	≤	n2	≤	…	≤	nk.	Certainly

Suppose	 that	 nk	 −	 n1	 ≥	 2.	 Let	 ,	 that	 is,	 H	 can	 be
considered	 to	 be	 the	 complete	 k-partite	 graph	 of	 order	 n	 obtained	 from	G	 by
moving	a	vertex	v	in	the	largest	partite	set	Vk	of	G	to	the	smallest	partite	set	V1.
This	transfer	results	in	a	loss	of	n1	edges	in	G	that	are	incident	with	v	and	a	gain
of	nk	−	1	new	edges	in	H	but	with	no	other	changes.	Since	nk	−	n1	≥	2,	it	follows
that	H	has	more	edges	 then	G.	This	contradiction	 implies	 that	nk	−	n1	≤	1	 and



that	G	is	isomorphic	to	the	Turán	graph	Tn,	k.

More	generally,	we	have	the	following	result	of	Turán.

Theorem	11.17	(Turán’s	Theorem)	Let	k	and	n	be	 integers	with	2	≤	k	<	n.
Among	all	graphs	of	order	n	≥	3	that	do	not	contain	Kk+1	as	a	subgraph,	the
Turán	graph	Tn,	k	is	the	unique	graph	of	maximum	size.

We	mentioned	 earlier	 that	 for	 a	 given	 positive	 integer	 n	 and	 a	 graph	F	 of
order	at	most	n,	 there	 is	a	smallest	positive	 integer	m	 such	 that	every	graph	of
order	 n	 and	 size	 m	 contains	 a	 subgraph	 isomorphic	 to	 F.	 Turán’s	 theorem
determines	 the	exact	value	of	m	when	F	=	Kk+1	 for	every	pair	k,	n	 of	 integers
with	2	≤	k	<	n.

We	now	look	at	another	example	of	this	type,	namely,	F	=	Cn	for	n	≥	3.	That
is,	we	are	investigating	the	question:	How	many	edges	must	a	graph	of	order	n	≥
3	have	to	be	certain	that	it	is	Hamiltonian?	If	n	=	3,	then	the	only	Hamiltonian
graph	is	K3.	For	n	=	4,	four	edges	is	not	enough	as	the	graph	G1	of	Figure	11.10
shows.	We	have	seen	that	there	is	only	one	graph	of	order	4	and	size	5	(the	graph
G2	of	Figure	11.10)	and	this	graph	is	Hamiltonian.	For	n	=	5,	the	situation	is	a	bit
more	 complicated.	 However,	 the	 graph	 G3	 of	 order	 5	 and	 size	 7	 is	 not
Hamiltonian,	 so	 the	 number	 of	 edges	 needed	 for	 a	 graph	G	 of	 order	 5	 to	 be
Hamiltonian	is	certainly	at	least	8.	If	turns	out	that	8	is	the	answer.	Consequently,
if	 G	 is	 a	 graph	 of	 order	 n	 where	 3	 ≤	 n	 ≤	 5	 and	 size	 at	 least	 m,	 where	

,	then	G	is	Hamiltonian.	This	is	the	correct	number	for	every
integer	n	≥	3.	Before	showing	this,	we	need	to	recall	a	couple	of	things.	First,	by
Theorem	6.6,	if	G	is	a	graph	of	order	n	≥	3	such	that	deg	u	+	deg	v	≥	n	for	every
pair	u,	v	 of	 nonadjacent	 vertices	 of	G,	 then	G	 is	Hamiltonian.	Also	 for	 every
integer	k	≥	2,



Figure	11.10:	Investigating	the	maximum	size	of	a	non-Hamiltonian	graph

Theorem	11.18	Every	graph	of	order	n	≥	3	and	 size	 at	 least	 	 is
Hamiltonian.

Proof.	Assume	 that	 the	 statement	 is	 false.	 Then	 there	 is	 a	 smallest	 positive
integer	n	for	which	there	exists	a	graph	G	of	order	n	and	size	 	that
is	not	Hamiltonian.	Because	the	result	is	true	for	graphs	of	orders	3,	4	and	5,	it
follows	that	n	≥	6.	Since	G	is	not	Hamiltonian,	certainly,	G	is	not	complete.

Let	u	and	v	be	any	two	nonadjacent	vertices	of	G.	Then	the	size	of	H	=	G	−	u
−	v	is	 	−	deg	u	−	deg	v.	Since	the	order	of	H	is	n	−	2,	 the	size	of	H
cannot	exceed	 	and	so

Therefore,

By	Theorem	6.6,	G	is	Hamiltonian,	which	is	a	contradiction.

Exercises	for	Section	11.2

11.18	Prove	Theorem	11.13:	Let	G	be	a	graph	of	order	2k	+	1	≥	3.	If	the	size	of
G	is	at	least	k2	+	k	+	1	or	the	size	of	G	is	k2	+	k	and	G	≠	Kk,	k+1,	then	G
contains	a	triangle.

11.19	(a)	There	is	a	unique	graph	G	of	order	10	and	maximum	size	that	fails	to
contain	K4	as	a	subgraph.	What	is	G	and	what	is	its	size?

(b)	What	is	the	smallest	possible	integer	m	such	that	every	graph	of	order
10	and	size	m	contains	K4	as	a	subgraph.

11.20	Prove	that	every	graph	of	order	n	≥	4	and	size	at	least	2n	−	3	contains	a
subdivision	of	K4	−	e	as	a	subgraph.



11.21	Determine	the	Turán	graph	Tn,	k	when

(a)	n	=	5	and	k	=	1
(b)	n	=	7	and	k	=	2
(c)	n	=	6	and	k	=	3
(d)	n	=	6	and	k	=	4
(e)	n	=	k	=	5

11.22	Let	n	≥	3	be	an	integer.	What	is	the	smallest	positive	integer	m	for	which
every	graph	G	of	order	n	and	size	m

(a)	contains	P3	as	a	subgraph?

(b)	contains	P3	as	an	induced	subgraph?

11.23	Let	n	≥	2	be	an	integer.	What	is	the	smallest	positive	integer	m	for	which
every	graph	G	of	order	n	and	size	m	contains	a	vertex	of	degree	at	least	k
(where	1	≤	k	<	n)?

11.24	Let	n	≥	2	be	an	even	integer.	What	is	the	smallest	positive	integer	m	 for
which	every	graph	G	of	order	n	and	size	m	contains	a	1-factor?

11.25	Let	n	≥	2	be	an	integer.	What	is	the	smallest	positive	integer	m	for	which
every	graph	G	of	order	n	and	size	m	contains	a	Hamiltonian	path.	[Hint:
Use	Theorem	11.18].

11.26	Let	n	≥	4	be	an	integer.	What	is	the	smallest	positive	integer	m	for	which
every	 graph	G	 of	 order	 n	 and	 size	m	 contains	 a	 cycle	 of	 each	 of	 the
lengths	3,	4,	…,	n.	[Hint:	Consider	Exercise	11.25.]

11.27	 Use	 mathematical	 induction	 to	 prove	 Theorem	 11.18:	 Every	 graph	 of
order	n	≥	3	and	size	at	least	 	is	Hamiltonian.

11.3	Exploration:	Modified	Ramsey	Numbers

Recall	 for	 graphs	 F	 and	 H	 that	 the	 Ramsey	 number	 r(F,	 H)	 is	 the	 smallest
positive	integer	n	such	that	for	every	red-blue	coloring	of	Kn	there	is	either	a	red
F	or	a	blue	H.	For	example,	we	saw	that	r(K1,	3,	K3)	=	7;	that	is,	for	every	red-
blue	coloring	of	K7,	there	is	either	a	red	K1,	3	or	a	blue	K3.	Furthermore,	the	fact



that	r(K1,	3,	K3)	=	7	implies	that	there	is	a	red-blue	coloring	of	K6	that	produces
neither	a	red	K1,	3	nor	a	blue	K3.	In	fact,	the	red-blue	coloring	of	K6	for	which	the
red	graph	is	2K3	 (and	the	blue	graph	is	K3,3)	has	 this	property.	Since	r(F,	H)	=
r(H,	F)	 for	 all	 pairs	F,	H	 of	 graphs,	 it	 therefore	 follows	 that	 r(K3,	K1,	 3)	 =	 7,
implying	that	every	red-blue	coloring	of	K7	produces	either	a	red	K3	or	a	blue	K1,
3.

Suppose	 that	we	 are	 given	 an	 edge	 coloring	 of	 a	 graph	G	 (where	 adjacent
edges	 may	 be	 colored	 the	 same).	 If	 the	 edges	 of	 some	 subgraph	 F	 of	G	 are
colored	the	same,	then	this	is	called	a	monochromatic	F.	In	fact,	if	F	and	H	are
graphs	such	that	F	≅	H,	then	r(F,	H)	=	r(H,	F)	=	r(F,	F)	may	be	stated	as	 the
smallest	positive	integer	n	such	that	if	each	edge	of	Kn	is	colored	with	one	of	two
colors,	then	a	monochromatic	F	results.	This	leads	to	the	following	definition.

For	two	graphs	F	and	H,	the	monochromatic	Ramsey	number	mr(F,	H)	 is
the	smallest	positive	integer	n	such	that	if	each	edge	of	Kn	is	colored	with	one	of
two	colors,	then	a	monochromatic	F	or	a	monochromatic	H	results.	Certainly,

for	every	two	graphs	F	and	H.	Also,

Furthermore,	if	F	≅	H,	then	mr(F,	H)	=	r(F,	H)	and	if	F	 	H,	 then	mr(F,	H)	=
r(F,	F).	Since	r(K3,	K1,	3)	=	7,	it	follows	that	mr(K3,	K1,	3)	≤	7.

Example	11.19	mr(K3,	K1,	3)	=	6.

Solution.	The	red-blue	coloring	of	K5	for	which	the	red	subgraph	of	K5	is	C5
(and	so	the	blue	subgraph	is	C5	as	well)	has	neither	a	monochromatic	K3	nor	a
monochromatic	K1,	3.	Therefore,	mr(K3,	K1,	3)	≥	6.

Next,	 let	 there	 be	 given	 a	 red-blue	 coloring	 of	K6.	 Since	 r(K3,	K3)	 =	 6	 by
Example	 11.3,	 it	 follows	 that	 K6	 has	 a	 red	 K3	 or	 a	 blue	 K3,	 that	 is,	 a
monochromatic	K3	and	so	mr(K3,	K1,	3)	=	6.

Let	 the	 vertex	 set	 of	 the	 complete	 graph	Kn	 be	 a	 set	 of	n	 distinct	 positive
integers.	A	 coloring	 of	 the	 edges	 of	Kn	 is	 called	 a	minimum	 coloring	 if	 two
edges	ij	and	k 	are	colored	the	same	if	and	only	if	min{i,	j}	=	min{k,	 }:	while	a



coloring	of	the	edges	of	Kn	is	called	a	maximum	coloring	if	two	edges	ij	and	k
are	colored	the	same	if	and	only	if	max{i,	j}	=	max{k,	 }.

If,	 in	an	edge-colored	graph	G,	 the	edges	of	a	subgraph	F	 in	G	 are	 colored
differently,	then	F	 is	called	a	rainbow	F.	A	coloring	of	 the	edges	of	 the	graph
K5,	with	vertex	set	{1,	2,	3,	4,	5},	is	shown	in	Figure	11.11.	This	graph	contains
a	monochromatic	 triangle	 and	 a	 rainbow	 triangle,	 as	well	 as	 a	 triangle	with	 a
minimum	coloring	and	a	triangle	with	a	maximum	coloring.

Paul	Erd s	and	Richard	Rado	showed	for	a	sufficiently	large	integer	n	and	a
complete	graph	of	order	n	whose	vertices	are	1,	2,	…,	n	 and	whose	edges	are
colored	from	the	set	of	positive	integers	that	there	must	be	a	complete	subgraph
of	 prescribed	 order	 that	 is	 monochromatic	 or	 rainbow	 or	 has	 a	 minimum	 or
maximum	coloring.

Theorem	11.20	For	every	positive	integer	k,	there	exists	a	positive	integer	n
such	that	if	each	edge	of	Kn	with	vertex	set	{1,	2,	…,	n}	is	colored	from	the	set
of	positive	integers,	then	there	is	a	complete	subgraph	of	order	k	that	is	either
monochromatic	or	rainbow	or	has	a	minimum	or	maximum	coloring.

Figure	11.11:	A	coloring	of	K5

Arie	Bialostocki	and	William	Voxman	defined,	for	a	nonempty	graph	F,	 the
rainbow	Ramsey	number	RR(F)	 of	F	 as	 the	 smallest	 positive	 integer	n	 such
that	if	each	edge	of	the	complete	graph	Kn	is	colored	from	any	number	of	colors,
then	 either	 a	monochromatic	F	 or	 a	 rainbow	F	 is	 produced.	Rainbow	Ramsey
numbers	are	not	defined	for	all	graphs,	however.



Theorem	 11.21	 Let	 F	 be	 a	 graph	 without	 isolated	 vertices.	 The	 rainbow
Ramsey	number	RR(F)	is	defined	if	and	only	if	F	is	a	forest.

Proof.	First,	assume	that	F	is	not	a	forest.	Then	F	contains	a	cycle	C,	of	length
k	≥	3	say.	Let	n	be	an	integer	with	n	≥	k.	Let	the	vertex	set	of	a	complete	graph
Kn	be	{1,	2,	…,	n}	and	for	1	≤	i	≤	j	≤	n,	assign	the	color	i	to	the	edge	ij.	This	is
then	a	minimum	coloring	of	Kn.	We	may	assume	that	C	=	(v1,	v2,	…,	vk,	v1),
where	{v1,	v2,	…,	vk}	 	{1,	2,	…,	n}	and

Consequently,	 the	 edges	 v1v2	 and	v1vk	 are	 colored	 v1	 and	 the	 edge	 v2v3	 is	 not
colored	 v1.	 That	 is,	 with	 this	 coloring	 of	 edges	 of	 Kn,	 no	 cycle	 has	 a
monochromatic	or	a	rainbow	coloring.	Therefore,	if	F	is	any	graph	containing	a
cycle,	then	RR(F)	is	not	defined.

Next,	we	verify	the	converse.	Let	F	be	a	forest,	say	of	order	k.	By	Theorem
11.20,	 there	exists	a	positive	 integer	n	 such	 that	 if	 the	edges	of	Kn	are	colored
from	the	set	of	positive	integers	in	any	way	whatsoever,	then	there	is	a	complete
subgraph	 G	 of	 order	 k	 that	 is	 either	 monochromatic	 or	 rainbow	 or	 has	 a
minimum	or	maximum	coloring.	Since	G	contains	subgraphs	that	are	isomorphic
to	F,	if	there	is	either	a	monochromatic	G	or	a	rainbow	G,	then	there	is	either	a
monochromatic	F	or	a	rainbow	F.

Suppose	then	that	G	has	either	a	minimum	coloring	or	a	maximum	coloring.
Assume,	without	loss	of	generality,	that	G	has	a	minimum	coloring.	We	show	in
this	case	 that	G	 contains	a	 rainbow	F.	 If	F	 is	 disconnected,	 then	 edges	 can	be
added	to	F	to	produce	a	tree	T	of	order	k.	Select	some	vertex	r	of	T	as	the	root	of
T.	Suppose	that	V(G)	=	{v1,	v2,	…,	vk},	where

Label	 the	 vertices	 of	 T	 in	 the	 order	 vk,	 vk−1,	 vk−2,	 …,	 v1,	 according	 to	 the
distances	of	the	vertices	of	T	from	r.	That	is,	the	root	r	is	labeled	vk,	some	vertex
adjacent	to	r	is	labeled	vk−1	and	so	on,	up	to	a	vertex	of	T	farthest	from	r,	which
is	labeled	v1.	(See	Figure	11.12	for	an	illustration	of	this	when	k	=	8.)



Figure	11.12:	A	step	in	the	proof	of	Theorem	11.21

The	 minimum	 coloring	 of	G	 then	 assigns	 the	 colors	 v1,	 v2,	 …,	 vk−1to	 the
edges	of	T.	Since	this	produces	a	rainbow	T,	there	is	a	rainbow	F.	Hence	in	any
case	the	rainbow	Ramsey	number	RR(F)	is	defined.

Let’s	consider	an	example	of	this.

Example	11.22	RR(K1,	3)	=	6.

Solution.	Since	the	red-blue	coloring	of	K5	shown	in	Figure	11.13	has	neither
a	monochromatic	K1,	 3	 nor	 a	 rainbow	K1,	 3,	 it	 follows	 that	RR(K1,	 3)	 ≥	 6.	 It
remains	to	show	that	RR(K1,	3)	≤	6.	Let	there	be	given	a	coloring	of	the	edges
of	K6	 with	 no	monochromatic	K1,	 3.	 Consider	 a	 vertex	 v	 of	K6.	 Since	 v	 is
incident	with	 five	 edges	 and	 at	most	 two	 of	 these	 edges	 can	 be	 colored	 the
same,	 there	 are	 three	 edges	 incident	 with	 v	 that	 are	 colored	 differently,
producing	a	rainbow	K1,	3.

Figure	11.13:	A	red-blue	coloring	of	K5

Rainbow	Ramsey	numbers	for	a	single	graph	(a	forest)	were	extended	in	the



following	way	to	rainbow	Ramsey	numbers	for	 two	graphs.	For	 two	nonempty
graphs	F1	and	F2,	 the	rainbow	Ramsey	number	RR(F1,	F2)	 is	 defined	 as	 the
smallest	 positive	 integer	 n	 such	 that	 if	 each	 edge	 of	Kn	 is	 colored	 from	 any
number	of	colors,	 then	 there	 is	either	a	monochromatic	F1	or	a	 rainbow	F2.	 In
view	of	Theorem	11.21,	 it	wouldn’t	be	expected	 that	RR(F1,	F2)	 is	defined	for
every	pair	F1,	F2	of	nonempty	graphs.	The	conditions	under	which	RR(F1,	F2)	is
defined	is	a	consequence	of	a	result	of	Erdös	and	Rado.

Theorem	11.23	Let	F1	and	F2	be	 two	 graphs	without	 isolated	 vertices.	 The
rainbow	Ramsey	number	RR(F1,	F2)	exists	if	and	only	if	F1	is	a	star	or	F2	is	a
forest.

If	F1	and	F2	are	nonempty	graphs	of	orders	n1	and	n2,	respectively,	for	which
RR(F1,	F2)	is	defined,	then

Let’s	 consider	 two	 examples	 of	 these	 rainbow	Ramsey	 numbers	 involving	 the
path	P3	of	order	3	and	the	graph	F	shown	in	Figure	11.14.

Figure	11.14:	The	graphs	F	and	P3

Example	11.24	RR(F,	P3)	=	4.

Solution.	 Since	P3	 is	 a	 forest,	 it	 follows	 by	 Theorem	 11.23	 that	RR(F,	 P3)
exists.	Because	the	order	of	F	is	4,	RR(F,	P3)	≥	4.	First,	we	color	each	edge	of
K4	 from	 any	 number	 of	 colors.	 Suppose	 that	 there	 is	 no	 rainbow	P3.	 Since
every	two	adjacent	edges	of	K4	must	be	colored	the	same,	it	follows	that	every
two	edges	of	K4	are	colored	the	same.	Consequently,	there	is	a	monochromatic
F	and	so	RR(F,	P3)	=	4.

We	now	reverse	the	order	of	the	graphs	F	and	P3.



Example	11.25	RR(P3,	F)	=	5.

Solution.	Since	P3	=	K1,	2	is	a	star,	it	follows	by	Theorem	11.23	that	RR(F,	P3)
exists.	In	the	coloring	of	the	edges	of	K4	shown	in	Figure	11.15	using	colors	1,
2,	3,	there	is	neither	a	monochromatic	P3	nor	a	rainbow	F	and	so	RR(P3,	F)	≤
5.

Let	there	be	given	a	coloring	of	the	edges	of	K5	and	suppose	that	there	is	no
monochromatic	P3.	Let	 the	vertices	of	K5	be	v,	v1,	v2,	v3,	v4.	Since	 there	 is	no
monochromatic	P3,	we	may	assume	that	the	edge	vvi	is	colored	i	for	i	=	1,	2,	3,	4
(see	Figure	11.16).

Figure	11.15:	A	coloring	of	K4	that	avoids	a	monochromatic	P3	and	a	rainbow	F

Figure	11.16:	Coloring	the	edges	vvi	(i	=	1,	2,	3,	4)	in	K5

Since	K5	contains	no	monochromatic	P3,	the	edge	v1v2	is	not	colored	1	or	2.
However,	 regardless	 of	 whether	 v1v2	 is	 colored	 3,	 4	 or	 some	 other	 color,	 a
rainbow	F	is	produced.	Therefore,	RR(P3,	F)	=	5.

Examples	 11.24	 and	 11.25	 illustrate	 that,	 unlike	 Ramsey	 numbers,	 even	 if
RR(F1,	 F2)	 and	 RR(F2,	 F1)	 are	 both	 defined,	 then	 these	 rainbow	 Ramsey
numbers	need	not	be	equal.

Let	F1	and	F2	be	two	graphs	without	isolated	vertices,	where	F2	has	size	m.
For	an	integer	k	≥	m,	the	k-rainbow	Ramsey	number	RRk(F1,	F2)	is	the	smallest



positive	 integer	 n	 such	 that	 if	 the	 edges	 of	 Kn	 are	 colored	 in	 any	 manner
whatsoever	 from	 the	 set	 {1,	 2,	…,	 k},	 then	 either	 a	 monochromatic	 F1	 or	 a
rainbow	F2	is	produced.	It	turns	out	that	RRk(F1,	F2)	exists	for	every	two	graphs
F1	and	F2	without	isolated	vertices,	where	F2	has	size	m,	and	for	any	integer	k	≥
m.	Thus,	even	though	r(K3,	K3)	=	6	and	RR(K3,	K3)	is	not	defined,	RRk(K3,	K3)	is
defined	for	all	k	≥	3.	(See	Exercise	11.39.)

As	 an	 illustration,	 we	 compute	 RR3(2K2,	 K3).	 Observe	 that	 the	 only
connected	 graphs	F	 not	 containing	 2K2	 are	 those	 where	 every	 two	 edges	 are
adjacent,	which	is	then	either	a	star	or	K3.

Example	11.26	RR3(2K2,	K3)	=	6.

Solution.	The	coloring	of	K5	with	three	colors,	say	red,	blue	and	green,	shown
in	Figure	11.17	(where	bold	edges	are	red,	standard	edges	are	blue	and	dashed
edges	are	green)	has	no	monochromatic	2K2.	Any	rainbow	K3	must	contain	a
red	 edge	 and	 therefore	 the	 vertex	 v1.	However,	v1	 is	 incident	 only	with	 red
edges	and	so	any	K3	containing	v1	has	two	red	edges.	Thus	there	is	no	rainbow
K3,	implying	that	RR3(2K2,	K3)	≥	6.

To	show	that	RR3(2K2,	K3)	≤	6,	let	there	be	given	a	coloring	of	K6	with	three
colors,	say	red,	blue	and	green.	Since	K6	has	15	edges,	at	least	five	edges	of

Figure	11.17:	A	red-blue-green	coloring	of	K5



K6	are	colored	the	same.	If	there	are	six	or	more	edges	of	K6	colored	the	same,
then	 there	are	 two	nonadjacent	edges	 that	are	colored	 the	same	and	we	have	a
monochromatic	2K2.	Thus	we	may	assume	that	for	each	color,	exactly	five	edges
in	K6	 are	 colored	with	 this	 color	 and	 that	 these	 five	 edges	 are	 incident	with	 a
common	vertex.	Suppose	that	the	five	red	edges	are	incident	with	a	vertex	v	and
the	five	blue	edges	are	incident	with	a	vertex	u.	Then	a	contradiction	is	obtained
for	the	edge	uv,	as	it	is	colored	both	red	and	blue.

Exercises	for	Section	11.3

11.28	Determine	mr(C3,	C4).

11.29	Determine	mr(K1,	4,	P4).

11.30	Determine	RR(K1,	4).

11.31	For	the	tree	T	in	Figure	11.18,	determine	RR(T).

Figure	11.18:	The	tree	T	in	Exercise	11.29

11.32	(a)	Determine	RR(P3,	2K2).

(b)	Determine	RR(2K2,	P3).

11.33	Determine	RR(K2,	mK2).

11.34	Determine	RR(Cn,	P2).

11.35	Determine	RR(Cn,	P3).

11.36	Determine	RR(K1,n,	P3).

11.37	Let	F1	be	a	subgraph	of	a	graph	G1	and	F2	be	a	subgraph	of	a	graph	G2
such	that	RR(F1,	F2)	and	RR(G1,	G2)	both	exist.	Prove	that	RR(F1,	F2)	≤



RR(G1,	G2).

11.38	Show	that	RR(K1,	3,	3	K2)	≥	7.

11.39	It	is	known	that	RR3(K3,	K3)	=	11.	Show	that	RR3(K3,	K3)	≥	11.

11.4	Excursion:	Erd s	Numbers

Within	a	day	or	two	after	September	20,	1996,	the	news	appeared	on	computer
screens	 of	 mathematicians	 around	 the	 world	 that	 Paul	 Erd s	 had	 died	 while
attending	 a	 graph	 theory	 workshop	 at	 the	 Banach	 Center	 in	Warsaw,	 Poland.
Thus	 ended	 the	 life	 of	 a	 unique	 and	 most	 unusual	 mathematician	 whose
accomplishments	were	notable	by	any	standards.

Paul	 Erd s	 was	 born	 on	 March	 26,	 1913	 of	 Jewish	 parents	 in	 Budapest,
Hungary.	 Shortly	 before	 Erd s	was	 born,	 his	 two	 older	 sisters	 died	 of	 scarlet
fever.	In	1914	World	War	I	started	in	Europe.	Erd s’	father	was	captured	by	the
Russians	and	was	taken	as	a	prisoner	of	war	to	Siberia.	He	was	to	remain	there
for	 six	 years.	 There	 is	 little	 doubt	 that	 Erd s	 was	 a	 child	 prodigy	 as	 far	 as
mathematics	 was	 concerned.	 He	 showed	 interest	 in	 and	 uncanny	 ability	 with
numbers	 as	 early	 as	4	years	old,	when	he	discovered	negative	numbers	on	his
own.	He	could	multiply	4-digit	numbers	in	his	head.

Erd s’	 mother	 and	 father	 were	 both	 mathematics	 teachers	 and	 were
responsible	 for	 his	 early	 education.	 At	 age	 16,	 his	 father	 introduced	 him	 to
infinite	 series	 and	 set	 theory,	 subjects	 that	 remained	 among	 his	 favorites
throughout	his	life.

While	 in	high	 school,	Erd s	was	an	ardent	problem	solver.	As	a	winner	of
national	mathematical	competitions,	he	(along	with	Paul	Turán	and	Tibor	Gallai)
was	admitted	to	Pázmány	University	in	Budapest.	Erd s	and	his	friends	would
journey	to	the	hills	of	Budapest	to	discuss	a	variety	of	topics.	Mathematics	was
always	the	main	subject	of	their	conversations,	however.

By	age	19,	Erd s	had	essentially	completed	his	Ph.D.	in	number	theory	under
the	direction	of	Leopold	Fejér	(although	Fejér	was	well	known	for	his	work	in
analysis).	 Erd s	 gave	 an	 elegant	 proof	 of	 a	 theorem	 of	 Pafnuty	 Lvovich
Chebyshev	 (the	 renowned	 Russian	 mathematician	 who	 made	 important
contributions	 to	 number	 theory,	 probability	 theory	 and	 approximation	 theory):
For	 every	 integer	 n	 ≥	 2,	 there	 is	 a	 prime	 between	 n	 and	 2n.	 Indeed,	 Erd s
showed	the	existence	of	prime	numbers	between	n	and	2n	belonging	 to	certain



arithmetic	progressions.
We	 have	 often	 mentioned	 how	 graph	 theory	 has	 been	 influenced	 by	 the

accomplishments	 of	 Hungarian	 mathematicians.	 Indeed,	 the	 master	 problem-
solver	and	mathematics	educator	George	Pólya	(1887	-	1985)	was	also	born	in
Budapest.	Pólya	was	the	author	of	the	famous	book	How	to	Solve	It,	which	sold
over	 a	 million	 copies	 (and	 for	 whose	 English	 language	 version	 he	 had	 great
difficulty	finding	a	publisher).	Pólya	gave	several	reasons	why	Hungarians	were
so	 influential	 in	 mathematics:	 (1)	 there	 were	 mathematical	 journals	 for	 high
school	 students	 that	 stimulated	 their	 interest	 in	 mathematics,	 (2)	 there	 were
mathematical	 competitions	 for	 students	 and	 (3)	 there	was	 Leopold	 Fejér,	who
was	responsible	for	attracting	many	young	people	to	mathematics.

When	Erd s	graduated	in	1934,	he	was	already	considered	a	leading	number
theorist.	He	went	to	Manchester	in	Britain	on	a	4-year	fellowship.	While	there,
he	became	a	 frequent	 traveler,	 visiting	universities	 to	do	 research.	With	World
War	 II	on	 the	horizon	 in	Europe,	he	 left	 for	 the	United	States,	not	 to	 return	 to
Europe	 for	 another	decade.	He	held	a	 fellowship	at	 the	 Institute	 for	Advanced
Study	during	1938-39.	Erd s	felt	this	was	his	best	year	mathematically.	During
that	year	the	subject	of	probabilistic	number	theory	was	born.	He	also	solved	an
outstanding	 unsolved	 problem	 in	 dimension	 theory.	 Despite	 these	 and	 other
major	 accomplishments,	 Erd s’	 fellowship	 was	 not	 renewed.	 He	 survived	 on
small	loans	from	colleagues.

Erd s	 received	 a	 research	 instructorship	 from	 Purdue	 University	 in	 1943,
only	 to	be	unemployed	again	 in	1945.	None	of	 these	ever	 slowed	his	 research
accomplishments,	however.	In	1946	his	work	with	others	led	to	the	initiation	of
extremal	graph	theory.

While	 all	 of	 this	 was	 going	 on,	World	War	 II	 was	 in	 progress	 and	 Erd s
anguished	over	the	fate	of	his	parents	and	friends.	In	fact,	Erd s’	father	died	of	a
heart	 attack	 in	 1942	 and	 his	mother	 fell	 into	 depression.	However,	 his	mother
survived	the	war,	as	did	his	close	friends	Paul	Turán	and	Tibor	Gallai.	Vera	Sós,
a	 student	 of	 Gallai,	 also	 survived.	 Later	 she	 married	 Turán	 and	 became	 a
collaborator	of	Erd s.

In	1948,	Erd s	met	the	young	mathematician	Atle	Selberg	at	the	Institute	for
Advanced	 Study	 and	 this	 led	 to	 independent	 proofs	 of	 the	 Prime	 Number
Theorem:	For	a	positive	integer	n,	let	 (n)	denote	the	number	of	primes	less	than
n.

This	was	conjectured	to	be	true	by	the	famous	mathematician	Carl	Friedrich



Gauss	 in	1791,	 but	 it	was	not	 proved	until	 1896	when	 Jacques	Hadamard	 and
Charles	de	la	Vallée	Poussin	gave	independent	proofs	(using	complex	analysis).
In	 1949,	 Erd s	 and	 Selberg	 gave	 independent	 elementary	 proofs	 (that	 is,	 not
using	modern	complex	analysis	methods).	In	1950	Selberg	was	a	recipient	of	the
Fields	Medal,	the	mathematical	equivalent	of	a	Nobel	Prize.

Although	 most	 mathematicians	 are	 associated	 with	 the	 places	 they	 have
worked	 and	 lived,	 for	 much	 of	 his	 life	 Erd s	 had	 no	 job	 and	 no	 home.	 He
traveled	from	university	to	university,	country	to	country,	continent	to	continent,
visiting	 one	 mathematician	 after	 another	 to	 discuss,	 pose	 and	 solve	 research
problems.	 He	 worked	 with	 the	 famous	 and	 not-so-famous,	 with	 established
mathematicians	and	with	students.	During	much	of	his	life,	he	traveled	with	his
mother.	After	she	died	in	1971	at	the	age	of	91,	he	traveled	on	his	own.	Since	he
had	little	interest	in	material	things,	his	mathematics	friends,	of	whom	there	were
many,	 took	 care	 of	 or	 assisted	 him	with	 the	 everyday	 items,	 such	 as	 clothing,
food	and	money.

Erd s	was	a	problem	solver,	often	working	on	several	challenging	problems
at	 the	same	 time.	Although	he	was	not	one	 to	develop	 theory,	 the	problems	he
worked	on	 frequently	 led	 to	 theory	developed	by	others.	These	problems	were
primarily	in	the	areas	of	combinatorics,	graph	theory	and	number	theory.	He	was
not	 satisfied	 with	 simply	 solving	 problems,	 however.	 He	 sought	 proofs	 that
provided	 insight	 as	 to	 why	 the	 result	 was	 true.	 Although	 a	 person	 of	 limited
wealth,	 he	 enjoyed	 offering	 monetary	 incentives	 for	 others	 to	 solve	 these
problems.	For	solutions	to	some	problems,	he	would	sometimes	offer	thousands
of	dollars.	He	was	not	good	at	keeping	mathematical	secrets	though.	If	there	was
a	 problem	 he	 found	 intriguing,	 he	 would	 tell	 those	 with	 whom	 he	 came	 in
contract.	One	anecdote	of	this	type	occurred	in	the	1980s.	A	conjecture	had	been
made	at	Western	Michigan	University	just	minutes	before	Erd s	arrived	to	give
a	colloquium	talk.	When	he	heard	about	 the	conjecture,	he	mentioned	 it	 to	 the
audience	and	offered	$5	for	a	proof	or	a	counterexample.

Erd s	authored	or	co-authored	some	1500	papers,	the	largest	number	by	any
mathematician.	 Because	 he	 traveled	 so	 much	 and	 encountered	 so	 many
mathematicians,	he	had	a	 large	number	of	 co-authors	 -	more	 than	500.	This	 is
contrary	 to	 the	 way	 many	 mathematicians	 work,	 especially	 the	 early
mathematicians,	who	did	research	on	their	own.	To	Erd s,	working	on	research
was	a	social	event,	to	be	done	with	others.	There	are	more	than	4600	individuals
who	never	co-authored	a	paper	with	Erd s	but	who	did	write	a	paper	with	a	co-
author	of	his.	Such	occurrences	inspired	the	definition	of	Erd s	numbers.	Only
Paul	Erd s	has	Erd s	number	0.	Any	mathematician	who	co-authored	a	paper
with	Erd s	has	Erd s	number	1.	Any	mathematician	who	does	not	have	Erd s



number	1	but	who	co-authored	a	paper	with	someone	who	has	Erd s	number	1
has	Erd s	number	2.	More	generally,	for	an	integer	k	≥	3,	a	mathematician	has
Erd s	number	k	 if	 the	mathematician	does	not	have	Erd s	number	 less	 than	k
but	has	co-authored	a	paper	with	a	mathematician	having	Erd s	number	k−1.

Erd s	 numbers	 can	 be	 considered	 from	 another	 point	 of	 view.	 The
collaboration	graph	G	 has	 the	 set	 of	 all	mathematicians	 as	 its	 vertex	 set	 and
two	 vertices	 (mathematicians)	 are	 adjacent	 if	 they	 have	 co-authored	 a	 paper
(possibly	with	other	co-authors).	The	Erd s	number	of	a	mathematician	(vertex)
is	the	distance	from	that	vertex	to	the	Erd s	vertex	in	the	collaboration	graph.	A
very	small	subgraph	of	this	graph	is	shown	in	Figure	11.19.	Not	only	is	the	Erd
s	 number	 a	 dynamic	 concept	 (its	 value	 varies	 with	 time),	 so	 too	 is	 the
collaboration	graph.

Figure	11.19:	A	subgraph	of	the	collaboration	graph

For	example,	the	mathematician	Ernst	Straus	wrote	separate	papers	with	both
Erd s	and	Albert	Einstein,	so	Straus	has	Erd s	number	1.	Since	Einstein	never
wrote	 a	 paper	with	Erd s,	 his	Erd s	 number	 is	 2.	 Indeed,	Erd s	 and	Einstein
met	 on	 only	 one	 occasion,	 at	 which	 time	 they	 discussed	 religion	 (not
mathematics	or	physics).	As	of	 this	writing,	 the	web	site	developed	by	 Jerrold
Grossman	of	Oakland	University,	contains	a	multitude	of	information	on	Erd s
numbers:	http://www.oakland.edu/enp/.

Augustin-Louis	Cauchy,	Leonhard	Euler,	Arthur	Cayley,	Paul	Erd s.	 These

http://www.oakland.edu/enp/


are	the	four	mathematicians	who	are	credited	with	authoring	or	co-authoring	the
largest	number	of	mathematical	papers.	Curiously,	the	last	three	of	these	famous
mathematicians	have	connections	to	graph	theory,	as	we	have	seen.	Indeed,	the
last	 three	of	 these	four	 individuals	had	numerous	and	 important	connections	 to
graph	theory.

There	 are	 other	 related	 graphs	 and	 numbers	 that	 can	 be	 associated	 with
individuals	 in	 certain	 occupations.	 Perhaps	 the	 best	 known	 of	 these	 occurs	 in
what	is	called	the	Kevin	Bacon	Game,	named	for	the	movie	actor	Kevin	Bacon.
In	this	case,	the	associated	graph	has	movie	actors	as	its	vertices	and	two	actors
(vertices)	are	adjacent	if	the	two	individuals	appeared	in	the	same	feature	movie.
The	Kevin	Bacon	number	 of	 an	 actor	 is	 the	 distance	 in	 this	 graph	 from	 that
actor	 (vertex)	 to	 the	 Kevin	 Bacon	 vertex.	 Therefore,	 only	 Kevin	 Bacon	 has
Kevin	Bacon	Number	0.	Tom	Hanks	has	Kevin	Bacon	number	1	since	he	acted
with	Kevin	Bacon	in	the	movie	Apollo	13,	while	Sarah	Jessica	Parker	has	Kevin
Bacon	number	1	since	she	appeared	in	the	movie	Footloose	with	Kevin	Bacon.
On	the	other	hand,	Cary	Grant	has	Kevin	Bacon	number	2	as	he	never	appeared
in	 a	 movie	 with	 Kevin	 Bacon;	 however,	 Cary	 Grant	 appeared	 with	 Walter
Matthau	 in	Charade	 and	 Walter	 Matthau	 appeared	 with	 Kevin	 Bacon	 in	 the
movie	JFK.	As	of	 this	writing,	 the	 interactive	web	site	http://oracleofbacon.org
allows	one	to	determine	the	Kevin	Bacon	numbers	of	many	movie	actors.

Erd s	 numbers	 and	 Kevin	 Bacon	 numbers	 have	 their	 origins	 in	 a	 1967
experiment	 of	 the	 psychologist	 Stanley	 Milgram	 (1933-1984)	 who	 tracked
chains	of	acquaintances	in	the	United	States.	Because	people	know	people,	who
know	people,	etc.,	Milgram	claimed	that	on	the	average,	every	two	people	could
be	connected	by	a	path	of	length	6,	which	gave	rise	to	the	phrase:	six	degrees	of
separation.

There	 is	 also	 a	 play	 and	 a	movie	with	 the	 title	Six	Degrees	 of	 Separation,
written	by	John	Guare	and	starring	Will	Smith.	The	story	is	based	on	the	real-life
story	of	David	Hampton,	a	con	man	who	convinced	a	number	of	people	 in	 the
1980s	that	he	was	the	son	of	movie	actor	Sidney	Poitier.

Actually	in	recent	years	Erd s	numbers	and	Kevin	Bacon	numbers	have	been
extended	 to	Erd s–Bacon	 numbers.	 People	 who	 have	 acted	 in	 feature	 films
and	who	have	co-authored	mathematical	papers	have	the	possibility	of	having	a
defined	Erd s-Bacon	number,	which	is	the	sum	of	their	Erd s	and	Kevin	Bacon
numbers.	 For	 example,	 the	 physicist	 Brian	 Greene	 appeared	 in	 the	 movie
Frequency	 with	 John	 Di	 Benedetto,	 who	 was	 in	 Sleepers	 with	 Kevin	 Bacon.
Also,	 Greene	 wrote	 a	 paper	 with	 Shing-Tung	 Yau,	 who	 wrote	 a	 paper	 with
Ronald	 Graham	 who	 has	 Erd s	 number	 1.	 Thus	 the	 Erd s-Bacon	 number	 of

http://oracleofbacon.org


Greene	is	2	+	3	=	5.
Ronald	Graham	has	made	major	contributions	to	many	areas	of	graph	theory,

to	many	 subjects	 in	mathematics	 and	 to	 the	mathematical	 community.	 Ronald
Graham	 did	 undergraduate	work	 in	 electrical	 engineering	 at	 the	University	 of
Chicago	 and	 in	 physics	 at	 the	 University	 of	 Alaska	 at	 Fairbanks.	 As	 an
undergraduate	Graham	supported	himself	as	a	circus	performer	and	worked	for
Cirque	 du	 Soleil.	 Graham	 received	 his	 Ph.D.	 in	 1962	 from	 the	 University	 of
California	at	Berkeley	under	 the	direction	of	Derrick	Lehmer.	Graham	went	 to
Bell	Laboratories	where	he	worked	 for	37	years.	 In	1999	he	became	 the	 Irwin
and	 Joan	 Jacobs	 Professor	 of	 Computer	 Science	 and	 Engineering	 at	 the
University	of	California	at	San	Diego.

In	2003	Ronald	Graham	became	president	of	 the	Mathematical	Association
of	America,	thereby	becoming	only	the	sixth	person	to	hold	that	position	as	well
as	 president	 of	 the	American	Mathematical	 Society,	 a	 position	 he	 held	 during
1993-1995.

Among	his	non-mathematical	accomplishments,	Graham	is	a	skilled	 juggler
and	 at	 one	 time	 served	 as	 president	 of	 the	 International	 Juggler’s	Association.
Graham	has	lectured	often	and	in	many	places,	including	at	Walt	Disney	World.



Chapter	12
Distance

12.1	The	Center	of	a	Graph

We’ve	mentioned	a	number	of	 times	of	how	a	graph	can	be	used	 to	model	 the
street	system	of	a	town.	Of	course,	as	a	town	grows	in	size,	so	too	does	the	graph
that	models	it.	As	a	reminder,	we	see	in	Figure	12.1	the	street	system	of	a	town	T
and	a	graph	GT	that	models	it.

Figure	12.1:	Town	T	and	a	graph	modeling	town	T

As	a	town	grows	into	a	city,	new	questions	arise.	For	example,	when	a	town
is	 small,	 it	might	be	appropriate	 to	 rely	on	and	pay	 for	 the	 services	of	 the	 fire
department	of	a	neighboring	city.	However,	when	a	town	reaches	a	certain	size
(and	is	able	to	afford	it),	it	becomes	necessary	for	that	town	to	have	its	own	fire
department.	Assuming	that	the	decision	has	been	made	by	the	town	to	build	its
own	 firehouse,	 we	 now	 have	 another	 question:	Where	 in	 the	 town	 should	we
build	 it?	 Let’s	 assume	 that	 we	 decide	 to	 build	 the	 firehouse	 at	 some	 street
intersection	in	the	town.	This,	however,	does	not	answer	our	question.	Of	course,



the	main	reason	for	building	the	firehouse	is	so	that	all	citizens	of	the	town	are
protected	in	the	event	of	a	fire.	Consequently,	no	location	in	the	town	should	be
too	 far	 from	 this	 new	 firehouse.	We	 see	 that	 answering	 our	 question	 concerns
distances	in	town	T	and,	therefore,	distances	in	the	graph	GT	as	well.

Let’s	review	the	definition	of	distance	in	a	graph.	For	two	vertices	u	and	v	in
a	graph	G,	the	distance	d(u,	v)	from	u	to	v	is	the	length	of	a	shortest	u	−	v	path	in
G.	A	u	−	v	path	of	length	d(u,	v)	is	called	a	u	−	v	geodesic.	In	order	for	d(u,	v)	to
be	defined	for	all	pairs	u,	v	of	vertices	in	G,	the	graph	G	must	be	connected.	We
therefore	 assume	 that	G	 is	 a	 connected	 graph.	 The	 term	 distance	 that	 we	 just
defined	satisfies	all	four	of	the	following	properties	in	any	connected	graph	G.

1.	d(u,	v)	≥	0	for	all	u,	v	 	V(G).
2.	d(u,	v)	=	0	if	and	only	if	u	=	v.
3.	d(u,	v)	=	d(v,	u)	for	all	u,	v	 	V(G)	[the	symmetric	property].
4.	d(u,	w)	≤	d(u,	v)+d(v,	w)	for	all	u,	v,	w	 	V(G)	[the	triangle	inequality].

That	a	connected	graph	satisfies	all	 four	of	 these	properties	 should	be	clear,
with	 the	possible	exception	of	property	4	(the	 triangle	 inequality),	which	we
now	verify.	Let	P1	be	a	u	−	v	geodesic	and	P2	a	v	−	w	geodesic	in	the	graph	G.
The	path	P1	followed	by	P2	produces	a	u	−	w	walk	of	length	d(u,	v)	+	d(v,	w).
By	Theorem	1.6,	G	contains	a	u	−	w	path	whose	length	is	at	most	d(u,	v)	+	d(v,
w).	 Therefore,	 d(u,	 w)	 ≤	 d(u,	 v)	 +	 d(v,	 w).	 Since	 the	 distance	 d	 satisfies
property	2	(the	symmetric	property),	we	can	refer	to	the	distance	between	two
vertices	rather	than	the	distance	from	one	vertex	to	another.

The	fact	that	the	distance	d	satisfies	properties	1–4	means	that	d	is	a	metric
and	(V(G),	d)	is	a	metric	space.	It	is	ordinarily	very	useful	when	a	distance	is	a
metric	 as	 this	 concept	 has	 been	 studied	 widely.	 There	 are	 many	 concepts
involving	connected	graphs	that	are	defined	in	terms	of	distance	and	which	are
valuable	in	providing	information	about	these	graphs.

For	 a	 vertex	 v	 in	 a	 connected	 graph	G,	 the	 eccentricity	 e(v)	 of	 v	 is	 the
distance	between	v	and	a	vertex	farthest	from	v	in	G.	The	minimum	eccentricity
among	 the	 vertices	 of	 G	 is	 its	 radius	 and	 the	 maximum	 eccentricity	 is	 its
diameter,	which	are	denoted	by	rad(G)	and	diam(G),	respectively.	A	vertex	v	in
G	 is	a	central	vertex	 if	e(v)	=	rad(G)	and	 the	subgraph	 induced	by	 the	central
vertices	of	G	is	the	center	Cen(G)	of	G.	If	every	vertex	of	G	is	a	central	vertex,
then	Cen(G)	=	G	and	G	is	called	self-centered.	For	example,	if	G	=	Cn	where	n
≥	3,	then	G	is	self-centered.



To	 illustrate	 the	 concepts	 we	 have	 just	 presented,	 consider	 the	 graph	H	 of
Figure	12.2,	where	each	vertex	is	 labeled	by	its	eccentricity.	Since	the	smallest
eccentricity	is	2,	rad(H)	=	2.	Because	the	largest	eccentricity	is	4,	diam(H)	=	4.
The	center	of	H	is	also	shown	in	Figure	12.2.

There	are	a	number	of	observations	 that	can	be	made	about	 the	graph	H	of
Figure	12.2.	We	have	already	mentioned	that	rad(H)	=	2	and	diam(H)	=	4.	The
terms	“radius”	and	“diameter”	are	familiar	because	of	circles,	where,	of	course,

Figure	12.2:	The	eccentricities	of	the	vertices	of	a	graph

the	diameter	 is	always	 twice	 the	 radius.	This	 fact	 together	with	 the	knowledge
that	diam(H)	=	2	rad(H)	for	the	graph	H	of	Figure	12.2	might	reasonably	suggest
that	 diam(G)	 =	 2	 rad(G)	 for	 every	 connected	 graph	G.	 Such	 is	 not	 the	 case,
however.	 Figure	 12.3	 shows	 three	 graphs	G2,	G3	 and	G4,	 each	 of	 which	 has
radius	2,	where	diam(Gk)	=	k	for	k	=	2,	3,	4.	There	is,	therefore,	no	identity	that
relates	 the	 radius	 and	 the	 diameter	 of	 a	 graph.	As	we	 now	 show,	 Figure	 12.3
illustrates	the	only	possible	diameters	for	a	graph	having	radius	2.

Figure	12.3:	Three	graphs	having	radius	2

Theorem	12.1	For	every	nontrivial	connected	graph	G,

Proof.	 The	 inequality	 rad(G)	 ≤	 diam(G)	 is	 immediate	 since	 the	 smallest
eccentricity	cannot	exceed	the	largest	eccentricity.	Let	u	and	v	be	two	vertices



such	that	d(u,	v)	=	diam(G)	and	let	w	be	a	central	vertex	of	G.	Therefore,	e(w)
=	rad(G).	Hence	the	distance	between	w	and	any	other	vertex	of	G	is	at	most
rad(G).	By	the	triangle	inequality,

		diam(G)	=	d(u,	v)	≤	d(u,	w)	+	d(w,	v)	≤	rad(G)	+	rad(G)	=	2	rad(G).

Another	observation	about	the	graph	H	in	Figure	12.2	is	that	the	eccentricities
of	every	two	adjacent	vertices	differ	by	at	most	1.	This	statement	too	is	true	for
all	connected	graphs.

Theorem	12.2	For	every	two	adjacent	vertices	u	and	v	in	a	connected	graph,

Proof.	Assume,	without	loss	of	generality,	that	e(u)	≥	e(v).	Let	x	be	a	vertex
that	is	farthest	from	u.	So	d(u,	x)	=	e(u).	By	the	triangle	inequality,

Hence	e(u)	≤	1	+	e(v),	which	implies	that	0	≤	e(u)	−	e(v)	≤	1.	Therefore,	|e(u)
−	e(v)|	≤	1.

In	much	the	same	way,	the	following	can	be	proved	(see	Exercise	12.10).

Theorem	12.3	Let	u	and	v	be	adjacent	vertices	in	a	connected	graph	G.	Then

for	every	vertex	x	of	G.

Returning	once	again	to	the	graph	H	of	Figure	12.2,	we	see	that	Cen(H)	=	K2.
This	 brings	 up	 a	 natural	 question.	 Which	 graphs	 can	 be	 the	 center	 of	 some
graph?	 Stephen	 Hedetniemi	 showed	 that	 “every	 graph”	 is	 the	 answer	 to	 this
question.

Theorem	12.4	Every	graph	is	the	center	of	some	graph.

Proof.	Let	G	be	a	graph.	We	show	that	G	 is	 the	center	of	some	graph.	First,
add	two	new	vertices	u	and	v	to	G	and	join	them	to	every	vertex	of	G	but	not
to	each	other.	Next,	we	add	two	other	vertices	u1	and	v1,	where	we	join	u1	to	u



and	join	v1	to	v.	The	resulting	graph	is	denoted	by	F	(see	Figure	12.4).

Figure	12.4:	The	graph	F	in	the	proof	of	Theorem	12.4

Since	e(u1)	=	e(v1)	=	4,	e(u)	=	e(v)	=	3	and	eF(x)	=	2	for	every	vertex	x	in	G,
it	follows	that	V(G)	is	the	set	of	central	vertices	of	F	and	so	Cen(F)	=	G.

Stephen	Hedetniemi	was	born	on	February	7,	1939	in	Washington,	D.C.	His
father,	who	at	one	time	worked	for	U.S.	Supreme	Court	Justice	Frank	Murphy,
encouraged	his	 four	sons	and	daughter	 to	pursue	higher	education.	Hedetniemi
became	 an	 undergraduate	 at	 the	 University	 of	 Michigan	 and	 majored	 in
mathematics	but	became	interested	in	the	new	field	of	computer	science.	While
an	undergraduate	at	the	University	of	Michigan,	he	took	a	course	in	graph	theory
from	a	professor	who	was	teaching	it	for	 the	first	 time:	Frank	Harary.	In	1966,
Hedetniemi	 received	 his	 Ph.D.	 with	 co-supervisors	 Frank	 Harary	 and	 John
Holland.	Holland,	 a	 computer	 scientist,	would	 later	become	 the	 founder	of	 the
field	of	genetic	algorithms.

After	 working	 in	 the	 computer	 science	 departments	 at	 the	 Universities	 of
Iowa,	 Virginia	 and	Oregon,	 Hedetniemi	 went	 to	 Clemson	University	 in	 1982,
where	he	taught	until	he	retired.	While	he	contributed	not	only	to	graph	theory
but	 to	 the	 areas	 of	 algorithms,	 computation	 theory,	 combinatorial	 optimization
and	parallel	processing,	Hedetniemi	is	known	for	initiating	several	areas	of	study
within	 graph	 theory.	 The	 area	 for	 which	 he	 is	 probably	 best	 known	 will	 be
visited	in	the	next	chapter.

Although	every	graph	can	be	 the	center	of	some	connected	graph,	 there	are
some	restrictions	as	to	where	the	center	of	a	graph	G	can	be	located	in	G.

Theorem	12.5	The	center	of	every	connected	graph	G	is	a	subgraph	of	some
block	of	G.

Proof.	 Assume,	 to	 the	 contrary,	 that	G	 is	 a	 connected	 graph	 whose	 center
Cen(G)	is	not	a	subgraph	of	a	single	block	of	G.	Then	there	is	a	cut-vertex	v	of
G	 such	 that	 G	 −	 v	 contains	 two	 components	 G1	 and	 G2,	 each	 of	 which
contains	vertices	of	Cen(G).	Let	u	be	a	vertex	of	G	such	that	d(u,	v)	=	e(v)	and



let	P1	be	a	u	−	v	geodesic	in	G.	At	least	one	of	G1	and	G2	contains	no	vertices
of	P1,	say	G2	contains	no	vertices	of	P1.	Let	w	be	a	central	vertex	of	G	 that
belongs	 to	 G2	 and	 let	 P2	 be	 a	 v	 −	 w	 geodesic.	 Then	 P1	 followed	 by	 P2
produces	a	u	−	w	geodesic,	whose	length	is	greater	than	that	of	P1.	Hence	e(w)
>	e(v),	which	contradicts	the	fact	that	w	is	a	central	vertex	of	G.

The	graph	GT	of	Figure	12.1	(which,	recall,	models	town	T	in	that	figure)	is
shown	again	in	Figure	12.5,	where	in	this	case,	every	vertex	is	 labeled	with	its
eccentricity.	 We	 asked	 earlier	 where	 a	 firehouse	 should	 be	 built	 so	 that	 no
location	in	the	town	is	too	far	from	the	firehouse.	We	now	see	that	an	appropriate
answer	 is	 for	 the	 firehouse	 to	 be	 built	 at	 any	 of	 the	 three	 intersections	 that
correspond	to	central	vertices	(vertices	having	eccentricity	5)	in	GT.

Figure	12.5:	The	eccentricities	of	the	vertices	of	GT

Exercises	for	Section	12.1

12.1	Find	the	radius	and	diameter	of	the	graph	G	in	Figure	12.6.	What	 is	 the
center	of	G?



Figure	12.6:	The	graph	in	Exercise	12.1

12.2	(a)	Find	the	radius	and	diameter	of	Cn	for	n	≥	3.

(b)	Find	the	radius	and	diameter	of	Pn	for	n	≥	3.	What	is	the	center	of	Pn?

(c)	Find	the	radius	and	diameter	of	Qn	for	n	≥	2.

12.3	Find	 the	radius	and	diameter	of	Ks,t	 for	1	≤	s	≤	 t.	What	 is	 the	center	of
Ks,t?

12.4	Find	the	radius	and	diameter	of	the	Petersen	graph	PG.	What	is	the	center
of	PG?

12.5	 Give	 an	 example	 of	 a	 connected	 graph	 G	 such	 that	 Cen(G)	 is
disconnected.

12.6	Show	that	every	graph	of	order	n	is	the	center	of	some	graph	of	order	2n.

12.7	(a)	Prove	that	if	G	is	a	connected	graph	with	diam(G)	≥	3,	then	diam( )	≤
3.

(b)	Give	an	example	of	a	connected	graph	G	with	diam(G)	=	diam( )	=	3.

12.8	Prove	 that	 for	each	pair	a,	b	of	positive	 integers	with	a	≤	b	 ≤	 2a,	 there
exists	a	graph	G	with	rad(G)	=	a	and	diam(G)	=	b.

12.9	 Prove	 the	 following	 generalization	 of	 Theorem	 12.2:	 For	 every	 two
vertices	u	and	v	in	a	connected	graph,	|e(u)	−	e(v)|	≤	d(u,	v).

12.10	(a)	Prove	Theorem	12.3:	Let	u	and	v	be	adjacent	vertices	in	a	connected
graph	G.	Then	|d(u,	x)	−	d(v,	x)|	≤	1	for	every	vertex	x	of	G.

(b)	Let	G	be	a	connected	graph	and	suppose	that	d(u,	x)	=	k	for	some	u,	x	
	V(G).	Show	that	if	v	is	a	neighbor	of	u,	then	d(v,	x)	is	k	−	1,	k	or	k	+



1.

12.11	Let	G	be	a	connected	graph	and	k	an	integer	with	rad(G)	<	k	<	diam(G).
Use	Theorem	12.2	to	prove	that	there	is	a	vertex	v	of	G	with	e(v)	=	k.

12.12	Prove	that	if	T	is	a	tree	of	order	n	≥	3,	then	Δ(T)	+	diam(T)	≤	n	+	1.

12.13	(a)	Let	T	be	a	tree	of	order	n	≥	3	and	let	T′	be	the	tree	obtained	from	T	by
deleting	the	end-vertices	of	T.	Prove	that	Cen(T)	=	Cen(T′).

(b)	Prove	that	the	center	of	a	tree	T	is	either	K1	or	K2.

(c)	Prove	that	if	the	center	of	a	tree	T	is	K1,	then	diam(T)	=	2	rad(T).

12.14	Show	that	for	every	pair	r,	s	of	positive	 integers,	 there	exists	a	positive
integer	n	such	that	for	every	connected	graph	G	of	order	n,	either	Δ(G)	≥
r	or	diam(G)	≥	s.

12.2	Distant	Vertices

If	we	were	to	find	ourselves	at	a	certain	location	in	some	town	(such	as	in	town
T	of	Figure	12.1)	and	ask	for	a	location	in	the	town	that	is	farthest	from	where
we	are,	 then	 this	 is	 the	 same	question	as:	For	 a	given	vertex	u	 in	 a	 connected
graph	G,	what	is	a	vertex	v	in	G	 that	is	farthest	from	u?	Of	course,	what	we’re
seeking	is	a	vertex	v	such	that	d(u,	v)	=	e(u).	Depending	on	where	u	is	located	in
G,	the	distance	between	u	and	v	might	be	as	small	as	rad(G),	as	large	as	diam(G)
or	some	number	between	these	two.

A	vertex	v	 in	 a	 connected	 graph	G	 is	 called	 a	peripheral	 vertex	 if	 e(v)	 =
diam(G).	 Thus,	 in	 certain	 sense,	 a	 peripheral	 vertex	 is	 opposite	 to	 a	 central
vertex.	The	 subgraph	of	G	 induced	 by	 its	 peripheral	 vertices	 is	 the	periphery
Per(G)	of	G.	For	the	graph	H	of	Figure	12.2,	which	 is	 redrawn	in	Figure	12.7,
the	periphery	of	H	is	shown	in	Figure	12.7.



Figure	12.7:	The	eccentricities	of	the	vertices	of	a	graph

The	periphery	of	the	graph	H	of	Figure	12.7	is	2K1	(that	is,	it	consists	of	two
isolated	 vertices)	 and	 so	 it	 is	 disconnected.	 Is	 the	 periphery	 of	 every	 graph
disconnected?	 The	 answer	 is	 no,	 as	 the	 graph	F	 of	 Figure	 12.8	 shows.	 Each
vertex	of	F	 is	 labeled	with	 its	 eccentricity.	 Since	 diam(F)	 =	 3,	 it	 follows	 that
Per(F)	=	C6,	which	is	connected.	In	fact,	if	G	=	Cn,	where	then	n	≥	3,	it	follows
that	 Per(G)	 =	 Cn.	 Could	 it	 be	 then	 that	 as	 with	 centers,	 every	 graph	 is	 the
periphery	 of	 some	 graph?	 Halina	 Bielak	 and	 Maciej	 Syslo	 showed	 that	 the
answer	to	this	question	is	no.

Figure	12.8:	A	graph	F	with	Per(F)	=	C6

Theorem	12.6	A	 nontrivial	 graph	G	 is	 the	 periphery	 of	 some	 graph	 if	 and
only	if	every	vertex	of	G	has	eccentricity	1	or	no	vertex	of	G	has	eccentricity
1.

Proof.	Assume	first	that	every	vertex	of	G	has	eccentricity	1	or	no	vertex	of	G
has	eccentricity	1.	If	every	vertex	of	G	has	eccentricity	1,	then	G	is	complete
and	 Per(G)	 =	G.	 Now	 assume	 that	 no	 vertex	 of	G	 has	 eccentricity	 1.	 This
implies	that	for	every	vertex	u	of	G,	there	is	a	vertex	v	in	G	that	is	not	adjacent
to	u.	Let	H	be	the	graph	obtained	by	adding	a	new	vertex	w	and	joining	w	to
every	vertex	of	G.	Then	eH(w)	=	1.	Since	eH(x)	=	2	for	every	vertex	x	of	G,	it
follows	that	every	vertex	of	G	is	a	peripheral	vertex	of	H	and	so	Per(H)	=	G.

For	the	converse,	let	G	be	a	graph	that	contains	some	vertices	of	eccentricity
1	 and	 some	vertices	whose	 eccentricity	 is	 not	 1.	Assume,	 to	 the	 contrary,	 that
there	exists	a	graph	H	such	that	Per(H)	=	G.	Necessarily,	G	is	a	proper	induced
subgraph	of	H.	Then	there	exists	an	integer	k	≥	2	such	that	eH(v)	=	k	 for	every
vertex	v	of	G,	while	eH(v)	<	k	for	every	vertex	v	of	H	that	is	not	in	G.	Let	x	be	a
vertex	of	G	 such	 that	eG(x)	=	1	and	 let	w	be	a	vertex	of	H	 such	 that	d(x,	w)	=



eH(x)	=	k	≥	2.	Since	w	is	not	adjacent	to	x,	it	follows	that	w	is	not	in	G.	However,
d(w,x)	=	k	and	so	eH(w)	≥	k,	contradicting	the	fact	that	w	is	not	in	the	periphery
of	H.

According	to	Theorem	12.6	then,	no	star	of	order	3	or	more	is	the	periphery
of	any	graph.	For	a	given	vertex	u	 in	a	connected	graph	G,	we	have	discussed
seeking	a	vertex	v	 such	 that	d(u,	v)	=	e(u),	 that	 is,	v	 is	a	vertex	 that	 is	 farthest
from	u.	 Such	 a	 vertex	 v	 is	 called	 an	 eccentric	 vertex	 of	 u.	 A	 vertex	 v	 is	 an
eccentric	vertex	of	the	graph	G	if	v	is	an	eccentric	vertex	of	some	vertex	of	G.
In	other	words,	a	vertex	v	is	an	eccentric	vertex	of	G	if	v	 is	farthest	from	some
vertex	of	G.

Consider	 the	graph	G	 of	Figure	12.9,	where	 each	vertex	 is	 labeled	with	 its
eccentricity.	 For	 example,	 e(u)	 =	 3.	 Since	 d(u,	 v)	 =	 3,	 it	 follows	 that	 v	 is	 an
eccentric	 vertex	 of	u.	Because	 there	 is	 a	u	 −	v	 path	 of	 length	 3	 in	G,	 there	 is
certainly	a	v	−	u	path	of	length	3	in	G.	This	does	not	mean,	however,	that	u	is	an
eccentric	vertex	of	v	as	there	may	be	a	vertex	farther	from	v	than	u	is.	This	only
implies	therefore	that	e(v)	≥	3.	In	fact,	e(v)	=	4	and	so	u	is	not	an	eccentric	vertex
of	v,	although	w	 is	an	eccentric	vertex	of	v.	More	generally,	 if	a	vertex	y	 is	an
eccentric	vertex	of	a	vertex	x	in	a	connected	graph,	then	e(y)	≥	e(x).

Figure	12.9:	An	eccentric	vertex	in	G

If	a	vertex	x	in	a	connected	graph	G	is	a	peripheral	vertex	of	G,	then,	as	we
have	seen,	e(x)	=	diam(G).	Necessarily	then,	there	exists	a	vertex	y	such	that	d(x,
y)	=	e(x)	=	diam(G).	This	also	 implies,	however,	 that	d(x,	y)	=	e(y)	=	diam(G)
and	that	y	is	a	peripheral	vertex	of	G	as	well.	Therefore,	every	peripheral	vertex
of	G	is	an	eccentric	vertex.	The	converse	is	not	true,	however.	We	saw	that	the
vertex	v	in	the	graph	G	of	Figure	12.9	is	an	eccentric	vertex	of	G	but	that	v	is	not
a	peripheral	vertex	of	G.

Consider	 next	 the	 graph	H	 shown	 in	 Figure	 12.10,	 where	 rad(H)	 =	 2	 and
diam(H)	=	4.	Since	q	and	r	are	peripheral	vertices	(the	only	peripheral	vertices	of
H),	they	are	also	eccentric	vertices	of	H.	The	vertices	x	and	z	are	also	eccentric
vertices	 of	 each	 other;	 while	 t	 and	 u	 are	 both	 eccentric	 vertices	 of	 x	 and	 z.



Furthermore,	w	and	y	are	eccentric	vertices	of	each	other;	while	s	and	v	are	both
eccentric	vertices	of	w	and	y.	That	is,	every	vertex	of	H	is	an	eccentric	vertex.

Figure	12.10:	A	graph	each	of	whose	vertices	is	an	eccentric	vertex

If	every	vertex	of	some	graph	G	has	the	same	eccentricity	(and	is	therefore	a
peripheral	 vertex),	 then	 certainly	 every	 vertex	 of	 G	 is	 an	 eccentric	 vertex.
However,	the	graph	H	of	Figure	12.10	shows	that	every	vertex	of	a	graph	can	be
an	eccentric	vertex	without	all	the	eccentricities	being	the	same.

A	connected	graph	G	is	an	eccentric	graph	if	every	vertex	of	G	is	an	eccentric
vertex.	Therefore,	the	graph	H	of	Figure	12.10	is	an	eccentric	graph,	as	is	every
graph	all	of	whose	vertices	have	the	same	eccentricity.	Ordinarily,	however,	only
some	of	the	vertices	of	a	graph	are	eccentric.

Let	G	 be	 a	 connected	 graph.	 The	 eccentric	 subgraph	 Ecc(G)	 of	G	 is	 the
subgraph	 of	G	 induced	 by	 the	 set	 of	 eccentric	 vertices	 of	G.	 For	 example,	 a
connected	graph	F	and	its	eccentric	subgraph	are	shown	in	Figure	12.11.	If	every
vertex	of	a	graph	G	is	an	eccentric	vertex,	then	Ecc(G)	=	G.

Figure	12.11:	A	graph	and	its	eccentric	subgraph

In	 the	graph	F	of	Figure	12.11,	Ecc(F)	=	2P3.	 This	 brings	 up	 the	 question:
Which	graphs	are	eccentric	subgraphs	of	some	graph?	Perhaps	surprisingly,	this
question	has	the	same	answer	as	the	question:	Which	graphs	are	the	peripheries
of	some	graph?

Theorem	12.7	A	nontrivial	graph	G	is	the	eccentric	subgraph	of	some	graph



if	 and	 only	 if	 every	 vertex	 of	 G	 has	 eccentricity	 1	 or	 no	 vertex	 of	 G	 has
eccentricity	1.

Proof.	Assume,	first,	 that	every	vertex	of	a	graph	G	has	eccentricity	1	or	no
vertex	of	G	has	eccentricity	1.	If	every	vertex	of	G	has	eccentricity	1,	then	G
is	complete	and	G	is	an	eccentric	graph.	Thus	Ecc(G)	=	G.	Next,	assume	that
no	vertex	of	G	 has	 eccentricity	1.	Let	H	 be	 the	 graph	obtained	by	 adding	 a
new	vertex	w	and	joining	w	 to	every	vertex	of	G.	Since	every	vertex	v	 in	H
that	belongs	to	G	is	an	eccentric	vertex	of	w	but	w	is	not	an	eccentric	vertex	of
any	vertex	of	H,	it	follows	that	Ecc(H)	=	G.

For	the	converse,	 let	G	be	a	graph	such	 that	some	but	not	all	of	 its	vertices
have	 eccentricity	 1.	 Then	G	 is	 connected.	 Assume,	 to	 the	 contrary,	 that	 there
exists	a	connected	graph	H	such	that	Ecc(H)	=	G.	Let	u	be	a	vertex	of	G	that	is
adjacent	 to	 all	 other	 vertices	 of	G	 and	 let	 v	 be	 an	 eccentric	 vertex	 of	 u	 in	H.
Since	all	eccentric	vertices	of	H	belong	to	G,	it	follows	that	v	is	in	G.	However,	v
is	adjacent	to	u;	so	eH(u)	=	1,	which	implies	that	u	is	adjacent	all	other	vertices
in	H	and	that	all	vertices	of	H	that	are	not	in	G	also	belong	to	Ecc(H).	This	is	a
contradiction.

If	v	is	an	eccentric	vertex	of	a	vertex	u	in	a	connected	graph	G,	then	no	vertex
of	G	is	farther	from	u	than	v	is.	In	particular,	if	w	is	a	neighbor	of	v,	then	d(u,	w)
≤	d(u,	v).	However,	a	vertex	can	have	this	particular	property	without	being	an
eccentric	vertex	of	u.

A	vertex	v	in	a	connected	graph	G	is	a	boundary	vertex	of	a	vertex	u	if	d(u,
w)	≤	d(u,	v)	for	each	neighbor	w	of	v;	while	a	vertex	v	is	a	boundary	vertex	of
the	graph	G	if	v	is	a	boundary	vertex	of	some	vertex	of	G.

We	have	mentioned	that	 in	a	connected	graph,	every	peripheral	vertex	is	an
eccentric	vertex,	but	not	conversely.	Also,	every	eccentric	vertex	is	a	boundary
vertex,	 but	 a	 boundary	 vertex	 need	 not	 be	 an	 eccentric	 vertex.	 Consider	 the
graph	G	 in	 Figure	 12.12.	 The	 vertex	 z	 is	 an	 eccentric	 vertex	 of	 the	 vertex	w,
which	in	turn	is	a	boundary	vertex	of	the	vertex	s.	However,	z	is	not	a	peripheral
vertex	of	G	and	w	is	not	an	eccentric	vertex	of	G.

Figure	12.12:	Peripheral,	eccentric	and	boundary	vertices	in	a	graph



While	the	distance	from	a	vertex	u	of	a	graph	G	to	an	eccentric	vertex	v	of	u
attains	 the	 absolute	 maximum	maxw V(G){d(u,	 w)},	 the	 distance	 from	 u	 to	 a
boundary	 vertex	 v	 of	 u	 attains	 the	 local	 maximum	 maxw N[v]{d(u,	 w)}.
Equivalently,	a	vertex	v	 is	a	boundary	vertex	of	u	 if	 no	u	−	v	 geodesic	 can	 be
extended	at	v	to	a	longer	geodesic.	Intuitively,	beginning	at	u,	a	boundary	vertex
of	u	is	reached	when,	locally,	it	is	not	possible	to	proceed	farther	from	u.

There	 are	 certain	 vertices	 in	 a	 nontrivial	 connected	 graph	 that	 cannot	 be
boundary	vertices.

Theorem	12.8	No	cut-vertex	is	a	boundary	vertex	of	any	connected	graph.

Proof.	Assume,	 to	 the	contrary,	 that	 there	exists	 a	 connected	graph	G	and	a
cut-vertex	v	of	G	such	that	v	is	a	boundary	vertex	of	some	vertex	u	in	G.	Let
G1	be	component	of	G	−	v	that	contains	u	and	let	G2	be	another	component	of
G	−	v.	If	w	 is	a	neighbor	of	v	 that	belongs	to	G2,	then	d(w,	u)	=	d(u,	v)	+	1,
which	contradicts	our	assumption	that	v	is	a	boundary	vertex	of	u.

Since	 no	 cut-vertex	 can	 be	 a	 boundary	 vertex,	 no	 cut-vertex	 can	 be	 an
eccentric	vertex	or	a	peripheral	vertex	either.	There	are	certain	vertices,	however,
that	must	be	boundary	vertices.

A	 vertex	 v	 in	 a	 graph	G	 is	 called	 a	 complete	 vertex	 (or	 an	 extreme	 or
simplicial	 vertex)	 if	 the	 subgraph	 of	 G	 induced	 by	 the	 neighbors	 of	 v	 is
complete.	 In	 particular,	 every	 end-vertex	 is	 complete.	 Therefore,	 if	 v	 is	 a
complete	vertex	and	u	is	a	neighbor	of	v,	then	d(w,	u)	=	d(w,	v)	=	1	for	every	w	
N(v).	 Thus	 v	 is	 a	 boundary	 vertex	 of	 u.	 A	 complete	 vertex	 v	 is	 not	 only	 a
boundary	vertex	of	each	neighbor	of	v,	 it	 is	a	boundary	vertex	of	every	vertex
different	from	v.

Theorem	12.9	Let	G	 be	 a	 connected	 graph.	A	 vertex	 v	 of	G	 is	 a	 boundary
vertex	of	every	vertex	distinct	from	v	if	and	only	if	v	is	a	complete	vertex	of	G.

Proof.	First,	let	v	be	a	complete	vertex	in	G	and	let	u	be	a	vertex	distinct	from
v.	Also,	let	(u	=	v0,	v1,	…,	vk	=	v)	be	a	u	−	v	geodesic	and	let	w	be	a	neighbor
of	v.	 If	w	=	vk−1,	 then	d(u,	w)	<	d(u,	v).	So	we	may	assume	 that	w	≠	vk	 −	 1.
Since	v	is	complete,	w	vk−1	 	E(G)	and	(u	=	v0,	v1,	…,	vk−1,	w)	is	a	u	−	w	path
in	G,	implying	that	d(u,	w)	≤	d(u,	v).	Hence	v	is	a	boundary	vertex	of	u.

For	the	converse,	let	v	be	a	vertex	of	G	 that	 is	not	a	complete	vertex.	Then



there	exist	nonadjacent	vertices	u,	w	 	N(v).	Since	d(u,	w)	>	d(u,v),	 it	 follows
that	v	is	not	a	boundary	vertex	of	u.

We	now	present	a	result	which	deals	with	a	question	that	is	opposite	to	that
considered	in	Theorem	12.9.

Theorem	12.10	Let	G	be	nontrivial	connected	graph	and	let	u	be	a	vertex	of
G.	Every	vertex	distinct	from	u	is	a	boundary	vertex	of	u	if	and	only	if	e(u)	=
1.

Proof.	Assume	first	that	e(u)	=	1	and	let	v	be	a	vertex	of	G	distinct	from	u.	Let
w	be	a	neighbor	of	v.	Then	d(u,	w)	≤	1	and	d(u,	v)	=	1.	Hence	v	is	a	boundary
vertex	of	u.	For	the	converse,	assume,	to	the	contrary,	that	every	vertex	of	G
different	 from	u	 is	 a	 boundary	vertex	of	u	 but	e(u)	≠	1.	Then	 there	 exists	 a
vertex	x	in	G	such	that	d(u,	x)	=	2.	Let	(u,	y,	x)	be	a	u	−	x	geodesic	in	G.	Then
d(u,	y)	=	1	and	x	is	a	neighbor	of	y	but	d(u,	x)	=	2	>	1	=	d(u,	y).	Thus	y	is	not	a
boundary	vertex	of	u,	which	is	a	contradiction.

There	are	certain	vertices	in	a	connected	graph	G	that	have	a	close	connection
with	 boundary	 vertices.	 Let	 x	 and	 z	 be	 two	 distinct	 vertices	 in	G.	 A	 vertex	 y
distinct	from	x	and	z	is	said	to	lie	between	x	and	z	if

that	 is,	 the	 triangle	 inequality	 becomes	 an	 equality.	 A	 vertex	 v	 is	 an	 interior
vertex	of	G	if	for	every	vertex	u	distinct	from	v,	there	exists	a	vertex	w	such	that
v	lies	between	u	and	w.	The	interior	Int(G)	of	G	is	the	subgraph	of	G	induced	by
interior	 vertices.	 For	 example,	 for	 the	 graph	G	 of	Figure	12.13	 (which	 is	 also
shown	in	Figure	12.12),	the	vertices	s,	v	and	x	are	the	interior	vertices	of	G	and
so	Int(G)	=	P3,	as	shown	in	Figure	12.13.

Figure	12.13:	The	interior	of	a	graph

We	now	see	that	the	interior	vertices	are	precisely	those	vertices	that	are	not



boundary	vertices.

Theorem	12.11	Let	G	be	a	connected	graph.	A	vertex	v	is	a	boundary	vertex
of	G	if	and	only	if	v	is	not	an	interior	vertex	of	G.

Proof.	 Let	 v	 be	 a	 boundary	 vertex	 of	G,	 say	 v	 is	 a	 boundary	 vertex	 of	 the
vertex	u.	Assume,	to	the	contrary,	that	v	is	also	an	interior	vertex	of	G.	Since	v
is	an	 interior	vertex	of	G,	 there	exists	a	vertex	w	distinct	 from	u	and	v	 such
that	v	lies	between	u	and	w.	Let

be	a	u	−	v	path,	where	1	<	j	<	k.	However,	vj+1	 	N(v)	and	d(u,vj+1)	=	d(u,v)	+	1,
a	contradiction.

For	the	converse,	let	v	be	a	vertex	that	is	not	an	interior	vertex	of	G.	Hence
there	exists	some	vertex	u	such	that	for	every	vertex	w	distinct	from	u	and	v,	the
vertex	v	does	not	lie	between	u	and	w.	Let	x	 	N(v).	Then

Since	v	does	not	lie	between	u	and	x,	this	inequality	is	strict	and	so	d(u,	x)	≤	d(u,
v),	that	is,	v	is	a	boundary	vertex	of	u.

Exercises	for	Section	12.2

12.15	What	is	the	periphery	of	the	graph	G	of	Figure	12.6	in	Exercise	12.1.

12.16	What	is	the	periphery	of	Pn	for	n	≥	2?

12.17	What	is	the	periphery	of	Ks,t	for	1	≤	s	≤	t?

12.18	What	is	the	periphery	of	the	Petersen	graph?

12.19	Give	an	example	of	a	connected	graph	G	and	a	vertex	v	of	G	such	that	(1)
v	 does	 not	 belong	 to	 the	 center	 of	 G,	 (2)	 v	 does	 not	 belong	 to	 the
periphery	of	G	and	(3)	v	is	neither	adjacent	to	a	vertex	in	the	center	nor
adjacent	to	a	vertex	in	the	periphery	of	G.

12.20	 Prove	 or	 disprove:	 There	 exists	 a	 connected	 graph	 whose	 center	 and
periphery	are	distinct	but	not	disjoint.

12.21	Let	G	be	a	connected	graph	for	which	some	but	not	all	vertices	of	G	have



eccentricity	1.	Does	there	exist	a	connected	graph	H	such	that	Per(H)	=
G,	where	every	vertex	of	H	has	eccentricity	2	or	3?

12.22	Let	G	be	a	connected	graph	of	order	n	≥	3	that	is	not	complete.	Prove	that
G	is	the	periphery	of	some	graph	if	and	only	if	Δ(G)	≤	n	−	2.

12.23	Show	that	a	connected	graph	G	of	diameter	2	 is	 the	periphery	of	 some
graph	if	and	only	if	G	is	self-centered.

12.24	Show	that	for	every	integer	n	≥	3,	there	is	exactly	one	tree	of	order	n	that
is	not	the	periphery	of	some	graph.

12.25	If	a	graph	G	is	the	eccentric	subgraph	of	a	graph	H,	does	it	follows	that	G
is	the	periphery	of	H?

12.26	For	the	graph	G	of	Figure	12.14,	determine

(a)	the	set	of	peripheral	vertices	of	G,

(b)	the	set	of	eccentric	vertices	of	G,

(c)	the	set	of	boundary	vertices	of	G,

(d)	the	periphery,	eccentric	subgraph	and	boundary	of	G.

Figure	12.14:	The	graph	in	Exercise	12.26

12.27	Give	an	example	of	a	connected	graph	G	and	a	set	S	=	{v1,	v2,	v3,	v4}	of
vertices	of	G	such	that	vi+1	is	an	eccentric	vertex	of	vi	for	i	=	1,	2,	3	but
no	vertex	of	S	is	an	eccentric	vertex	of	any	other	vertex	of	S.

12.28	Let	F	be	a	nontrivial	connected	graph	with	no	vertices	of	eccentricity	1
and	let	G	=	F	+	Kk,	where	k	=	1,	2.

(a)	Prove	that	the	boundary	of	G	is	F	if	k	=	1.

(b)	Prove	that	the	boundary	of	G	is	G	itself	if	k	=	2.

12.29	 For	 each	 of	 the	 graphs	 Gi,	 i	 =	 1,	 2,	 in	 Figure	 12.15,	 show	 that	 the



boundary	of	Gi	is	Gi.

Figure	12.15:	Graphs	in	Exercise	12.29

12.30	Show	that	for	every	positive	integer	k,	there	exists	a	connected	graph	G
and	an	eccentric	vertex	v	of	G	such	that	diam(G)	−	e(v)	≥	k.

12.31	Prove	that	for	every	graph	G,	there	exists	a	connected	graph	H	such	that
Cen(H)	=	Int(H)	=	G.

12.3	Excursion:	Locating	Numbers

Suppose	that	a	certain	facility	consists	of	five	rooms	R1,	R2,	R3,	R4,	R5	(shown	in
Figure	 12.16).	 The	 distance	 between	 rooms	 R1	 and	 R3	 is	 2	 and	 the	 distance
between	R2	 and	R4	 is	 also	 2.	 The	 distance	 between	 all	 other	 pairs	 of	 distinct
rooms	is	1.	The	distance	between	a	room	and	itself	is	0.	A	certain	(red)	sensor	is
placed	 in	one	of	 the	rooms.	If	an	unauthorized	 individual	should	enter	a	room,
then	the	sensor	is	able	to	detect	the	distance	from	the	room	with	the	red	sensor	to
the	room	containing	the	intruder.	Suppose,	for	example,	that	the	sensor	is	placed
in	R1.	If	an	intruder	enters	room	R3,	then	the	sensor	alerts	us	that	an	intruder	has
entered	a	room	at	distance	2	from	R1;	that	is,	the	intruder	is	in	R3	since	R3	is	the
only	room	at	distance	2	from	R1.	If	the	intruder	is	in	R1,	then	the	sensor	indicates
that	an	intruder	has	entered	a	room	at	distance	0	from	R1;	that	is,	the	intruder	is
in	R1.	However,	if	the	intruder	is	in	any	of	the	other	three	rooms,	then	the	sensor
tells	us	 that	 there	 is	an	 intruder	 in	a	 room	at	distance	1	from	R1.	But	with	 this
information,	we	 cannot	 determine	 the	 precise	 room	 containing	 the	 intruder.	 In
fact,	 there	 is	 no	 room	 in	which	 the	 (red)	 sensor	 can	 be	 placed	 to	 identify	 the
exact	location	of	an	intruder	in	every	instance.



Figure	12.16:	A	facility	consisting	of	five	rooms

On	the	other	hand,	 if	we	place	 the	red	sensor	 in	R1	and	a	blue	sensor	 in	R2
and	an	intruder	enters	R5,	say,	then	the	red	sensor	in	R1	 tells	us	that	there	is	an
intruder	in	a	room	at	distance	1	from	R1,	while	the	blue	sensor	tells	us	that	the
intruder	 is	 in	 a	 room	 at	 distance	 1	 from	R2,	 that	 is,	 the	 ordered	 pair	 (1,	 1)	 is
produced	 for	 R4.	 Since	 these	 ordered	 pairs	 are	 distinct	 for	 all	 rooms,	 the
minimum	number	of	sensors	required	to	detect	the	exact	location	of	an	intruder
is	2.	Care	must	be	taken,	however,	as	to	where	the	two	sensors	are	placed.	For
example,	we	cannot	place	sensors	 in	R1	and	R3	 since,	 in	 this	case,	 the	ordered
pairs	 for	 R2,	 R4	 and	 R5	 are	 all	 (1,	 1),	 and	 we	 cannot	 determine	 the	 precise
location	of	a	possible	intruder.

The	 facility	 that	 we	 have	 just	 described	 can	 be	 modeled	 by	 the	 graph	 of
Figure	12.17,	whose	 vertices	 are	 the	 rooms	 and	 such	 that	 two	 vertices	 in	 this
graph	are	adjacent	if	the	corresponding	two	rooms	are	adjacent.	This	gives	rise
to	a	problem	involving	graphs.

Let	G	 be	 a	 connected	 graph.	 For	 an	 ordered	 set	W	 =	 {w1,	w2,	…,	wk}	 of
vertices	of	G	and	a	vertex	v	of	G,	the	locating	code	(or	simply	the	code)	of	v

Figure	12.17:	A	graph	modeling	a	facility	with	five	rooms

with	respect	to	W	is	the	k-vector

The	set	W	is	a	locating	set	(also	called	a	resolving	set)	for	G	if	distinct	vertices
have	distinct	codes.	A	locating	set	containing	a	minimum	number	of	vertices	is	a
minimum	locating	set	(or	metric	basis)	for	G.	The	location	number	loc(G)	of



G	 (also	called	 the	metric	dimension)	 is	 the	number	of	vertices	 in	a	minimum
locating	 set	 for	G.	 For	 example,	 consider	 the	graph	G	 shown	 in	 Figure	 12.18,
which	you	will	notice	 is	 isomorphic	 to	 the	graph	of	Figure	12.17.	The	ordered
set	W1	=	{v1,	v3}	is	not	a	locating	set	for	G	since	cW1

(v2)	=	(1,	1)	=	cW1
(v4),	that

is,	G	contains	two	vertices	with	the	same	code	with	respect	to	W1.	On	the	other
hand,	W2	=	{v1,	v2,	v5}	is	a	locating	set	for	G	since	the	codes	for	the	vertices	of
G	with	respect	to	W2	are

However,	W2	is	not	a	minimum	locating	set	for	G	since	W3	=	{v1,	v2}	is	also	a
locating	set.	The	codes	for	the	vertices	of	G	with	respect	to	W3	are

Since	 no	 single	 vertex	 constitutes	 a	 locating	 set	 for	G,	 it	 follows	 that	W3	 is	 a
minimum	locating	set	for	this	graph	G	and	so	loc(G)	=	2.

Figure	12.18:	Resolving	sets	in	a	graph	G

Peter	Slater	described	 the	usefulness	of	 these	 ideas	 in	connection	with	U.S.
sonar	 and	Coast	Guard	Loran	 (long	 range	 aids	 to	navigation)	 stations.	We	can
think	of	a	locating	set	of	a	connected	graph	G	as	a	set	W	of	vertices	in	G	so	that
each	vertex	in	G	is	uniquely	determined	by	its	distances	to	the	vertices	of	W.

For	every	ordered	set	W	=	{w1,	w2,	…,	wk}	of	vertices	in	a	connected	graph	G
of	order	n	≥	2,	the	only	vertex	of	G	whose	code	with	respect	to	W	has	0	in	its	ith
coordinate	is	wi.	So	the	vertices	of	W	necessarily	have	distinct	codes.	Since	only
vertices	of	G	 that	are	not	 in	W	have	coordinates	all	of	which	are	positive,	 it	 is
only	 these	 vertices	 that	 need	 to	 be	 examined	 to	 determine	 if	 their	 codes	 are
distinct.	This	implies	that	the	locating	number	of	G	is	at	most	n	−	1.	In	fact,	for
every	connected	graph	G	of	order	n	≤	2,



Only	one	connected	graph	of	order	n	≤	2	has	locating	number	1.

Theorem	12.12	A	connected	graph	G	of	order	n	has	locating	number	1	if	and
only	if	G	=	Pn.

Proof.	Let	Pn	=	(v1,	v2,	…,	vn).	Since	d(vi,	v1)	=	i	−	1	for	1	≤	i	≤	n,	it	follows
that	{v1}	is	a	minimum	locating	set	of	Pn	and	so	loc(Pn)	=	1.	For	the	converse,
assume	that	G	is	a	connected	graph	of	order	n	with	locating	number	1	and	let
W	=	{w}	be	a	minimum	locating	set	for	G.	For	each	vertex	v	of	G,	cW(v)	=	d(v,
w)	 is	a	nonnegative	 integer	 less	 than	n.	Since	 the	codes	of	 the	vertices	of	G
with	respect	to	W	are	distinct,	there	exists	a	vertex	u	of	G	such	that	d(u,	w)	=	n
−	1.	Consequently,	the	diameter	of	G	is	n	−	1.	This	implies	that	G	=	Pn.

At	 the	other	extreme,	only	one	connected	graph	of	order	n	≥	2	has	 locating
number	n	−	1.

Theorem	12.13	A	connected	graph	G	of	order	n	≥	2	has	locati	ng	number	n	−
1	if	and	only	if	G	=	Kn.

Proof.	Assume	first	that	G	=	Kn	and	let	W	be	a	minimum	locating	set	for	G.	If
u	 	 W,	 then	 every	 coordinate	 of	 cW(u)	 is	 1.	 Therefore,	 every	 minimum
locating	set	for	G	must	contain	all	but	one	vertex	of	G	and	so	loc(G)	=	n	−	1.
For	the	converse,	assume	that	G	≠	Kn.	Then	G	contains	two	vertices	u	and	v
with	d(u,	v)	=	2.	Let	(u,	x,	v)	be	a	u	−	v	geodesic	in	G	and	let	W	=	V(G)	−	{x,
v}.	Since	d(v,	u)	=	2	and	d(x,	u)	=	1,	it	follows	that	cW(x)	≠	cW(v)	and	so	W	is	a
locating	set.	Therefore,	loc(G)	≤	n	−	2.

As	we	mentioned,	if	G	is	a	connected	graph	of	order	n	≥	2,	then	1	≤	loc(G)	≤
n	 −	 1.	 Furthermore,	 we	 know	 exactly	 the	 graphs	 for	 which	 the	 two	 extreme
values	are	attainable.	If,	in	addition	to	the	order	of	G,	we	also	know	the	diameter
and	maximum	degree	of	G,	 then	 bounds	 for	 the	 locating	 number	 of	G	 can	be
improved.

Theorem	 12.14	 Let	 G	 be	 a	 nontrivial	 connected	 graph	 of	 order	 n	 ≥	 2,
diameter	d	and	maximum	degree	Δ.	Then



Proof.	First,	we	establish	 the	upper	bound.	Let	u	and	v	 be	vertices	of	G	 for
which	d(u,	v)	=	d	and	let	(u	=	v0,	v1,	…,	vd	=	v)	be	a	u	−	v	geodesic.	Let

Since	u	 	W	and	d(vi,	u)	=	i	for	1	≤	i	≤	d,	 it	follows	that	W	 is	a	 locating	set	of
cardinality	n	−	d	for	G.	Thus	loc(G)	≤	n	−	d.

Next,	we	consider	the	lower	bound.	Let	loc(G)	=	k	and	let	v	 	V(G)	with	deg
v	=	Δ.	Moreover,	let	N(v)	be	the	neighborhood	of	v	and	let	W	=	{w1,	w2,	…,	wk}
be	a	 locating	set	of	G.	Observe	 that	 if	u	 	N(v),	 then	for	each	 i,	1	≤	 i	≤	k,	 the
distance	d(u,	wi)	 is	one	of	 the	numbers	d(v,	wi),	d(v,	wi)	+	1	or	d(v,	wi)	−	1	by
Theorem	12.3.	Moreover,	 since	W	 is	 a	 locating	 set,	 cW(u)	 ≠	 cW(v)	 for	 all	u	
N(v).	 Thus	 there	 are	 three	 possible	 numbers	 for	 each	 of	 the	 k	 coordinates	 of
cW(u).	On	the	other	hand,	since	it	cannot	occur	that	d(u,	wi)	=	d(v,	wi)	for	all	i	(1
≤	i	≤	k),	it	follows	that	there	are	at	most	3k	−	1	distinct	codes	of	the	vertices	in
N(v)	with	respect	to	W.	Therefore,	|N(v)|	=	Δ	≤	3k	−	1,	which	implies	that

Since	loc(G)	is	an	integer,	loc(G)	≥	[log3	(Δ	+	1)].

Since	the	path	Pn,	n	≥	2,	has	maximum	degree	Δ	=	2	and	diameter	d	=	n	−	1,
the	inequalities	in	(12.1)	say	that

and	 both	 bounds	 are	 sharp	 for	 Pn.	 Furthermore,	 the	 complete	 graph	 Kn	 has
diameter	1	and	 locating	number	n	−	1,	 so	 the	upper	bound	 is	attainable	 in	 this
case.	Each	of	the	two	bounds	is	sharp	for	other	graphs	as	well.

Let	G	 be	a	connected	graph	of	order	n	≥	2.	Two	vertices	u	 and	v	 of	G	 are
distance	similar	if	d(u,	x)	=	d(v,	x)	for	all	x	 	V(G)	−	{u,v}.	Two	distinct	vertices
u	and	v	are	therefore	distance	similar	if	either

(1)	uv	 	E(G)	and	N(u)	=	N(v)	or

(2)	uv	 	E(G)	and	N[u]	=	N[v].

Distance	 similarity	 is	 an	 equivalence	 relation	 on	V(G)	 (see	 Exercise	 12.36).
Consequently,	 V(G)	 can	 be	 partitioned	 into	 k	 distinct	 distance	 similar
equivalence	classes,	say	V1,	V2,	…,	Vk.	For	each	integer	i	(1	≤	i	≤	k),	the	set	Vi



is	either	independent	in	G	or	induces	a	complete	subgraph	of	G.	Necessarily,
each	 locating	 set	 of	 G	 either	 contains	 all	 or	 all	 but	 one	 vertex	 in	 each
equivalence	class	V.	Therefore,

Consider	the	graph	G	of	Figure	12.19,	which	has	order	n	=	11.	Three	of	the
distance	similar	equivalence	classes	are	V1	=	{u1,	w1},	V2	=	{u2,	w2}	and	V3	=
{u3,	w3}.	 Each	 of	 the	 remaining	 five	 classes	 consists	 of	 a	 single	 vertex.	 Thus
there	are	k	=	8	equivalence	classes	and	so	loc(G)	≥	n	−	k	=	3.	We	may	assume
that	any	locating	set	for	G	contains	w1,	w2	and	w3.	In	fact,	W	=	{w1,	w2,	w3}	is	a
locating	set	and	consequently	is	a	minimum	locating	set.	Therefore,	loc(G)	=	n	−
k.	The	codes	for	the	vertices	of	V(G)	−	W	with	respect	to	W	are

Figure	12.19:	The	graphs	G	and	H

Next,	consider	the	graph	H	of	order	n	=	9	of	Figure	12.19.	In	this	graph,	V1	=
{x1,	y1}	and	V2	=	{x2,	y2}	are	distance	similar	equivalence	classes,	while	each	of
the	 remaining	 classes	 consists	 of	 a	 single	 vertex.	 Thus,	 there	 are	 k	 =	 7
equivalence	classes	and	so	loc(H)	≥	n	−	k	=	2.	Let	W	=	{x1,	x2}.	The	codes	for
the	vertices	of	V(G)	−	W	with	respect	to	W	are

Since	cW(y3)	=	cW(y4)	and	cW(y5)	=	cW(y6),	the	set	W	is	not	a	locating	set	for	H.
On	the	other	hand,	if	W′	=	{x1,	x2,	y3},	then	W	is	a	locating	set	and	so	loc(H)	=	3.
Therefore,	loc(H)	>	n	−	k.



Exercises	for	Section	12.3

12.32	Determine	loc(Cn)	for	n	≥	3.

12.33	Determine	loc(Ks,t)	for	1	≤	s	≤	t.

12.34	(a)	Give	an	example	of	a	connected	graph	of	order	n	≥	3	(different	from
Pn	and	Kn)	with	diameter	d	such	that	loc(G)	=	n	−	d.

(b)	Give	an	example	of	a	connected	graph	of	order	n	≥	3	(different	from
Pn	and	Kn)	with	maximum	degree	Δ	such	that	loc(G)	=	[log3	(Δ	+	1)].

12.35	Prove	that	for	each	pair	k,	n	of	integers	with	1	≤	k	≤	n	−	1,	there	exists	a
connected	graph	G	of	order	n	with	loc(G)	=	k.

12.36	 Let	 G	 be	 a	 connected	 graph.	 Show	 that	 distance	 similarity	 is	 an
equivalence	relation	on	V(G).

12.37	Determine	 the	 locating	number	of	 the	graph	G	of	Figure	12.20.	 Find	 a
minimum	locating	set	W	for	G	and	indicate	the	code	of	each	vertex	of	G
with	respect	to	W.

Figure	12.20:	The	graph	G	in	Exercise	12.37

12.4	Excursion:	Detour	and	Directed	Distance

While	the	standard	distance	d(u,	v)	from	a	vertex	u	to	a	vertex	v	in	a	connected
graph	G	 is	 the	 length	of	a	shortest	u	−	v	path	 in	G,	 it	 is	by	no	means	 the	only
definition	of	distance.	For	two	vertices	u	and	v	in	a	connected	graph	G	of	order
n,	the	detour	distance	D(u,	v)	from	u	to	v	is	defined	as	the	length	of	a	longest	u
−	 v	 path	 in	G.	 A	 u	 −	 v	 path	 of	 length	D(u,	 v)	 is	 called	 a	 u	 −	 v	detour.	 For
example,	for	the	graph	G	of	Figure	12.21	d(u,	v)	=	3	while	D(u,	v)	=	8.	A	u	−	v



detour	(drawn	in	bold)	is	also	shown	in	that	figure.

Figure	12.21:	Illustrating	detour	distance

As	with	standard	distance,	detour	distance	is	also	a	metric	on	the	vertex	set	of
every	connected	graph.

Theorem	 12.15	 Detour	 distance	 is	 a	 metric	 on	 the	 vertex	 set	 of	 every
connected	graph.

Proof.	Let	G	be	a	connected	graph.	Since	(1)	D(u,	v)	≥	0,	 (2)	D(u,	v)	=	0	 if
and	only	if	u	=	v	and	(3)	D(u,	v)	=	D(v,	u)	for	every	pair	u,	v	of	vertices	of	G,
it	remains	only	to	show	that	detour	distance	satisfies	the	triangle	inequality.

Let	u,	v	and	w	be	any	three	vertices	of	G.	Since	the	inequality	D(u,	w)	≤	D(u,
v)	+	D(v,	 w)	 holds	 if	 any	 two	 of	 these	 three	 vertices	 are	 the	 same	 vertex,	we
assume	that	u,	v	and	w	are	distinct.	Let	P	be	a	u	−	w	detour	in	G	of	length	k	=
D(u,	w).	We	consider	two	cases.

Case	1.	v	lies	on	P.	Let	P1	be	the	u	−	v	subpath	of	P	and	let	P2	be	the	v	−	w
subpath	of	P.	Suppose	that	the	length	of	P1	is	s	and	the	length	of	P2	is	t.	So	s	+	t
=	k.	Therefore,

Case	2.	v	does	not	lie	on	P.	Since	G	is	connected,	there	is	a	shortest	path	Q
from	v	to	a	vertex	of	P.	Suppose	that	Q	is	a	v	−	x	path.	Thus	x	lies	on	P	but	no
other	 vertex	 of	Q	 lies	 on	P.	Let	 r	 be	 the	 length	 of	Q.	Thus	 r	 >	 0	 (see	 Figure
12.22).



Figure	12.22:	A	step	in	the	proof	of	Case	2

Let	the	u	−	x	 subpath	P′	of	P	have	 length	a	and	 the	x	−	w	 subpath	P″	of	P
have	length	b.	Then	a	≥	0	and	b	≥	0.	Therefore,	D(u,	v)	≥	a	+	r	and	D(v,	w)	≥	b	+
r.	So

establishing	the	triangle	inequality.

The	 detour	 eccentricity,	 detour	 radius	 and	 detour	 diameter	 are	 defined	 as
expected.	Let	G	 be	 a	 connected	graph	 and	 let	v	 be	 a	 vertex	 of	G.	The	detour
eccentricity	eD(v)	of	v	is	the	maximum	detour	distance	from	v	to	a	vertex	of	G.
The	minimum	detour	eccentricity	among	the	vertices	of	G	is	the	detour	radius
radD(G)	 of	 G	 and	 the	 maximum	 detour	 eccentricity	 is	 its	 detour	 diameter
diamD(G).	There	 are	upper	 and	 lower	bounds	 for	diamD(G)	 that	 are	 analogues
(as	 are	 the	 proofs)	 to	 those	 given	 for	 the	 standard	 diameter	 of	G	 in	 Theorem
12.1.

Theorem	12.16	For	every	nontrivial	connected	graph	G,

Proof.	The	definitions	of	radD(G)	and	diamD(G)	give	the	inequality	radD(G)	≤
diamD(G).	Now	let	u	and	v	be	two	vertices	of	G	such	that	D(u,	v)	=	diamD(G)
and	let	w	be	a	vertex	of	G	such	that	eD(w)	=	radD(G).	Since	detour	distance	is
a	metric	on	V(G),

as	desired.

Every	pair	a,	b	of	positive	 integers	can	be	realized	as	 the	detour	 radius	and
detour	diameter,	respectively,	of	some	connected	graph	provided	a	≤	b	≤	2a.

Theorem	12.17	For	each	pair	a,	b	of	positive	integers	with	a	≤	b	≤	2a,	there
exists	a	connected	graph	G	with



Proof.	For	a	=	b	=	k	≥	1,	the	complete	graph	Kk+1	has	the	desired	property.	For
a	<	b	≤	2a,	let	G	be	the	graph	of	order	b	+	1	obtained	by	identifying	a	vertex	v
of	Ka+1	and	a	vertex	of	Kb−a+1	(see	Figure	12.23	for	a	=	3	and	b	=	5).	Since	b
≤	 2a,	 it	 follows	 that	 b	 −	 a	 +	 1	 ≤	 a	 +	 1.	 Thus	 eD(v)	 =	 a.	 Since	 there	 is	 a
Hamiltonian	path	in	G	with	initial	vertex	x	for	every	vertex	x	 	V(G)	−	{v},	it
follows	that	eD(x)	=	b.	Hence	radD(G)	=	a	and	diamD(G)	=	b.

Figure	12.23:	The	graph	G	of	Theorem	12.17	for	a	=	2	and	b	=	5

For	integers	a	and	b	with	a	<	b	≤	2a,	each	vertex	in	the	graph	G	in	the	proof
of	Theorem	12.17	has	eccentricity	a	or	b.	So	unlike	ordinary	eccentricity	if	k	 is
an	integer	such	that	radD(G)	<	k	<	diamD(G),	there	may	not	be	a	vertex	x	of	G
such	that	eD(x)	=	k.

We	have	now	seen	 two	definitions	of	distance	 in	connected	graphs,	both	of
which	are	metrics	on	the	vertex	set	of	the	graph.	We	now	turn	to	digraphs.

Let	D	be	a	connected	digraph.	For	two	vertices	u	and	v	of	D,	recall	that	the
directed	distance	 (u,	v)	from	u	to	v	 is	 the	 length	of	a	shortest	directed	u	−	v
path	 in	D.	Actually,	when	we	 refer	 to	a	u	−	v	 path	 in	 a	digraph	D,	we	always
refer	to	a	directed	u	−	v	path	and	when	we	refer	to	the	distance	from	a	vertex	u	to
a	vertex	v	in	D,	we	mean	the	directed	distance	from	u	to	v.	A	u	−	v	path	of	length
(u,	v)	is	a	u	−	v	geodesic.	The	fact	that	D	is	connected	does	not	guarantee	the

existence	 of	 a	 u	 −	 v	 path	 in	D.	 For	 this	 reason,	 when	 discussing	 distance	 in
digraphs,	we	 ordinarily	 assume	 that	D	 is	 strong.	 Typically,	we	 take	D	 to	 be	 a
strong	oriented	 graph.	For	 example,	 for	 the	 strong	 tournament	T	 of	 order	 3	 in
Figure	12.24,	 (u,	v)	=	1.	Since	 (v,	u)	=	2,	however,	it	follows	that	 (u,	v)	≠	
(v,	u),	that	is,	this	distance	is	not	symmetric	and	is	therefore	not	a	metric	on	the

vertex	set	of	a	nontrivial	strong	oriented	graph.



Figure	12.24:	Directed	distance	in	strong	digraphs

Directed	distance	does	satisfy	the	triangle	inequality	however.	Let	u,	v	and	w
be	vertices	of	 a	 strong	digraph	D.	Let	P1	 be	 a	u	 −	v	 geodesic	 and	P2	 a	v	 −	w
geodesic	in	D.	Then	P1	followed	by	P2	produces	a	u	−	w	walk	W	of	length	 (u,
v)	+	 (v,	w).	By	Theorem	7.2,	D	contains	a	u	−	w	path	whose	length	is	at	most
the	length	of	W	and	so

For	directed	distance,	the	eccentricities	of	the	vertices	of	a	strong	digraph	are
defined	as	expected.	Let	D	be	a	strong	digraph	and	let	v	be	a	vertex	of	D.	The
eccentricity	e(v)	of	v	is	the	length	of	a	longest	geodesic	from	v	to	a	vertex	of	D.
The	minimum	eccentricity	among	the	vertices	of	D	is	its	radius	rad(D)	and	the
maximum	eccentricity	is	its	diameter	diam(D).

To	illustrate	these	concepts,	let	r	and	d	be	positive	integers	with	r	≤	d	and	let
Cr+1	be	the	directed	(r)-cycle,	say	Cr+1	=(u1,	u2,	…,	ur+1,	u1).	Notice	that	e(ui)	=
r	for	1	≤	i	≤	r	+	1.	Next,	let	Pd	=(v1,	v2,	…,	vd)	be	a	path	of	order	d.	The	digraph
D	is	constructed	from	Cr+1	and	Pd	by	joining	every	vertex	of	Cr+1	to	vi	for	1	≤	i	≤
d	−	r	+	1	and	joining	vd	to	every	vertex	of	Cr+1	(see	Figure	12.25).	Thus

In	particular,	this	shows	that	the	diameter	of	D	can	be	more	than	twice	its	radius
and	so	for	directed	distance,	there	are	no	theorems	analogous	to	Theorems	12.1
and	12.2	in	this	case.



Figure	12.25:	A	digraph	D	with	rad(D)	=	r	and	diam(D)	=	d

Exercises	for	Section	12.4

12.38	(a)	Give	an	example	of	a	connected	graph	G	of	order	5	or	more	such	that
D(u,	v)	=	d(u,	v)	for	every	pair	u,	v	of	vertices	of	G.

(b)	 Determine	 all	 connected	 graphs	G	 for	 which	D(u,	 v)	 =	 d(u,	 v)	 for
every	pair	u,	v	of	vertices	of	G.

12.39	Give	an	example	of	a	connected	graph	G	and	a	positive	constant	K	such
that	D(u,	v)	=	d(u,	v)+K	for	every	pair	u,	v	of	distinct	vertices	of	G.

12.40	Give	 an	 example	 of	 a	 connected	 graph	G	 having	 the	 property	 that	 for
every	pair	u,	v	of	distinct	vertices	of	G,	each	u	−	v	 geodesic	 and	u	 −	v
detour	have	only	u	and	v	in	common.

12.41	Determine	radD(G)	and	diamD(G)	for	G	=	Kn,	Cn,	Qn	(n	≥	3)	and	for	G	=
Kr,s	(2	≤	r	≤	s).

12.42	Prove	 that	 |eD(u)	−	eD(v)|	≤	D(u,	v)	 for	every	 two	vertices	u	and	v	 in	a
connected	graph	D.

12.43	Prove	that	the	detour	center	of	every	connected	graph	G	 lies	in	a	single
block	of	G.

12.44	Let	G	be	a	connected	graph	and	define	 (u,	v)	=	d(u,	v)	+	D(u,	v).	Is	 	a
metric	on	V(G)?



12.45	Let	G	be	a	connected	graph	and	let	d′	be	any	metric	on	V(G).

(a)	Define	radd′(G)	and	diamd′(G).

(b)	Prove	or	disprove:	radd′(G)	≤	diamd′(G)	≤	2	radd′(G).

12.46	Let	G	be	a	connected	graph	with	cut-vertices	and	let	v,	w	 	V(G).	Prove
or	disprove:

(a)	If	eD(v)	=	radD(G),	then	v	is	a	cut-vertex	of	G.

(b)	If	eD(w)	=	diamD(G),	then	w	is	not	a	cut-vertex	of	G.

12.47	For	a	given	integer	n	≥	3,	find	all	integers	k	with	1	≤	k	≤	n	−	1	for	which
there	 exists	 a	 connected	 graph	G	 of	 order	n	 such	 that	D(u,	 v)	 =	 k	 for
every	pair	u,	v	of	distinct	vertices	of	G.

12.48	 Give	 an	 example	 of	 an	 integer	 n	 ≥	 4	 for	 which	 there	 exist	 two	 non-
isomorphic	graphs	G1	and	G2	of	order	n	such	that	d(u,	v)	+	D(u,	v)	=	n
for	every	pair	u,	v	of	distinct	vertices	of	both	G1	and	G2.

12.49	Prove	that	for	every	pair	a,	b	of	integers	with	1	≤	a	≤	b,	there	exists

(a)	a	connected	graph	F	for	which	rad(F)	=	a	and	radD(F)	=	b;

(b)	a	connected	graph	H	for	which	diam(H)	=	a	and	diamD(H)	=	b.

12.50	For	vertices	u	and	v	in	a	strong	digraph	D,	define	ds(u,	v)	=	 	(u,	v)	+	
(v,	u).

(a)	Is	this	distance	a	metric	on	V(D)?
(b)	Ask	and	answer	a	question	of	your	own	concerning	this	concept.

12.51	For	vertices	u	and	v	in	a	strong	digraph	D,	define	dp(u,	v)	=	 (u,	v)	·	
(v,	u).	Is	this	distance	a	metric	on	V(D)?

12.5	Exploration:	Channel	Assignment

Radio	 waves,	 which	 are	 electromagnetic	 waves	 propagated	 by	 antennas,	 have
different	frequencies.	When	a	radio	receiver	is	tuned	to	a	particular	frequency,	a
specific	signal	can	be	accessed.	In	the	United	States,	it	is	the	responsibility	of	the
Federal	 Communications	 Commission	 (FCC)	 to	 decide	 which	 frequencies	 are



used	for	which	purposes.	It	is	also	the	FCC	that	licenses	specific	frequencies	to
radio	stations	as	well	as	call	letters	for	the	stations.	AM	(amplitude	modulated)
radio	 is	 in	 a	 band	 of	 550	 kHz	 (kilohertz)	 to	 1700	 kHz	which	means	 that	AM
radio	broadcasts	in	a	frequency	band	of	550,000	to	1,700,000	cycles	per	second.
The	 first	 radio	broadcasts	occurred	around	1906.	Frequency	allocation	 for	AM
radio	began	 in	 the	1920s.	Because	 radio	 technology	was	not	highly	developed
during	that	period,	low	frequencies	for	AM	radio	were	appropriate	then.

Perhaps	the	major	inventor	in	the	early	days	of	radio	was	Edwin	Armstrong
(1890-1954).	 It	 was	 Armstrong	 who	 in	 1933	 developed	 the	 complete	 FM
(frequency	modulated)	system.	All	FM	radio	stations	transmit	radio	waves	in	a
band	 of	 frequencies	 between	 88	MHz	 (megahertz)	 and	 108	MHz,	 that	 is,	 the
transmitter	of	 an	FM	radio	 station	oscillates	 at	 an	 assigned	 frequency	between
88,000,000	 and	 108,000,000	 cycles	 per	 second.	 Only	 FM	 radio	 stations	 are
permitted	 to	 use	 these	 frequencies.	Certain	 frequencies	 above	 and	below	 these
are	reserved	for	television	stations.	For	example,	the	band	54	MHz	to	88	MHz	is
for	channels	2	through	6,	while	the	band	174	MHz	to	220	MHz	is	for	channels	7
through	13.

The	FM	 radio	 frequency	band,	which,	 as	we	 said,	 begins	 at	 88.0	MHz	and
ends	 at	 108.0	MHz,	 is	 divided	 into	 100	 channels,	 each	 having	 a	width	 of	 0.2
MHz	(or	200	kHz).	The	frequency	that	is	identified	with	an	FM	radio	station	is
the	midpoint	of	its	200	kHz	channel.	For	example,	in	the	state	of	Michigan,	the
FM	radio	station	WVTI	is	located	near	the	city	of	Holland	and	broadcasts	on	the
frequency	 96.1	MHz,	while	 the	 FM	 radio	 station	WFAT	 located	 in	 the	 city	 of
Portage	broadcasts	on	96.5	MHz.	It	is	not	uncommon	for	radio	stations	to	give
themselves	 names	 (actually	 nicknames).	 For	 example,	 the	 station	WVTI	 calls
itself	“the	new	I-96”	and	the	nickname	of	WFAT	is	“the	fat	one.”	Each	FM	radio
station	is	assigned	a	station	class	that	depends	on	a	number	of	factors,	including
its	 antenna	height	 and	 the	effective	 radiated	power	of	 its	 signal.	Five	common
station	classes	A,	B1,	B,	C1	and	C	are	described	in	Figure	12.26.	For	each	class,
the	 maximum	 Effective	 Radiated	 Power	 (ERP)	 of	 the	 signal,	 measured	 in
kilowatts	 (kW),	 and	 the	 maximum	 antenna	 Height	 Above	 Average	 Terrain
(HAAT)	of	the	station,	measured	in	meters	(m),	are	indicated	in	Figure	12.26	as
well.	The	station	classes	for	FM	radio	stations	WVTI	and	WFAT	are	shown	in
Figure	12.27.



Figure	12.26:	Examples	of	FM	station	classes

Figure	12.27:	ERP	and	HAAT	of	two	stations

Channels	 assigned	 to	 FM	 radio	 stations	 depend	 not	 only	 on	 the	 effective
radiated	power	of	their	signals	and	the	heights	of	their	antennas	but	also	on	their
distances	 from	 other	 stations.	 In	 particular,	 two	 stations	 that	 share	 the	 same
channel	(called	co-channel	stations)	must	be	separated	by	at	least	115	kilometers
(or	71	miles);	however,	the	required	separation	depends	on	the	classes	of	the	two
stations.	Two	channels	are	first-adjacent,	or	simply	adjacent,	if	their	frequencies
differ	 by	 200	 kHz,	 that	 is,	 if	 they	 are	 consecutive	 on	 the	 FM	 radio	 dial.	 For
example,	FM	stations	on	channels	105.7	MHz	and	105.9	MHz	are	adjacent.	The
distance	 between	 two	 radio	 stations	 on	 adjacent	 channels	 must	 be	 at	 least	 72
kilometers	(or	45	miles).	Again,	this	distance	varies	according	to	the	classes	of
the	 two	 stations.	 Moreover,	 the	 distance	 between	 two	 radio	 stations	 whose
channels	 differ	 by	 400	 kHz	 or	 600	 kHz	 (so-called	 second-or	 third-adjacent
channels)	must	be	at	least	31	kilometers.	The	actual	minimum	distance	between
stations	on	such	channels	is	shown	in	Figure	12.28.

Since	the	FM	station	WFAT	is	a	Class	A	station	broadcasting	on	channel	96.5
MHz	and	WVTI	is	a	Class	B	station	broadcasting	on	channel	96.1	MHz,	they	are
second-adjacent	station	and	the	distance	between	them	is	required	to	be	at	least
69	kilometers.	This	condition	is	met,	though	just	barely.

In	general	 then,	FM	radio	stations	located	within	a	certain	proximity	of	one
another	must	be	assigned	distinct	channels.	The	nearer	two	stations	are	to	each
other,	the	greater	the	difference	must	be	in	their	assigned	channels.	The	task	of
efficiently	allocating	channels	to	transmitters	is	called	the	Channel	Assignment
Problem.



The	use	of	graph	theory	to	study	the	Channel	Assignment	Problem	dates	back
to	 at	 least	 1970.	 In	 1980	 William	 Hale	 provided	 a	 model	 of	 the	 Channel
Assignment	Problem.	Most	often	the	Channel	Assignment	Problem	has	been

Figure	12.28:	Required	distance	(in	kilometers)	between	FM	radio	stations

modeled	as	a	graph	coloring	problem,	where	(1)	the	transmitters	are	the	vertices
of	 a	 graph,	 (2)	 two	 vertices	 (transmitters)	 are	 adjacent	 if	 they	 are	 sufficiency
close	to	each	other,	(3)	the	colors	of	the	vertices	are	the	channels	assigned	to	the
transmitters	and	(4)	some	sort	of	minimum	separation	rule	is	stipulated,	that	is,
for	 every	 pair	 of	 colors,	 there	 is	 a	 minimum	 allowable	 distance	 between	 two
distinct	vertices	assigned	these	colors.

We	 consider	 one	 of	 these	 models	 that	 was	 inspired	 by	 the	 Channel
Assignment	Problem.	For	a	connected	graph	G	of	order	n	and	an	integer	k	with	1
≤	k	≤	diam(G),	a	radio	k-coloring	of	G	is	a	function	c	:	V(G)	→	N	for	which

for	every	two	distinct	vertices	u	and	v	of	G.	For	k	=	2,	a	 radio	2-coloring	 then
requires	that

for	every	two	distinct	vertices	u	and	v	of	G.	This	says	that
(1)	the	colors	assigned	to	adjacent	vertices	must	differ	by	at	least	2,
(2)	the	colors	assigned	to	vertices	whose	distance	is	2	must	differ	and



(3)	there	is	no	restriction	on	colors	assigned	to	vertices	whose	distance	is	3	or
more.

A	radio	2-coloring	of	a	graph	H	is	shown	in	Figure	12.29.
The	 value	 rck(c)	 of	 a	 radio	 k-coloring	 c	 of	 a	 connected	 graph	 G	 is	 the

maximum	color	assigned	to	a	vertex	of	G,	while	the	radio	k-chromatic	number
rck(G)	of	G	is	min{rck(c)}	over	all	radio	k-colorings	c	of	G.	A	radio	k-coloring	c
of	G	is	a	minimum	radio	k-coloring	if	rck(c)	=	rck(G).	For	any	minimum	radio
k-coloring	c	of	a	connected	graph,	there	are	necessarily	vertices	u	and	v	such	that
c(u)	=	1	and	c(v)	=	rck(c).

Figure	12.29:	A	radio	2-coloring	of	a	graph

For	 the	 radio	 2-coloring	 c	 of	 the	 graph	 H	 of	 Figure	 12.29,	 rc2(c)	 =	 7.
However,	the	radio	2-chromatic	number	of	H	is	not	7.	A	radio	2-coloring	having
value	6	is	shown	in	Figure	12.30.	In	fact,	rc2(H)	=	6.

Figure	12.30:	A	minimum	radio	2-coloring	of	a	graph

Example	12.18	For	the	graph	H	of	Figure	12.29,	rc2(H)	=	6.

Solution.	The	radio	2-coloring	given	in	Figure	12.30	has	a	value	of	6	and	so
rc2(H)	≤	6.	Assume,	to	the	contrary,	that	there	is	a	radio	2-coloring	of	H	using
only	the	colors	1,	2,	3,	4,	5.	Since	the	vertices	of	degree	3	in	H	form	a	triangle,
they	must	be	colored	1,	3,	5.	Let	y	be	the	vertex	colored	3	and	let	v	be	the	end-



vertex	of	H	that	is	adjacent	to	y	(see	Figure	12.31).	Since	|c(v)	−	c(y)|	≥	2	and
1	≤	c(v)	≤	5,	 it	 follows	 that	 either	c(v)	=	1	or	c(v)	=	5.	However,	 there	 is	 a
contradiction	in	both	cases	since	d(v,	x)	=	d(v,	w)	=	2,	 implying	that	c(v)	≠	1
and	c(v)	≠	5.

Figure	12.31:	A	step	in	showing	rc2(H)	=	6	in	Example	12.18

There	 are	 some	 values	 of	 k	 for	 which	 radio	 k-colorings	 are	 well-studied
parameters.	For	k	=	1,	a	radio	1-coloring	of	a	connected	graph	G	requires	that

for	every	two	distinct	vertices	u	and	v	of	G.	This	says	that	different	colors	must
be	 assigned	 to	 adjacent	 vertices	 and	 there	 is	 no	 restriction	 on	 vertices	 whose
distance	is	2	or	more.	However,	this	is	the	standard	definition	of	a	proper	vertex
coloring	and	 shows	 that	 radio	k-coloring	 is	 a	generalization	of	 standard	vertex
coloring.

Radio	2-colorings	have	also	been	studied	and	are	also	referred	to	as	labelings
at	distance	2	and	L(2,	1)-labelings.	For	connected	graphs	of	diameter	d,	a	radio
d-coloring	 of	 G	 is	 also	 called	 a	 radio	 labeling.	 More	 specifically,	 a	 radio
labeling	of	a	connected	graph	G	 is	a	function	c	 :	V(G)	→	N	with	 the	property
that

for	every	two	distinct	vertices	u	and	v	of	G.	Since	d(u,	v)	≤	diam(G)	 for	every
two	vertices	u	and	v	of	G,	it	follows	that	no	two	vertices	are	colored	(or	labeled)
the	same	in	a	radio	labeling.

For	 a	 radio	 labeling	 c	 of	 a	 connected	 graph	G,	 the	value	 rn(c)	 of	 c	 is	 the
maximum	 label	 (or	 color)	 assigned	 to	 a	vertex	of	G,	while	 the	radio	 number
rn(G)	 of	 the	 graph	G	 is	 the	minimum	value	 of	 a	 radio	 labeling	 of	G.	 A	 radio
labeling	c	with	 rn(c)	=	rn(G)	 is	a	minimum	radio	 labeling.	To	 illustrate	 these
concepts,	we	consider	the	following	example.



Example	12.19	Determine	rn(G)	for	the	the	graph	G	of	Figure	12.32(a).

Figure	12.32:	A	radio	labeling	of	a	graph

Solution.	Since	diam(G)	=	3,	 it	 follows	 that	 in	 any	 radio	 labeling	of	G,	 the
labels	of	every	two	adjacent	vertices	must	differ	by	at	least	3	and	the	labels	of
every	two	vertices	whose	distance	is	2	must	differ	by	at	least	2.	The	colors	of
two	 vertices	 can	 differ	 by	 exactly	 1	 only	 if	 their	 distance	 is	 3.	 Thus	 the
labeling	of	G	given	in	Figure	12.32(b)	is	a	radio	labeling.	Consequently,	rn(G)
≤	8.	On	the	other	hand,	rn(G)	≠	7,	for	assume,	to	the	contrary,	that	there	is	a
radio	labeling	c	of	G	with	rn(c)	=	rn(G)	=	7.	Since	exactly	two	of	the	integers
2,	3,	4,	5,	6	are	not	used	in	this	labeling,	either	three	consecutive	integers	in
{1,	 2,	 …,	 7}	 are	 labels	 for	 the	 vertices	 of	G	 or	 two	 pairs	 of	 consecutive
integers	are	labels,	both	of	which	are	impossible	since	u	and	v	are	the	only	two
vertices	of	G	whose	distance	is	3.	Therefore,	rn(G)	=	8	and	the	labeling	given
in	Figure	12.32(b)	is	a	minimum	radio	labeling.

Let	G	be	a	connected	graph	with	V(G)	=	{v1,	v2,	…,	vn}	and	d	=	diam	(G).
Let	c	be	a	radio	labeling	of	G.	The	complementary	labeling	 	of	c	is	defined	by

for	all	i	with	1	≤	i	≤	n.	The	complementary	labeling	of	the	labeling	of	the	graph
G	in	Figure	12.32(b)	is	shown	in	Figure	12.33.

Figure	12.33:	illustrating	a	complementary	labeling



Since	| (vi)	−	 (vj)|	=	| (vi)	−	c(vj)|	for	all	i,	j	with	1	≤	i	<	j	≤	n,	we	have	the
following	observation.

Theorem	12.20	Let	G	be	a	connected	graph.	If	c	is	a	radio	labeling	of	G,	then
	is	also	a	radio	labeling	of	G.

Hence	if	c	is	a	minimum	radio	labeling	of	a	connected	graph	G,	then	so	too	is
	and	rn( )	=	rn(c).

Exercises	for	Section	12.5

12.52	Show	 that	 if	 there	 exists	 a	 radio	 labeling	of	 a	graph	G	 having	value	k,
then	there	exists	a	radio	labeling	of	G	having	value	k	+	1.

12.53	Determine	rn(Kn)	for	n	≥	3.

12.54	Determine	rck(Kr,s),	where	1	≤	r	≤	s,	for	k	=	1,	2.

12.55	Determine	rck(Pn)	for	3	≤	n	≤	7	and	1	≤	k	≤	n	−	1.

12.56	Determine	rck(Cn)	for	3	≤	n	≤	7	and	1	≤	k	≤	n/2.

12.6	Exploration:	Distance	Between	Graphs

Two	graphs	G	and	H	are,	of	course,	either	 isomorphic	or	 they	are	not.	For	 two
graphs	G	and	H,	we	often	ask	(and	are	satisfied	with	the	answer	to)	the	question:

Since	the	answer	is	obvious	if	G	and	H	have	different	orders	or	different	sizes,
the	question	is	only	interesting	if	G	and	H	have	 the	same	order	and	same	size.
Once	the	question	is	answered,	one	way	or	the	other,	we	probably	just	go	on	to
consider	other	questions.	However,	if	the	answer	is	no,	that	is,	if	G	and	H	are	not
isomorphic,	other	questions	may	occur	to	us.	For	example,	showing	that	G	and	H
are	 not	 isomorphic	 may	 have	 been	 quite	 easy	 (as	 the	 graphs	 were	 clearly
different)	or	extraordinarily	difficult	(as	the	graphs	were	strikingly	similar).	This
suggests	the	problem	of	comparing	two	graphs,	at	least	two	graphs	of	the	same
order	 and	 same	 size.	 That	 is,	 how	 close	 to	 being	 isomorphic	 are	 two	 non-



isomorphic	graphs?	There	are	several	ways	of	answering	this.	We	look	at	one	of
these.

Let	G	and	H	be	two	graphs	of	order	n	and	size	m	for	positive	integers	n	and
m,	where	then	 .	We	define	a	distance	d(G,	H)	between	them,	called
the	rotation	distance.	If	G	≅	H,	then	define	d(G,	H)	=	0.	Suppose	then	that	G	
H.	We	say	that	G	can	be	transformed	into	H	by	an	edge	rotation	(or	G	can	be
rotated	into	H)	if	G	contains	distinct	vertices	u,	v	and	w	such	that	uv	 	E(G),	uw
	E(G)	and	H	≅	G	−	uv	+	uw.	For	example,	the	graph	G	of	Figure	12.34	can	be

rotated	into	H	but	G	cannot	be	rotated	into	F.

Figure	12.34:	Edge	rotations

For	 two	 graphs	 G	 and	H	 of	 the	 same	 order	 and	 same	 size,	 the	 rotation
distance	d(G,	H)	between	G	and	H	is	defined	as	the	smallest	nonnegative	integer
k	for	which	there	exists	a	sequence	G0,	G1,	…,	Gk	of	graphs	such	that	G0	≅	G,
Gk	≅	H	 and	Gi	 can	 be	 rotated	 into	Gi+1	 for	 i	 =	 0,	 1,	…,	 k	 −	 1.	 Thus	 for	 the
graphs	G,	H	and	F	of	Figure	12.34,	d(G,	H)	=	1	and	d(G,	F)	=	2.	For	the	graphs
G	and	H′	of	Figure	12.35,	d(G,	H′)	=	3.

Figure	12.35:	Graphs	G	and	H′	with	rotation	distance	3

The	rotation	distance	is	a	metric	on	the	set	of	all	graphs	having	a	fixed	order
and	 fixed	 size	 and	 provides	 a	measure	 of	 how	 close	 two	 graphs	 are	 to	 being
isomorphic	 –	 the	 smaller	 the	 distance,	 the	 closer	 the	 graphs	 are	 to	 being
isomorphic.

Another	 concept	 occurs	 quite	 naturally	 when	 discussing	 this	 distance.	 For
two	nonempty	graphs	G1	and	G2	(not	necessarily	having	the	same	order	or	same
size),	a	graph	G	is	called	a	greatest	common	subgraph	of	G1	and	G2	if	G	is	a



graph	of	maximum	size	that	is	isomorphic	to	both	an	edge-induced	subgraph	of
G1	and	an	edge-induced	subgraph	of	G2.	The	graphs	G1	and	G2	of	Figure	12.36
have	three	distinct	greatest	common	subgraphs,	namely	G,	G′	and	G″.

Figure	12.36:	Greatest	common	subgraphs

There	 is	 an	 upper	 bound	 for	 the	 rotation	 distance	 between	 two	 graphs	 in
terms	of	the	size	of	a	greatest	common	subgraph	of	these	graphs.

Theorem	12.21	Let	G	 and	H	 be	 graphs	 of	 order	 n	 and	 size	m	 for	 positive
integers	n	and	m	and	let	F	be	a	greatest	common	subgraph	of	G	and	H,	where
F	has	size	s.	Then

Proof.	If	s	=	m,	then	G	=	H	and	d(G,	H)	=	0.	Hence	we	may	assume	that	1	≤	s
<	m.	Let	G*	and	H*	be	edge-induced	subgraphs	of	G	and	H,	respectively,	such
that	G*	≅	H*	≅	F.	Furthermore,	assume	that	V(G)	=	V(H)	=	{v1,	v2,	…,	vn}
and	that	the	subgraphs	G*	and	H*	are	 identically	labeled.	Since	G	 	H,	 the
graph	G	contains	an	edge	vivj	that	is	not	in	H	and	H	contains	an	edge	vpvq	that
is	not	in	G.	Suppose	that	{vi,	vj}	 	{vp,	vq}	≠	Ø,	say	vj	=	vp.	Then	G	can	be
rotated	into	G1	=	G	−	vivj	+	vjvq	and	d(G,	G1)	=	1.	Next,	suppose	that	{vi,	vj}	
{vp,	vq}	=	Ø.

Suppose	that	at	least	one	of	vi	and	vj	is	not	adjacent	in	G	to	at	least	one	of	vp
and	vq,	say	vivp	 	E(G).	Then	G	can	be	rotated	into	G′	=	G	−	vivj	+	vivp	and	G′
can	be	rotated	into	G″	=	G′	−	vivp	+	vpvq	and	so	d(G,	G″)	≤	2.

If,	on	the	other	hand,	each	of	vi	and	vj	 is	adjacent	 to	both	vp	and	vq,	 then	G
can	be	rotated	into	G1	=	G	−	vivp	+	vpvq	and	G1	can	be	rotated	into	G2	=	G1	−	vivj
+	vivp	and	so	d(G,	G2)	≤	2.



In	any	case,	G	can	be	transformed	into	H′	=	G	−	vivj	+	vpvq	by	at	most	two
rotations	and	so	d(G,	H′)	≤	2.	The	graphs	H′	and	H	have	s	+	1	edges	in	common.
Continuing	in	this	manner,	we	have	d(G,	H)	≤	2(m	−	s).

How	a	collection	of	graphs,	all	of	the	same	order	and	same	size,	are	related	to
each	other	in	terms	of	rotation	can	itself	be	modeled	by	a	graph.	Let	S	=	{G1,	G2,
…,	Gk}	be	such	a	set.	Then	the	rotation	distance	graph	D(S)	of	S	has	S	as	 its
vertex	 set	 and	 vertices	 (graphs)	Gi	 and	Gj	 are	 adjacent	 if	 d(Gi,	Gj)	 =	 1.	 The
distance	graph	D(S)	is	shown	for	the	set	S	=	{G1,	G2,	G3,	G4}	of	Figure	12.37.

A	 graph	G	 is	 a	 rotation	 distance	 graph	 if	G	≅	D(S)	 for	 some	 set	 S	 of
graphs.	Consequently,	the	graph	G	=	K4	−	e	of	Figure	12.37	is	a	rotation	distance
graph.

Figure	12.37:	A	rotation	distance	graph

Exercises	for	Section	12.6

12.57	For	each	positive	integer	k,	show,	with	justification,	that	there	exist	two
graphs	G	and	H	such	that	d(G,	H)	=	k.

12.58	 Give	 an	 example	 of	 two	 graphs	G	 and	H	 that	 have	 a	 unique	 greatest
common	subgraph.

12.59	For	each	positive	integer	k,	give	an	example	of	two	graphs	G	and	H	that
have	exactly	k	greatest	common	subgraphs.



12.60	Show	that	the	bound	in	Theorem	12.21	is	sharp.

12.61	Show	that	K3	is	a	rotation	distance	graph.

12.62	Show	that	C4	is	a	rotation	distance	graph.

12.63	Define	another	distance	d′	between	graphs	of	a	fixed	order	and	fixed	size
and	give	an	example	of	two	graphs	G	and	H	for	which	d′(G,	H)	does	not
equal	the	rotation	distance	between	these	graphs.



Chapter	13
Domination

13.1	The	Domination	Number	of	a	Graph

For	a	vertex	v	of	a	graph	G,	recall	that	a	neighbor	of	v	is	a	vertex	adjacent	to	v	in
G.	 Also,	 the	 neighborhood	 (or	 open	 neighborhood)	N(v)	 of	 v	 is	 the	 set	 of
neighbors	of	v.	The	closed	neighborhood	N[v]	is	defined	as	N[v]	=	N(v) {v}.	A
vertex	v	in	a	graph	G	is	said	to	dominate	itself	and	each	of	its	neighbors,	that	is,
v	dominates	the	vertices	in	its	closed	neighborhood	N[v].	Therefore,	v	dominates
1	+	deg	v	vertices	of	G.

A	 set	S	 of	 vertices	 of	G	 is	 a	dominating	 set	 of	G	 if	 every	 vertex	 of	G	 is
dominated	 by	 some	 vertex	 in	 S.	 Equivalently,	 a	 set	 S	 of	 vertices	 of	 G	 is	 a
dominating	set	of	G	if	every	vertex	in	V(G)	−	S	is	adjacent	to	some	vertex	in	S.
Consider	the	graph	G	of	Figure	13.1.	The	sets	S1	=	{u,	v,	w}	and	S2	=	{u1,	u4,	v1,
v4},	indicated	by	solid	vertices,	are	both	dominating	sets	in	G.

Figure	13.1:	Two	dominating	sets	in	a	graph	G

A	minimum	dominating	set	 in	a	graph	G	 is	a	dominating	set	of	minimum



cardinality.	 The	 cardinality	 of	 a	 minimum	 dominating	 set	 in	 G	 is	 called	 the
domination	number	of	G	and	is	denoted	by	γ(G).	(The	notation	used	to	denote
the	 domination	 number	 of	 a	 graph	 is	 the	 same	 as	 that	 used	 for	 its	 genus.
However,	 this	 is	 the	 common	 notation	 in	 both	 instances.	 There	 should	 be	 no
confusion	as	domination	and	genus	will	not	occur	in	the	same	discussion.)

The	topic	of	domination	began	with	Claude	Berge	in	1958	and	Oystein	Ore	in
1962,	with	Ore	actually	using	that	term.	However,	it	wasn’t	until	1977,	following
an	article	by	Ernie	Cockayne	and	Stephen	Hedetniemi,	that	domination	became
an	area	of	study	by	many.	In	1998,	a	book	devoted	to	this	subject	was	written	by
Teresa	Haynes,	Hedetniemi	and	Peter	Slater.	Well	over	2000	articles	have	been
written	on	domination.

Since	 the	 vertex	 set	 of	 a	 graph	 is	 always	 a	 dominating	 set,	 the	 domination
number	is	defined	for	every	graph.	If	G	is	a	graph	of	order	n,	then	1	≤	γ(G)	≤	n.
A	graph	G	of	order	n	has	domination	number	1	if	and	only	if	G	contains	a	vertex
v	of	degree	n	−	1,	in	which	case	{v}	is	a	minimum	dominating	set;	while	γ(G)	=
n	if	and	only	if	G	=	 n,	in	which	case	V(G)	is	the	unique	(minimum)	dominating
set.

Let’s	return	to	the	graph	G	of	Figure	13.1.	We	saw	that	the	set	S1	=	{u,	v,	w}
is	 a	 dominating	 set	 for	G.	 Therefore,	 γ(G)	 ≤	 3.	 To	 show	 that	 the	 domination
number	of	G	is	actually	3,	it	is	required	to	show	that	there	is	no	dominating	set
with	two	vertices.	Notice	that	the	order	of	G	 is	11	and	that	the	degree	of	every
vertex	of	G	 is	at	most	4.	This	means	 that	no	vertex	can	dominate	more	 than	5
vertices	and	that	every	two	vertices	dominate	at	most	10	vertices.	That	is,	γ(G)	>
2	and	so	γ(G)	=	3.

Let’s	look	at	a	practical	example	involving	domination.	Figure	13.2	shows	a
portion	 of	 a	 city,	 consisting	 of	 six	 city	 blocks,	 determined	 by	 three	 horizontal
streets	and	four	vertical	streets.	A	security	protection	agency	has	been	retained	to
watch	over	the	street	intersections.	A	security	guard	stationed	at	an	intersection
can	observe	the	intersection	where	he	or	she	is	located	as	well	as	all	intersections
up	to	one	block	away	in	straight	line	view	from	this	intersection.	The	question	is:
What	 is	 the	 minimum	 number	 of	 security	 officers	 needed	 to	 guard	 all	 12
intersections?	Figure	13.2	shows	four	intersections	where	security	guards	can	be
placed	(labeled	by	SG)	so	that	all	12	intersections	are	under	observation.



Figure	13.2:	A	city	map

This	situation	can	be	modeled	by	the	graph	G	of	Figure	13.3.	The	graph	G	is
actually	 the	 Cartesian	 product	P3	 ×	P4,	 which	 is	 a	 bipartite	 graph.	 The	 street
intersections	are	 the	vertices	of	G	 and	 two	vertices	 are	 adjacent	 if	 the	vertices
represent	 intersections	 on	 the	 same	 street	 at	 opposite	 ends	 of	 a	 city	 block.
Looking	for	the	smallest	number	of	security	guards	in	the	city	of	Figure	13.2	is
the	 same	problem	as	 seeking	 the	domination	number	of	 the	graph	G	 in	Figure
13.3.	The	solid	vertices	 in	Figure	13.3	correspond	 to	 the	placement	of	security
officers	in	Figure	13.2.

Figure	13.3:	A	graph	modeling	a	city	map

Example	13.1	For	the	graph	G	in	Figure	13.3,	γ(G)	=	4.

Solution.	Since	the	four	solid	vertices	in	Figure	13.3	form	a	dominating	set	of
G,	it	follows	that	γ(G)	≤	4.	To	verify	that	γ(G)	≥	4,	it	is	necessary	to	show	that
there	is	no	dominating	set	with	three	vertices	in	G.

The	graph	G	has	12	vertices,	two	of	which	have	degree	4	and	six	have	degree
3.	The	remaining	four	vertices	have	degree	2.	Therefore,	 there	are	two	vertices
that	 dominate	 five	 vertices	 each	 and	 six	 vertices	 that	 dominate	 four	 vertices
each.	 Conceivably,	 then,	 there	 is	 some	 set	 of	 three	 vertices	 that	 together
dominate	 all	 12	 vertices	 of	 G.	 However,	 we	 have	 already	 noticed	 that	 G	 is
bipartite	and	so	its	vertices	can	be	colored	with	two	colors,	say	red	(R)	and	blue
(B).	Without	loss	of	generality,	we	can	assume	that	the	vertices	of	G	are	colored
as	in	Figure	13.4.	Notice	 that	 the	neighbors	of	each	vertex	have	a	color	 that	 is
different	from	the	color	assigned	to	this	vertex.



Figure	13.4:	The	graph	P3	×	P4

Assume,	 to	 the	 contrary,	 that	 G	 has	 a	 dominating	 set	 S	 containing	 three
vertices.	At	least	two	vertices	of	S	are	colored	the	same.	If	all	three	vertices	of	S
are	 colored	 the	 same,	 say	 red,	 then	 only	 three	 of	 the	 six	 red	 vertices	 will	 be
dominated.	Therefore,	 exactly	 two	vertices	of	S	 are	 colored	 the	 same,	 say	 red,
with	the	third	vertex	colored	blue.	If	the	blue	vertex	of	S	has	degree	at	most	3,
then	it	can	dominate	at	most	three	red	vertices	and	S	dominates	at	most	five	red
vertices	of	G,	which	is	impossible.	Hence	S	must	contain	x	(see	Figure	13.4)	as
its	only	blue	vertex.	Since	y	and	z	are	the	only	two	red	vertices	not	dominated	by
x,	it	follows	that	S	=	{x,	y,	z}.	However,	u	and	v	are	not	dominated	by	any	vertex
of	S,	which	cannot	occur.	Therefore,	γ(G)	=	4.

Showing	that	γ(P3	×	P4)	=	4	illustrates	the	general	procedure	for	establishing
the	domination	number	of	a	graph.	To	show	that	γ(G)	=	k,	say,	for	some	graph	G,
we	need	to	find	a	dominating	set	for	G	with	k	vertices	(which	shows	that	γ(G)	≤
k)	and,	in	addition,	we	must	verify	that	every	dominating	set	of	G	must	contain
at	least	k	vertices	(which	shows	that	γ(G)	≥	k).

As	we	have	mentioned,	a	graph	G	of	order	n	has	domination	number	1	if	and
only	if	G	contains	a	vertex	v	of	degree	n	−	1.	Thus	all	complete	graphs	and	all
stars	 have	 domination	 number	 1.	 The	 next	 example	 provides	 the	 domination
numbers	of	graphs	belonging	to	another	familiar	class.

Example	13.2	γ(Cn)	=	 n/3 	for	n	≥	3.

Solution.	First,	write	n	=	3q	+	r,	where	0	≤	r	≤	2.	Since	Cn	is	2-regular,	every
vertex	of	Cn	dominates	exactly	three	vertices.	Therefore,	any	q	vertices	of	Cn
dominate	at	most	3q	vertices	of	Cn.	 If	r	=	0,	 then	 this	says	 that	γ(Cn)	≥	q	 =
[n/3].	If	r	=	1	or	r	=	2,	then	γ(Cn)	≥	q	+	1	=	 n/3 .

We	now	show	that	γ(Cn)	≤	 n/3 ,	where	n	=	3q	+	r.	Suppose	first	that	r	=	0.
Let	S	 be	 the	 set	 consisting	of	 any	vertex	v	 of	Cn	 and	 every	 third	vertex	of	Cn



begining	with	v	as	we	proceed	cyclically	about	Cn	in	some	direction.	Then	every
vertex	of	Cn	is	dominated	by	exactly	one	vertex	of	S.	Since	S	contains	exactly	q
vertices,	γ(Cn)	≤	q	=	 n/3 .	Next	suppose	that	r	=	1	or	r	=	2.	Now	let	S	be	the	set
consisting	of	any	vertex	v	of	Cn	and	every	third	vertex	of	Cn	begining	with	v	as
we	proceed	cyclically	about	Cn	in	some	direction	until	we	have	a	total	of	q	+	1
vertices	(see	Figure	13.5).	Then,	every	vertex	of	Cn	is	dominated	by	at	least	one
vertex	of	S.	 So	S	 is	 a	 dominating	 set	 of	Cn	 and	 γ(Cn)	≤	q	+1	=	 n/3 .	 In	 both
cases,	γ(Cn)	=	 n/3 .

Figure	13.5:	A	minimum	dominating	set	in	Cn	for	6	≤	n	≤	8

In	 the	 following	 result,	 both	 a	 lower	 bound	 and	 an	 upper	 bound	 are
established	for	the	domination	number	of	a	graph,	each	in	terms	of	the	order	and
the	maximum	degree	of	the	graph.

Theorem	13.3	If	G	is	a	graph	of	order	n,	then

Proof.	We	have	already	mentioned	that	each	vertex	v	in	a	graph	G	of	order	n
dominates	 1	 +	 deg	 v	 vertices.	 If	 v	 is	 chosen	 so	 that	 deg	 v	 =	 Δ(G),	 then	 v
dominates	 1	 +	 Δ(G)	 vertices,	 that	 is,	 v	 dominates	 all	 but	 n	 −	 (1	 +	 Δ(G))
vertices	of	G.	Since	each	of	 the	n	−	 (1	+	Δ(G))	vertices	not	dominated	by	v
dominates	itself,	there	is	certainly	a	dominating	set	for	G	with	n	−	(1	+	Δ(G))
+	1	=	n	−	Δ(G)	vertices.	So

Next,	 suppose	 that	 γ(G)	 =	 k.	 Let	 S	 =	 {v1,	 v2,	 …,	 vk}	 be	 a	 minimum
dominating	set	for	G.	Since	vi	dominates	1	+	deg	vi	vertices	of	G	 for	1	≤	 i	≤	k



and	the	vertices	of	S	dominate	all	n	vertices	of	G,

However,	1	+	deg	vi	≤	1	+	Δ(G)	for	1	≤	i	≤	k.	So

and	k(1	+	Δ(G))	≥	n.	Since	γ(G)	=	k,	it	follows	that

as	desired.

Both	bounds	for	γ(G)	in	Theorem	13.3	are	sharp.	For	positive	integers	r	and	n
with	r	≤	n	−	2,	let	G	consist	of	n	−	r	components,	one	of	which	is	the	star	K1,	 r
and	each	remaining	component	is	an	isolated	vertex,	that	is,	G	=	K1,	r	 	(n	−	r	−
1)K1.	The	central	vertex	of	K1,	r	dominates	all	vertices	of	K1,	r	and	each	isolated
vertex	can	only	be	dominated	by	itself.	Thus	γ(G)	=	n	−	r	=	n	−	Δ(G).

We	show	that	 the	 lower	bound	 is	sharp	even	for	 regular	graphs.	The	graph	
	consists	of	n	isolated	vertices;	so	G	is	0-regular	and	Δ(G)	=	0.	Thus

For	n	 even,	 let	n	 =	 2k,	where	k	 ≥	 1	 and	 let	G	 =	 kK2,	 that	 is,	G	 consists	 of	 k
components,	all	 isomorphic	 to	K2.	Thus	G	 is	1-regular	and	Δ(G)	=	1.	The	 two
vertices	of	each	component	are	dominated	by	either	vertex	in	the	component	and
so

We	have	 seen	 that	 γ(Cn)	=	 n/3 .	So	 if	n	=	3k	 for	 some	k	 ≥	 1,	 then	 γ(Cn)	=	k.
Since	Cn	is	2-regular,	Δ(G)	=	2	and



Let’s	turn	to	the	3-regular	graph	G	of	order	20	shown	in	Figure	13.6.	Since
{u0,	u4,	v0,	v4,	w0,	w4}	is	a	dominating	set	of	G,	it	follows	that	γ(G)	≤	6.	Next,	let
U	=	{u1,	u2,	…,	u5}	and	consider	 the	 induced	subgraph	F	=	G[U]	 of	G.	Since
each	vertex	of	G	dominates	four	vertices	and	|U|	=	5,	at	least	two	vertices	from	U
	{u0}	are	needed	to	dominate	the	vertices	of	U.	Applying	this	argument	to	the

other	two	subgraphs	isomorphic	to	F	in	G,	we	see	that	γ(G)	≥	3	·	2	=	6.	Hence
for	the	graph	G	of	Figure	13.6,

Figure	13.6:	A	3-regular	graph	of	order	20

Let	S	be	a	dominating	set	in	a	graph	G.	Then,	of	course,	every	vertex	of	G	is
dominated	by	at	least	one	vertex	of	S.	It	may	occur	that	the	vertices	dominated
by	some	vertex	v	of	S	are	also	dominated	by	some	other	vertex	of	S.	In	this	case,
v	 is	 not	 needed	 to	 dominate	 the	 vertices	 of	 G,	 that	 is,	 S	 −	 {v}	 is	 also	 a
dominating	set	for	G.	In	other	words,	v	can	be	deleted	from	S	and	the	remaining
set	is	a	dominating	set.	We	can	continue	to	delete	vertices	from	S	in	this	manner
until	we	have	found	a	subset	S′	of	S	such	that	S′	is	a	dominating	set	for	G	and	no
proper	subset	of	S′	is	a	dominating	set.	This	does	not	mean	that	S′	is	a	minimum
dominating	set,	however.

If	 S	 is	 a	 dominating	 set	 of	 a	 graph	 G	 and	 no	 proper	 subset	 of	 S	 is	 a



dominating	 set	 of	 G,	 then	 S	 is	 called	 a	 minimal	 dominating	 set.	 Every
minimum	dominating	set	is	minimal,	but	the	converse	is	not	true	in	general.	For
example,	consider	the	graph	C8	in	Figure	13.7.	The	set	S	=	{v1,	v2,	v5,	v6}	 is	a
dominating	 set.	 If	 we	 were	 to	 delete	 any	 vertex	 from	 S,	 however,	 then	 the
resulting	set	is	not	a	dominating	set,	that	is,	S	is	a	minimal	dominating	set.	Since
γ(C8)	=	 8/3 	=	3,	it	follows	that	S	is	not	a	minimum	dominating	set	of	C8.	The
dominating	set	S2	in	the	graph	G	of	Figure	13.1	is	also	a	minimal	dominating	set
that	is	not	a	minimum	dominating	set.

Since	each	isolated	vertex	in	a	graph	G	can	only	be	dominated	by	itself,

Figure	13.7:	A	minimal	dominating	set	in	C8

every	dominating	set	in	G	must	contain	its	isolated	vertices.	For	graphs	without
isolated	vertices,	however,	there	are	always	two	disjoint	dominating	sets.

Theorem	13.4	Let	G	be	a	graph	without	 isolated	vertices.	 If	S	 is	a	minimal
dominating	set	of	G,	then	V(G)	−	S	is	a	dominating	set	of	G.

Proof.	We	show	that	V(G)	−	S	is	a	dominating	set	of	G.	Let	v	 	V(G).	If	v	
V(G)	−	S,	then	v	is	dominated	by	itself.	Thus	we	may	assume	that	v	 	V(G)	−
S	 and	 so	 v	 	S.	We	 show	 that	 v	 is	 dominated	 by	 some	 vertex	 in	V(G)	 −	 S.
Assume,	 to	 the	contrary,	 that	v	 is	not	dominated	by	any	vertex	 in	V(G)	−	S.
Therefore,	v	is	not	adjacent	to	any	vertex	in	V(G)	−	S.	Since	S	is	a	dominating
set	of	G,	each	vertex	in	V(G)	−	S	is	adjacent	to	some	vertex	in	S	different	from
v.	Thus,	each	vertex	in	V(G)	−	S	is	dominated	by	some	vertex	in	S	−	{v}.	On
the	other	hand,	G	has	no	isolated	vertices	and	so	v	is	not	an	isolated	vertex	of
G.	 Since	v	 is	 not	 adjacent	 to	 any	 vertex	 in	V(G)	 −	 S,	 the	 vertex	 v	must	 be
adjacent	to	some	vertex	in	S	−	{v}.	Thus	v	is	dominated	by	some	vertex	in	S	−
{v}.	Therefore,	S	−	{v}	 is	a	dominating	set	of	G,	which	 contradicts	 the	 fact
that	S	is	a	minimal	dominating	set	of	G.



For	graphs	without	isolated	vertices,	we	now	present	an	upper	bound	for	the
domination	number	of	a	graph	in	terms	of	its	order.

Corollary	13.5	If	G	is	a	graph	of	order	n	without	isolated	vertices,	then

Proof.	Let	S	be	a	minimum	dominating	set	of	G.	By	Theorem	13.4,	V(G)	−	S
is	also	a	dominating	set	of	G.	Since	|S|	+	|V(G)	−	S|	=	n	and	|S|	≤	|V(G)	−	S|,	it
follows	that	γ(G)	=	|S|	≤	n/2.

We	have	seen	that	a	vertex	u	dominates	a	vertex	v	in	a	graph	if	either	u	=	v	or
v	 is	a	neighbor	of	u.	However,	 there	are	a	number	of	variations	of	domination.
We	 consider	 one	 of	 the	 best	 known	 of	 these.	 In	 this	 variation,	 a	 vertex	 u
dominates	a	vertex	v	only	if	v	is	a	neighbor	of	u.	(In	this	context,	a	vertex	does
not	dominate	itself.)	This	type	of	domination	is	called	total	domination.	A	set	S
of	vertices	in	a	graph	G	 is	a	total	dominating	set	of	G	 if	every	vertex	of	G	 is
adjacent	to	at	least	one	vertex	of	S.	Therefore,	a	graph	G	has	a	total	dominating
set	 if	 and	 only	 if	G	 contains	 no	 isolated	 vertices.	 Furthermore,	 if	 S	 is	 a	 total
dominating	set	of	G,	 then	the	subgraph	G[S]	induced	by	S	contains	no	 isolated
vertices.	 The	 minimum	 cardinality	 of	 a	 total	 dominating	 set	 is	 the	 total
domination	number	γt(G)	of	G.	A	total	dominating	set	of	cardinality	γt(G)	is	a
minimum	total	dominating	set	for	G.	For	example,	for	the	graph	G	of	Figure
13.1,	which	is	redrawn	in	Figure	13.8,	the	set	S	=	{u1,	v,	w,	v4}	 is	a	minimum
total	dominating	set	of	G	and	so	γt(G)	=	4.

Figure	13.8:	A	minimum	total	dominating	set	in	a	graph



In	Example	 13.2,	we	 saw	 that	 γ(Cn)	 =	 n/3 	 for	 n	 ≥	 3.	We	 now	 determine
γt(Cn).

Example	13.6	For	n	≥	3,

Solution.	Let	Cn	 =	 (v1,	v2,	…,	vn,	vn	 +	 1	 =	v1).	 Since	Cn	 is	 2-regular,	 every
vertex	of	Cn	dominates	exactly	two	vertices	of	Cn	in	this	case,	namely	its	two
neightbors.	Therefore,	 γt(Cn)	≥	 n/2 .	Suppose	 first	 that	n	 	 2	 (mod	 4).	We
consider	three	cases.

Case	1.	n	≡	0	(mod	4).	Thus	n	=	4k	≥	4.	Then	{v1,	v2,	v5,	v6,	…,	v4k	 −	 3,	v4k
−2}	is	a	total	dominating	set	of	2k	=	n/2	vertices.

Case	2.	n	≡	1	(mod	4).	Thus	n	=	4k	+	1	≥	5.	Then	{v1,	v2,	v5,	v6,	…,	v4k	−	3,
v4k	−	2,	v4k	+	1}	is	a	total	dominating	set	of	2k	+	1	=	 n/2 	vertices.

Case	3.	n	≡	3	(mod	4).	Thus	n	=	4k	+	3	≥	3.	Then	{v1,	v2,	v5,	v6,	…,	v4k	+	1,
v4k	+	2}	is	a	total	dominating	set	of	2k	+	2	=	 n/2 	vertices.

Therefore,	if	n	 	2	(mod	4),	then	γt(Cn)	=	 n/2 .	It	remains	to	show	that	γt(Cn)
=	(n	+	2)/2	if	n	≡	2	(mod	4).	Then	n	=	4k	+	2	for	some	positive	integer	k.	Since
{v1,	v2,	v5,	v6,	…,	v4k	+	1,	v4k	+	2}	is	a	total	dominating	set	with	2k	+	2	=	(n	+	2)/2
vertices,	it	follows	that	γt(Cn)	≤	(n	+	2)/2.	Therefore,	γt(Cn)	=	n/2	or	γt(Cn)	=	(n	+
2)/2.	Assume,	 to	 the	contrary,	 that	γt(Cn)	=	n/2	=	2k	+	1.	Let	S	 be	 a	minimum
total	dominating	set	of	Cn.

We	make	some	observations	about	the	set	S.	First,	let	vi,	vi	+	1,	vi	+	2,	vi	+	3	(1	≤
i	≤	n)	be	four	consecutive	vertices	on	Cn,	where	the	addition	in	the	subscripts	is
performed	modulo	n.	The	vertex	vi	+	1	can	be	dominated	only	by	vi	or	vi	+	2,	while
vi	+	2	can	be	dominated	only	by	vi	+	1	or	vi	+3.	Let

From	our	observation,	|Si|	≥	2	and	there	exist	vr,	vt	 	Si,	where	r	is	even	and	t	is



odd.	In	particular,	there	exists	an	integer	j	with	1	≤	j	≤	n	such	that	vj,	vj	+	1	 	S.
This	implies	that	vj	−	2,	vj	−1,	vj	+	2,	vj	+3	 	S.	Let

Then	|S′|	=	(4k	+	2)	−	6	=	4(k	−	1).	Hence	S	contains	at	least	2(k	−	1)	vertices	of
S′	and	4	vertices	of	{vj	−	2,	vj	−1,..,	vj	+	3}.	However	then,	|S|	≥	2(k	−	1)	+	4	=	2k	+
2,	a	contradiction.	Therefore,	γt(Cn)	=	(n	+	2)/2	if	n	≡	2	(mod	4).

Minimum	total	dominating	sets	are	indicated	for	Cn,	6	≤	n	≤	9,	in	Figure	13.9.

Figure	13.9:	Minimum	total	dominating	sets	for	Cn,	6	≤	n	≤	9

Since	every	total	dominating	set	of	a	graph	G	contains	at	least	two	vertices,

for	every	graph	G	of	order	n	containing	no	isolated	vertices.	The	lower	bound	in
(13.1)	can	be	attained	 if	G	 is	a	 star	or	a	double	star,	while	 the	upper	bound	 in
(13.1)	is	attainable	if	G	=	kK2	for	a	positive	integer	k.

There	 are	 bounds	 for	 the	 total	 domination	 number	 of	 a	 graph	 (without
isolated	vertices)	in	terms	of	of	its	domination	number.

Theorem	13.7	For	every	graph	G	containing	no	isolated	vertices,



Proof.	Since	every	total	dominating	set	in	G	is	also	a	dominating	set,	γ(G)	≤
γt(G).	 It	 remains	 to	 show	 that	 γt(G)	 ≤	 2γ(G).	 Let	S	 =	 {v1,	 v2,	…,	 vk}	 be	 a
minimum	dominating	set	of	G.	Each	vertex	in	V(G)	−	S	 is	therefore	adjacent
to	 some	 vertex	 of	 S.	 Since	 G	 contains	 no	 isolated	 vertices,	 each	 open
neighborhood	N(vi)	is	nonempty.	Now	let	ui	 	N(vi)	(1	≤	i	≤	k)	and	let	S′	=	{u1,
u2,	 …,	 uk}.	 Thus	 the	 vertices	 of	 S	 are	 dominated	 by	 the	 vertices	 of	 S′.
Therefore,	the	set	S	 	S′	is	a	total	dominating	set	of	G.	Hence	γt(G)	≤	|S	 	S′|
≤	2|S|	=	2γ(G).

Both	 bounds	 in	 Theorem	 13.7	 are	 sharp.	 For	 example,	 the	 domination
number	and	total	domination	number	of	every	double	star	is	2.	For	the	graph	G
of	Figure	13.10,	let	S	=	{v1,	v2,	v3,	v4,	v5}	and	S′	=	{u1,	u2,	u3,	u4,	u5}.	Then	S	is
a	minimum	dominating	set	of	G,	while	S	 	S′	is	a	minimum	total	dominating	set.
Therefore,	γ(G)	=	5	and	γt(G)	=	10.

Figure	13.10:	A	graph	G	with	γt(G)	=	2γ(G)

Corollary	 13.5	 states	 that	 the	 domination	 number	 of	 a	 graph	G	 of	 order	 n
having	no	isolated	vertices	is	at	most	n/2.	For	total	domination,	Ernie	Cockayne,
Robyn	Dawes	and	Stephen	Hedetniemi	showed	that	the	best	upper	bound	of	this
type	is	2n/3.

Theorem	13.8	If	G	is	a	connected	graph	of	order	n	≥	3,	then

The	graph	G	 of	Figure	13.10	 also	 illustrates	 the	 sharpness	 of	 the	 bound	 in
Theorem	13.8.

Exercises	for	Section	13.1



13.1	For	the	graph	G	of	Figure	13.11,	determine

(a)	the	domination	number	of	G,
(b)	the	total	domination	number	of	G.

13.2	For	the	graph	G	of	Figure	13.12,	determine

Figure	13.11:	The	graph	G	in	Exercise	13.1

(a)	the	domination	number	of	G,
(b)	the	total	domination	number	of	G.

Figure	13.12:	The	graph	in	Exercise	13.2

13.3	Determine	 the	domination	number	and	 the	 total	domination	number	 for
each	of	the	following	graphs.

(1)	Kn,	n	≥	2,	(2)	Pn,	n	≥	2,	(3)	Ks,	t	(4)	Q3,	(5)	the	Petersen	graph.

13.4	For	each	positive	integer	n,	show	that	there	exists	a	connected	graph	G	of
order	n	such	that

(a)	γ(G)	=	n	−	Δ(G),	(b)	γ(G)	=	n/(1	+	Δ(G)).

13.5	Give	an	example	of

(a)	a	graph	G	of	some	order	n,	without	isolated	vertices	and	with	Δ(G)	≤
n	−	2	and	containing	a	minimum	dominating	set	S	such	that	for	each	v
in	S,	there	is	no	w	in	V(G)	−	S	such	that	N(w)	 	S	=	{v}.



(b)	 a	 graph	G	 of	 odd	 order	 n	 ≥	 9	 without	 isolated	 vertices	 having	 the
maximum	possible	domination	number.

13.6	Prove	for	each	pair	k,	n	of	integers	with	1	≤	k	≤	n	that	there	exists	a	graph
G	of	order	n	with	γ(G)	=	k.

13.7	Prove	 for	each	pair	k,	n	 of	 integers	with	1	≤	k	≤	n/2	 that	 there	 exists	 a
connected	graph	G	of	order	n	with	γ(G)	=	k.

13.8	 Give	 an	 example	 of	 a	 minimal	 dominating	 set	 that	 is	 not	 a	 minimum
dominating	set	in	each	of	the	following	graphs

(a)	P9,	(b)	the	graph	G	in	Figure	13.11	(see	Exercise	13.1).

13.9	Prove	that	if	every	two	vertices	in	a	dominating	set	S	of	a	graph	G	are	not
adjacent,	 then	 S	 is	 necessarily	 a	 minimal	 dominating	 set	 but	 not
necessarily	a	minimum	dominating	set.

13.10	Show	that	 there	exists	a	graph	G	 and	a	minimal	dominating	set	S	of	G
such	that	|S|	−	γ(G)	≥	2.

13.11	(a)	Prove	that	if	G	is	a	graph	of	order	n	≥	2,	then	3	≤	γ(G)+γ( )	≤	n	+1.

(b)	Show	 for	 each	 integer	n	 ≥	 2	 that	 there	 exists	 a	 graph	G	 of	 order	n
such	that	γ(G)	+	γ( )	=	3.

(c)	Show	for	each	integer	n	≥	2	that	there	exists	a	graph	G	of	order	n	such
that	γ(G)	+	γ( )	=	n	+	1.

13.12	Prove	that	if	G	is	a	graph	with	γ(G)	≥	3	and	γ( )	≥	3,	then	diam	G	=	2.
[Hint:	First	show	that	G	must	be	connected.]

13.13	For	each	integer	k	≥	2,	give	an	example	of	a	connected	graph	G	for	which
γ(G)	=	γt(G)	=	k.

13.14	For	each	positive	integer	k,	give	an	example	of	a	connected	graph	G	 for
which	γ(G)	=	k	and	γt(G)	=	2k.

13.15	Give	an	example	of	a	connected	graph	G	for	which	γt(G)	=	1.5γ(G).

13.16	 For	 each	 integer	 n	 ≥	 3	 with	 n	 ≡	 0	 (mod	 3),	 give	 an	 example	 of	 a
connected	graph	G	of	order	n	for	which	γt(G)	=	2n/3.

13.2	Exploration:	Stratification



We	have	 seen	examples	where	 the	vertex	 set	of	 a	graph	has	been	divided	 into
classes	in	some	manner.	This	might	be	as	fundamental	as	separating	the	vertices
into	 even	 and	 odd	 vertices	 or	 perhaps	 distinguishing	 the	 vertices	 that	 are	 cut-
vertices	 from	 those	 that	 are	 not.	 The	 best	 known	 example	 of	 this,	 however,
occurs	with	 graph	 coloring,	when	 the	 vertex	 set	 of	 a	 graph	 is	 partitioned	 into
independent	sets	in	some	manner.

A	graph	G	whose	vertex	set	has	been	partitioned	in	some	manner	is	referred
to	as	a	stratified	graph.	If	V(G)	is	partitioned	into	k	subsets,	say	V1,	V2,	…,	Vk,
then	G	is	a	k-stratified	graph	and	these	subsets	are	called	the	strata	or	the	color
classes	of	G.	Unlike	vertex	coloring,	no	condition	is	placed	on	the	subsets	Vi,	1	≤
i	≤	k.	If	G	is	2-stratified,	then	we	commonly	color	the	vertices	of	one	color	class
red	and	those	of	the	other	color	class	blue.	For	a	given	graph	G,	a	partition	of	the
vertices	of	G	(that	is,	a	coloring	of	the	vertices	of	G)	is	called	a	stratification	of
G	(or	a	k-stratification	of	G	if	the	partition	is	into	k	subsets).	For	example,	for
the	graph	G	 of	Figure	13.13,	 two	2-stratifications	G1	 and	G2	 of	G	 are	 shown,
where	 the	 solid	 vertices	 represent	 red	 vertices	 and	 the	 open	 vertices	 represent
blue	vertices.

Figure	13.13:	Two	2-stratifications	of	a	graph

Two	k-stratified	 graphs	G	 and	H	 are	 isomorphic	 if	 there	 exists	 a	 bijective
function	 	:	V(G)	→	V(H)	such	that

(1)	u	and	v	are	adjacent	in	G	if	and	only	if	 (u)	and	 (v)	are	adjacent	in	H	and

(2)	x	and	 (x)	are	colored	the	same	for	all	x	 	V(G).

The	function	 	is	then	called	a	color-preserving	isomorphism.
In	 this	 context,	 a	 red-blue	 coloring	 of	 a	 graph	G	 is	 an	 assignment	 of	 the

colors	red	and	blue	to	the	vertices	of	G,	one	color	to	each	vertex	of	G.	In	a	red-
blue	coloring	of	G,	 it	may	occur	that	every	vertex	is	red	or	that	every	vertex	is
blue.	 If	 there	 is	 at	 least	 one	 vertex	 of	 each	 color,	 then	 the	 red-blue	 coloring
produces	a	2-stratification	of	G.

The	study	of	stratified	graphs	was	initiated	in	the	1990s	by	Reza	Rashidi	and



Naveed	 Sherwani	 when	 it	 was	 observed	 that	 it	 was	 desirable	 to	 use	 graphs
whose	vertex	sets	are	partitioned	into	classes	in	the	design	of	algorithms	to	solve
multilayer	routing	problems	that	occur	when	transistors	are	being	assembled	in
Very	Large	Scale	Integrated	(VLSI)	circuit	chips.

There	 is	a	close	connection	between	domination	 in	graphs	and	stratification
of	graphs,	 in	particular	2-stratification	of	graphs.	Let	F	 be	a	2-stratified	graph.
Therefore,	F	 contains	one	or	more	 red	vertices	 and	one	or	more	blue	vertices.
One	of	the	blue	vertices	of	F	is	selected	as	the	root	of	F,	which	we	denote	by	v.
Another	2-stratification	G3	 of	 the	graph	G	 of	Figure	13.13	 is	 shown	 in	Figure
13.14.	Since	G3	 contains	 two	nonsimilar	blue	vertices,	we	distinguish	between
these,	according	to	which	blue	vertex	is	selected	as	the	root.	We	denote	these	2-
stratified	rooted	graphs	by	F′	and	F″.

Figure	13.14:	2-stratified	rooted	graphs

Now,	let	F	be	a	2-stratified	rooted	graph,	that	is,	a	2-stratified	graph	in	which
some	blue	vertex	v	of	F	has	been	designated	as	the	root.	By	an	F-coloring	of	a
graph	G,	we	mean	a	red-blue	coloring	of	G	such	that	for	every	blue	vertex	w	of
G,	there	is	a	copy	of	F	in	G	with	v	at	w.	That	is,	for	every	blue	vertex	w	of	G,
there	exists	a	2-stratified	subgraph	G′	of	G	containing	w	and	a	color-preserving
isomorphism	 	from	F	to	G′	such	that	 (v)	=	w.	The	red-blue	coloring	of	G	in
which	 every	 vertex	 is	 colored	 red	 is	 vacuously	 an	 F-coloring	 for	 every	 2-
stratified	rooted	graph	F.

For	 example,	 for	 the	 2-stratified	 rooted	 graph	 F′	 of	 Figure	 13.15	 and	 the
graph	G	of	the	same	figure,	an	F′-coloring	is	given.	This	is	illustrated	when	the
root	v	of	F′	is	placed	at	the	blue	vertex	u2	of	G.



Figure	13.15:	An	F′-coloring	of	a	graph	G

Let	F	 be	 a	 2-stratified	 graph	 rooted	 at	 some	 blue	 vertex	 v	 and	 let	G	 be	 a
graph.	The	set	of	red	vertices	in	an	F-coloring	of	G	is	an	F-dominating	set	of	G.
An	F-dominating	set	of	minimum	cardinality	is	a	minimum	F—dominating	set
and	the	number	of	vertices	in	minimum	F-dominating	set	is	the	F—domination
number	γF(G)	 of	G.	Note	 that	 γF(G)	 is	 defined	 for	 every	 graph	G,	 even	 if	G
contains	no	subgraph	isomorphic	to	the	(uncolored)	graph	F,	since	the	red-blue
coloring	of	G	in	which	every	vertex	is	colored	red	is	an	F-coloring	of	G.	An	F-
coloring	 of	G	 in	 which	 there	 are	 γF(G)	 red	 vertices	 is	 called	 a	minimum	F-
coloring.

Let’s	 see	 what	 γF(G)	 means	 for	 some	 small	 connected	 2-stratified	 rooted
graphs	F.	Of	 course,	 the	 simplest	 example	 is	when	F	 is	 a	 2-stratified	K2	 (see
Figure	13.16).	For	this	2-stratified	graph	F,	the	F-domination	number	of	a	graph
is	a	familiar	parameter.

Theorem	13.9	Let	F	be	the	2-stratified	K2.	For	every	graph	G,



Figure	13.16:	The	2-stratified	K2

Proof.	Let	G	be	a	graph	and	let	 there	be	given	a	minimum	F-coloring	of	G.
This	 implies	 that	 every	 blue	 vertex	 of	G	 is	 adjacent	 to	 a	 red	 vertex	 of	G.
Hence	the	red	vertices	form	a	dominating	set	for	G	and	so	γ(G)	≤	γF(G).	Next,
consider	a	minimum	dominating	set	S	and	color	all	of	the	vertices	in	S	red	and
the	remaining	vertices	blue.	Since	every	blue	vertex	is	adjacent	to	at	least	one
red	vertex,	 this	red-blue	coloring	is	an	F-coloring	of	G.	Hence	γF(G)	≤	γ(G)
and	so	γF(G)	=	γ(G).

By	Theorem	13.9,	 ordinary	 domination	 can	 be	 considered	 as	F-domination
for	 an	 appropriately	 chosen	 2-stratified	 rooted	 graph	 F.	 We	 now	 turn	 to	 2-
stratified	rooted	graphs	P3.	Actually,	there	are	five	possibilities	in	this	case,	all	of
which	are	shown	in	Figure	13.17.

Figure	13.17:	The	2-stratified	rooted	graphs	P3

The	values	of	the	five	domination	parameters	associated	with	the	2-stratified
rooted	graphs	Fi	 in	Figure	13.17	are	given	 for	 the	graph	G	of	Figure	13.18.	A
minimum	Fi-dominating	set	for	this	graph	G	is	shown	in	Figure	13.18	for	i	=	1,
2,	3,	4,	5.

For	 the	 2-stratified	 rooted	 graph	 F1	 of	 Figure	 13.17,	 the	 corresponding
domination	parameter	is	also	a	familiar	one.

Theorem	13.10	Let	F1	be	the	2-stratified	rooted	graph	shown	in	Figure	13.17.
If	G	is	a	graph	without	isolated	vertices,	then	the	F1-domination	number	of	G
is	the	total	domination	number	of	G,	that	is,

Proof.	Since	G	has	no	isolated	vertices,	G	has	an	total	dominating	set.	Let	S
be	a	minimum	total	dominating	set	in	G.	Color	the	vertices	of	S	red	and	color



the	remaining	vertices	of	G	blue.	Now	let	v	be	a	blue	vertex	of	G.	Since	v	 	S,
the	vertex	v	is	adjacent	to	a	vertex	u	in	S,	that	is,	v	is	adjacent	to	a	red	vertex
u.	Since	u	must	be	adjacent	to	a	vertex	w	in	S	distinct	from	v,	it	follows	that	v

Figure	13.18:	A	minimum	Fi-dominating	set	(1	≤	i	≤	5)	in	a	graph	G

is	a	root	of	a	copy	of	F1.	Therefore,	this	red-blue	coloring	of	G	is	an	F1-coloring
and	so	 .

Next,	we	 show	 that	 .	Among	 all	minimum	F1-colorings
of	G,	let	c	be	one	for	which	the	subgraph	induced	by	the	red	vertices	contains	a
minimum	 number	 of	 isolated	 vertices.	 Let	Rc	 be	 the	 set	 of	 red	 vertices	 of	G
colored	by	c.	Thus	 .	Since	every	blue	vertex	v	in	G	 is	adjacent
to	a	red	vertex,	Rc	is	a	dominating	set	in	G.	We	claim	that	every	red	vertex	in	Rc
is	also	adjacent	to	a	red	vertex.	Assume,	to	the	contrary,	that	there	is	a	red	vertex
u	 	Rc	 that	 is	 adjacent	only	 to	blue	vertices.	Let	v	be	a	neighbor	of	u.	Then	v
belongs	to	a	copy	of	F	rooted	at	v.	Thus,	v	must	be	adjacent	 to	a	 red	vertex	w
which	 itself	 is	 adjacent	 to	 some	 other	 red	 vertex,	 which	 implies	 that	 u	 ≠	w.
Interchanging	 the	 colors	 of	 u	 and	 v	 produces	 a	 new	 γF-coloring	 of	G	 having
fewer	isolated	vertices	in	the	subgraph	induced	by	its	red	vertices,	contradicting
the	choice	of	c.	Hence,	 as	 claimed,	 every	 red	vertex	 in	Rc	 is	 adjacent	 to	 some
other	red	vertex.	Therefore,	Rc	is	a	total	dominating	set	of	G.	This	implies	that	

.	Consequently,	γt(G)	=	γF(G).
While	 the	 total	 domination	 number	 is	 defined	 only	 for	 graphs	 without

isolated	 vertices,	 the	 F1-domination	 number	 is	 defined	 for	 all	 graphs.	 By



Theorem	13.10,	for	graphs	where	both	of	these	domination	numbers	are	defined,
the	values	are	the	same.

For	 the	2-stratified	 rooted	graph	F2	 of	Figure	13.17,	we	 once	 agian	 have	 a
familiar	parameter.	We	do	not	include	the	proof	in	this	case.

Theorem	13.11	For	every	connected	graph	G	of	order	3	or	more,

If	F	 is	a	2-stratified	rooted	graph	and	G	 is	a	graph	of	order	n	containing	no
subgraph	 isomorphic	 to	 the	 (uncolored)	 graph	F,	 then	 surely,	 γF(G)	 =	 n.	 The
converse	of	this	statement	is	not	true,	however.	Consider	the	2-stratified	rooted
graph	F3	 of	 Figure	 13.17.	 Certainly,	 the	 star	K1,	 n	 −	 1,	 n	 ≥	 3,	 contains	 many
subgraphs	isomorphic	to	P3;	indeed,	it	contains	 	such	subgraphs.	However,
there	 is	 no	F3-coloring	 of	K1,	 n	 −	 1	 in	 which	 any	 vertex	 can	 be	 colored	 blue.
Therefore,	 .

Exercises	for	Section	13.2

13.17	For	the	graph	G	of	Figure	13.19,	determine	 	for	each	2-stratified
graph	Fi	in	Figure	13.17.

Figure	13.19:	The	graph	G	in	Exercise	13.17

13.18	 For	 the	 Petersen	 graph	PG,	 determine	 	 for	 each	 2-stratified
graph	Fi	in	Figure	13.17.

13.19	Consider	the	2-stratified	graph	F3	in	Figure	13.17.

(a)	Give	an	example	of	a	graph	of	at	least	3	such	that	 .
(b)	Prove	that	if	G	is	a	graph	with	 ,	then	diam(G)	≤	4.



(c)	Prove	that	if	G	is	a	bipartite	graph,	then	 .

13.20	 Study	F4-domination	 and	F5-domination	 for	 the	 2-stratified	 graphs	F4
and	F5	in	Figure	13.17.

13.21	Choose	a	2-stratified	rooted	graph	F	and	several	graphs	G	of	your	own.
Determine	the	F-domination	number	of	each	such	graph	G.

13.3	Exploration:	Lights	Out

On	a	certain	floor	of	a	business	building,	a	firm	occupies	three	offices	A,	B	and
C	located	in	a	row.	Each	office	has	a	large	ceiling	light	and	a	light	button	which,
when	pressed,	reverses	the	light	in	that	office	(on	to	off	or	off	to	on)	as	well	as
the	 light	 in	each	adjacent	office.	So	 if	we	begin	 the	day,	as	 in	Figure	13.20(a),
with	all	lights	off	and	push	the	light	button	in	the	central	office	B,	then	we	arrive
at	the	situation	in	Figure	13.20(b),	where	all	lights	are	on.

Figure	13.20:	Lights	Out	and	Lights	On

Each	light	arrangement	of	the	three	offices	can	be	represented	by	an	ordered
triple	(a,	b,	c)	or	abc,	where	a,	b	and	c	can	be	0	or	1,	with	0	meaning	 that	 the
light	is	off	in	the	particular	office	and	1	meaning	that	the	light	is	on.	The	eight
possibilities	are	shown	in	Figure	13.21.

Figure	13.21:	The	possible	light	arrangements	of	the	three	offices

This	situation	can	be	represented	by	a	graph	G	of	order	8,	whose	vertices	are



the	ordered	triples	abc,	where	a,	b,	c	 	{0,	1}.	If	we	can	change	from	one	light
arrangement	to	another	by	pressing	a	single	light	button,	then	we	draw	an	edge
between	the	two	vertices	representing	these	arrangements.	The	graph	G	is	shown
in	 Figure	 13.22.	 You	might	 notice	 that	G	 is	 the	 3-cube	Q3.	 The	 graph	Q3	 of
Figure	13.22	 shows	 that,	 beginning	with	 lights	out	 in	 all	 three	offices,	we	can
obtain	any	light	pattern	we	desire,	although	it	may	require	pressing	as	many	as
three	buttons.

Figure	13.22:	The	graph	Q3

The	 situation	 that	 we	 have	 just	 described	 can	 be	 interpreted	 in	 terms	 of
graphs	 from	 the	 beginning.	 Consider	 the	 graph	G	 in	 Figure	 13.23,	 where	 the
vertices	are	drawn	as	solid	vertices,	indicating	that	all	lights	are	on.	If	we	“press”
the	solid	vertex	in	the	middle,	this	causes	all	lights	to	go	out	and	we	obtain	the
graph	H.

So	the	general	situation	might	go	something	like	this.	Let	G	be	a	connected
graph	where	 there	 is	 a	 light	 as	well	 as	 a	 light	 button	 at	 each	 vertex.	 For	 each
vertex,	the	light	at	that	vertex	is	either	on	or	off.	When	the	light	button	at	that

Figure	13.23:	The	graphs	G	and	H

vertex	is	pressed,	it	reverses	the	light	(changing	it	from	on	to	off	or	off	to	on)	not
only	at	that	vertex	but	at	all	vertices	adjacent	to	that	vertex.	There	is	a	variety	of
questions	that	can	be	asked	here	but	our	chief	question	concerns	the	following:

The	Lights	Out	Puzzle:	Let	G	be	a	graph.	 If	 all	 vertex	 lights	of	G	are	on,
does	there	exist	a	collection	of	light	buttons	which	when	pressed	will	turn	out
all	vertex	lights?	If	so,	what	is	the	smallest	number	of	light	buttons	in	such	a



collection?

There	is	an	electronic	game	called	Lights	Out	marketed	by	Tiger	Electronics
of	Hasbro,	Inc.	that	gave	rise	to	the	more	general	graph	theory	puzzle	mentioned
above.	Earlier	manufactured	as	a	cube,	the	current	Lights	Out	game	is	played	on
a	grid	with	multi-colored	LEDs	and	digitized	sound.	Indeed,	there	are	interactive
web	sites	where	various	versions	of	the	game	can	be	played.

In	 terms	of	 the	Lights	Out	Puzzle	on	a	graph	G	mentioned	above,	what	we
are	asking	is	whether	there	is	a	dominating	set	of	G	such	that	every	vertex	of	G
is	dominated	by	an	odd	number	of	vertices.	The	following	(possibly	unexpected)
result	of	Klaus	Sutner	says	that	this	game	always	has	a	solution.

Theorem	13.12	 If	G	 is	a	connected	graph	all	of	whose	vertex	 lights	are	on,
then	there	exists	a	set	S	of	vertices	of	G	such	that	if	the	light	button	is	pressed
at	each	vertex	of	S,	then	all	vertex	lights	of	G	will	be	out.

Exercises	for	Section	13.3

13.22	 Draw	 the	 graph	 that	 represents	 all	 light	 arrangements	 when	 playing
Lights	Out	on	the	path	G1	of	Figure	13.24.	What	is	the	fewest	number	of
light	buttons	that	need	to	be	pressed	to	go	from	all	lights	on	to	all	lights
out?

13.23	Repeat	Exercise	13.22	for	the	cycle	G2	of	Figure	13.24.

13.24	What	is	the	fewest	number	of	light	buttons	that	need	to	be	pressed	to	go
from	all	lights	on	to	all	lights	out	for	the	path	G3	of	Figure	13.24.

13.25	What	is	the	fewest	number	of	light	buttons	that	need	to	be	pressed	to	go
from	all	lights	on	to	all	lights	out	for	the	graph	G4	of	Figure	13.24.

13.26	Choose	a	graph	of	your	own	on	which	to	play	Lights	Out.



Figure	13.24:	Graphs	for	Exercises	13.22–13.25

13.27	Consider	the	graph	G	of	Figure	13.25	where	all	lights	of	G	are	on.

(a)	What	 is	 the	smallest	number	of	vertices	whose	 light	buttons	need	 to
be	pressed	to	turn	off	all	the	lights?

(b)	Let	S	=	{v1,	v2,	v3,	v4}.	Show	that	if	the	light	buttons	of	S	are	pressed,
then	all	lights	of	G	are	out.	Is	there	a	proper	subset	of	S	that	will	turn
out	all	lights	of	G?	Does	this	suggest	another	question	to	you?

Figure	13.25:	The	graph	for	Exercise	13.27

13.28	Observe	 that	 the	graph	H	of	Figure	13.26	has	one	 light	on,	namely	 the
light	at	v1.	However,	we	would	like	all	lights	to	be	out.	What	do	we	do?

Figure	13.26:	The	graph	for	Exercise	13.28

13.29	Prove	that	in	the	game	of	Lights	Out,	the	order	in	which	the	buttons	are
pressed	is	immaterial.

13.30	 (a)	 Change	 the	 rules	 for	 Lights	Out	 and	 play	 the	 game	 under	 the	 new
rules	for	a	graph	that	you	choose.

(b)	Define	a	set	of	rules	for	playing	Lights	Out	on	a	digraph	and	play	this
game	on	a	digraph	of	your	choice.



13.4	Excursion:	And	Still	It	Grows	More	Colorful

We	 have	 seen	 that	 graph	 theory	 originated	 with	 a	 number	 of	 isolated	 and
disconnected	 results	 from	 unexpected	 sources.	 Recreational	 results	 and	 truly
mathematical	 theorems	 alike	 played	 major	 roles	 in	 the	 development	 of	 the
subject.	Authors	of	 the	early	 textbooks	on	graph	 theory	organized	many	of	 the
existing	 theorems	 and	 set	 the	 stage	 for	what	was	 to	 follow.	 Progress	 in	 graph
theory	was	greatly	aided	by	numerous	attempts	 to	solve	a	simple-sounding	but
deceptively	difficult	problem	involving	the	coloring	of	maps.	Graph	theory	had
the	 good	 fortune,	 however,	 of	 attracting	 a	 number	 of	 talented	 and	 dedicated
mathematicians	to	this	fascinating	subject.

As	graph	theory	progressed	further	into	the	20th	century,	some	well-defined
areas	of	the	subject	blossomed.	Also,	the	number	of	mathematicians	working	in
the	 subject	 continued	 to	 grow.	 This	 included	 researchers	 who	 obtained	 deep
results,	those	who	studied	graph	theory	from	applied	points	of	view,	those	who
created	new	and	interesting	problems	to	study,	those	who	wrote	of	the	historical
perspectives	of	 the	subject	and	its	relationships	to	other	more	established	areas
of	mathematics	and	those	who	wrote	and	lectured	of	the	many	aesthetic	aspects
of	 the	 subject,	 thereby	 introducing	 graph	 theory	 to	 a	 new	 generation	 of
mathematicians.	 That	 graph	 theory	 had	 grown	 into	 a	 more	 prominent	 area	 of
mathematics	 became	 increasingly	 evident	 during	 the	 latter	 portion	 of	 the	 20th
century	and	into	the	21st	century.

In	the	1960s	a	series	of	conferences	that	emphasized	graph	theory	came	into
prominence.	 One	 of	 these	 was	 the	 1963	 Czechoslovak	 Symposium	 on	 Graph
Theory	 held	 in	 Smolenice.	 In	 1968	 the	 first	 of	 nine	 Kalamazoo	 (Michigan)
Graph	 Theory	 Conferences	 was	 held	 and	 would	 continue	 to	 take	 place	 every
fourth	year	at	Western	Michigan	University	throughout	the	remainder	of	the	20th
century.	Yousef	Alavi	played	a	leading	role	 in	organizing	these	conferences.	In
1969	 the	 first	of	 the	Southeastern	 International	Conferences	on	Combinatorics,
Graph	 Theory	 and	 Computing,	 primarily	 at	 Florida	 Atlantic	 University	 and
organized	 by	 Frederick	Hoffman.	 The	 British	 Combinatorial	 Conferences	 also
began	 in	 1969	 and	 have	 been	 held	 during	 odd-numbered	 years	 since	 1973.	 In
more	 recent	 times,	 during	 even-numbered	 years,	 the	 SIAM	 (Society	 for
Industrial	and	Applied	Mathematics)	Conferences	on	Discrete	Mathematics	have
taken	place.

In	 1977	 graph	 theory	 acquired	 its	 own	 journal	when	 the	 Journal	 of	Graph
Theory,	 founded	 by	 Frank	Harary,	 began	 publication.	On	 the	 first	 page	 of	 the



first	issue	of	the	first	volume,	the	publishers	(John	Wiley	&	Sons,	Inc.)	wrote:

GRAPH	 THEORY	 has	 definitely	 emerged	 as	 a	 distinct	 entity	 within
combinatorial	 theory.…	We	 are	 confident	 that	 the	 journal	 will	 fill	 the
need	 for	 current	 information	 dealing	 with	 this	 branch	 of	 applicable
mathematics.

The	 Journal	 of	 Graph	 Theory	 went	 on	 to	 receive	 an	 award	 from	 the
Association	of	American	Publishers	for	the	best	new	journal	published	in	1977
in	the	scientific,	medical	and	technical	category.

Another	 important	 milestone	 for	 graph	 theory	 occurred	 in	 1990	 when	 the
Institute	of	Combinatorics	and	Its	Applications	was	established.	The	aim	of	this
organization	 is	 to	 promote	 combinatorics	 (including	 graph	 theory).	 The
mathematician	who	played	 the	central	 role	 in	 the	founding	of	 the	Institute	was
Ralph	G.	 Stanton	 (1923–2010)	who	was	Distinguished	Professor	 of	Computer
Science	at	the	University	of	Manitoba	in	Winnipeg,	Canada.

In	1991	the	official	journal	of	the	Institute	began	publication:	The	Bulletin	of
the	 Institute	 of	 Combinatorics	 and	 Its	 Applications.	 In	 its	 initial	 volume,	 the
then-president	of	the	Institute	and	respected	mathematician	William	Tutte,	whom
we	have	met	often,	argued	that	graph	theory	(indeed,	any	area	of	mathematics)	is
not	separate	from	the	rest	of	mathematics	but	that	mathematics	is	a	single	unified
subject.

The	Handbook	 of	 Graph	 Theory,	 now	 in	 its	 second	 edition	 and	 edited	 by
Jonathan	Gross,	Jay	Yellen	and	Ping	Zhang,	is	considered	by	many	as	the	most
comprehensive	 single-source	 guide	 to	 graph	 theory	 ever	 published.	 In	 it	 are
described	numerous	applications	of	graph	theory	to	diverse	areas	of	study.

And	 what	 lies	 ahead	 for	 graph	 theory?	 This	 is	 difficult	 to	 predict,	 but
whatever	the	future	holds	is	certain	to	be	interesting	…	and	colorful.



Appendix	1:	Sets	and	Logic

1.1	Sets

Many	of	the	sets	that	are	dealt	with	in	graph	theory	are	finite.	As	for	familiar
infinite	sets,	we	write	Z	for	the	set	of	integers,	N	for	the	set	of	positive	integers
(natural	 numbers),	Q	 for	 the	 set	 of	 rational	 numbers	 and	R	 for	 the	 set	 of	 real
numbers.	Among	the	infinite	sets,	we	are,	by	far,	most	interested	in	the	integers.
Even	 when	 dealing	 with	 a	 rational	 number	 or	 real	 number,	 we	 are	 often
concerned	with	a	nearby	 integer.	For	a	 real	number	x,	 the	 floor	 x 	 of	x	 is	 the
greatest	integer	less	than	or	equal	to	x.	So,	for	example,	 5 	=	5,	 ,	
=	3	and

The	 ceiling	 x 	 of	 x	 is	 the	 smallest	 integer	 greater	 than	 or	 equal	 to	 x.	 For
example,	 5 	=	5,	 ,	 	=	4	and

For	a	finite	set	S,	we	denote	its	cardinality	(the	number	of	elements	in	S)	by
|S|.	If	|S|	=	n	for	some	n	 	N,	then	we	can	write	S	=	{s1,	s2,	…,	sn}.	The	set	with
cardinality	0	is	the	empty	set,	which	is	denoted	by	ø.	Thus	ø	=	{	}.

For	two	sets	A	and	B,	the	Cartesian	product	A	×	B	of	A	and	B	is	the	set

Therefore,	A	×	A	is	the	set	of	all	ordered	pairs	of	elements	of	A.	For	example,	if
A	=	{a1,	a2}	and	B	=	{b1,	b2,	b3},	then



and

Two	 sets	 S	 and	 T	 are	 equal,	 written	 S	 =	 T,	 if	 they	 consist	 of	 the	 same
elements.	A	set	T	is	a	subset	of	a	set	S	if	every	element	of	T	belongs	to	S.	This	is
denoted	by	writing	T	 	S.	The	number	of	k-element	subsets	of	an	n-element	set
is	given	by	the	binomial	coefficient

where	n!	=	n(n	−	1)(n	−	2)	…	3	·	2	·	1	if	n	 	N	and	0!	=	1.	In	particular,

Consequently,	 the	number	of	3-element	subsets	of	 the	set	S	=	{1,	2,	3,	4,	5}	is
10.	These	subsets	are

The	number	of	2-element	subsets	of	an	n-element	set	is	therefore	given	by

So	 	and	 .	If	we	were	to	add
the	first	n	−	1	positive	integers,	then	the	result	is	 ,	that	is,

Another	familiar	and	useful	identity	is

Since	every	subset	of	an	n-element	set	contains	k	elements	for	some	k	with	0	≤	k
≤	 n,(1)	 states	 that	 the	 total	 number	 of	 subsets	 of	 an	 n-element	 set	 is	 2n.	 For
example,	there	are	23	=	8	subsets	of	the	set	S	=	{1,	2,	3},	namely,



A	partition	of	a	nonempty	set	S	is	a	collection	 	of	nonempty	subsets	of	S
such	that	every	element	of	S	belongs	to	exactly	one	of	the	elements	of	 .	For	the
set	S	={1,	2,	3,	4,	5,	6},

is	 a	 partition	 of	S.	 A	well-known	 theorem	 concerning	 partitions	 of	 sets	 is	 the
following.

The	 Pigeonhole	 Principle	 If	 	 is	 a	 partition	 of	 an	 n-element	 set	 S	 into	 k
subsets,	then	some	subset	of	S	in	 	must	contain	at	least	 	elements.

In	particular,	if	S	is	a	set	with	17	elements	and	 	is	a	partition	of	S	into	five
subsets,	then	some	subset	of	S	in	 	must	contain	at	least	[17/5]	=	4	elements.	A
related	version	of	the	Pigeonhole	Principle	due	to	Frank	Ramsey	is	also	useful	to
know.

Ramsey’s	Theorem	Let	 	=	{S1,	S2,	…,	Sk}	be	a	partition	of	a	set	S	into	k
subsets	and	let	n1,	n2,	…,	nk	be	k	positive	integers	such	that	|Si|	≥	ni	for	every
integer	i	with	1	≤	i	≤	k.	Then	there	exists	a	positive	integer	n	such	that	every	n-
element	subset	of	S	contains	at	least	ni	elements	of	Si	for	some	i	(1	≤	i	≤	k).

In	particular,	the	integer

has	this	property.	Indeed,	it	is	the	smallest	integer	with	this	property.
For	example,	if	 	=	{S1,	S2,	S3,	S4}	is	a	partition	of	S	=	S1	 	S2	 	S3	 	S4,

where	|S1|	=	5,	|S2|	=	6,	|S3|	=	4,	|S4|	=	7	and	n1	=	4,	n2	=	3,	n3	=	3,	n4	=	5,	then
every	 12-element	 subset	 of	 S	 must	 contain	 either	 (1)	 4	 elements	 of	 S1,	 (2)	 3
elements	of	S2,	(3)	3	elements	of	S3	or	(4)	5	elements	of	S4.

1.2	Logic



A	statement	P	is	a	declarative	sentence	that	is	true	or	false	but	not	both.	If	P
is	a	true	statement,	then	its	truth	value	is	true;	otherwise,	its	truth	value	is	false.
The	 negation	 ∼	 P	 (not	 P)	 of	 P	 has	 the	 opposite	 truth	 value	 of	 P.	 The
disjunction	P	∨	Q	(P	or	Q)	of	two	statements	P	and	Q	is	true	if	at	least	one	of	P
and	Q	is	true	and	is	false	otherwise.	The	conjunction	P	∧	Q	(P	and	Q)	of	P	and
Q	 is	 true	 if	 both	 P	 and	 Q	 are	 true	 and	 is	 false	 otherwise.	 Two	 statements
constructed	 from	P	 and	Q	 and	 logical	 connectives	 (such	 as	∼,	∨	 and	∧)	 are
logically	 equivalent	 if	 they	 have	 the	 same	 truth	 values	 for	 all	 possible
combinations	of	 truth	values	for	P	and	Q.	According	to	De	Morgan’s	 laws,	for
statements	P	and	Q,

For	statements	P	and	Q,	the	implication	P	⇒	Q	often	expressed	as	“If	P,	then
Q.”	 is	 true	for	all	combinations	of	 truth	values	P	and	Q	except	when	P	 is	 true
and	Q	is	false.	Other	ways	to	express	P	⇒	Q	in	words	are:	(1)	P	implies	Q;	(2)	P
only	if	Q;	(3)	P	is	sufficient	for	Q;	(4)	Q	is	necessary	for	P.	In	this	case,	P	is	a
sufficient	condition	for	Q	and	Q	is	a	necessary	condition	for	P.

A	declarative	sentence	containing	one	or	more	variables	is	often	referred	to	as
an	 open	 sentence.	 When	 the	 variables	 are	 assigned	 values	 (from	 some
prescribed	 set	 or	 sets),	 the	 open	 sentence	 is	 converted	 into	 a	 statement	whose
truth	value	depends	on	 the	values	 assigned	 to	 the	variables.	An	open	 sentence
expressed	in	terms	of	a	real	number	variable	x	might	be	denoted	by	P(x)	or	Q(x).
Since	P(x)	 and	Q(x)	 are	 open	 sentences	 and	 not	 statements,	 they	 do	 not	 have
truth	values.	Similarly	∼P(x),	P(x) Q(x),	P(x) Q(x)	and	P(x)	⇒	Q(x)	 are	 then
also	open	sentences,	not	statements.	While

is	an	open	sentence	with	a	real	number	variable	x,	assigning	x	the	values	−1	and
1/2	produces	the	statements

both	of	which	are	 true.	For	every	real	number	 ,	however,	P(r)	 is	a
false	statement.

Open	 sentences	 can	 also	 be	 converted	 into	 statements	 by	 means	 of
quantifiers,	resulting	in	a	quantified	statement.	For	example,	suppose	that	P(n)
is	an	open	sentence	expressed	 in	 terms	of	an	 integer	variable	n.	The	universal



quantifier,	denoted	by	∀,	represents	for	all,	for	each	or	for	every.	Therefore,

is	a	quantified	statement.	This	statement	is	true	if	P(n)	is	true	for	every	integer	n.
The	quantified	statement	∀n	 	Z,	P(n)	can	also	be	expressed	as	the	implication:

The	existential	quantifier,	 denoted	by	∃,	 represents	 there	exists,	 for	 some	or
for	at	least	one.	Thus

is	a	quantified	statement.	This	statement	 is	 true	 if	P(n)	 is	 true	 for	one	or	more
integers	n.

For	an	integer	variable	n,

is	an	open	sentence	and

is	 a	 false	 statement	 since	 P(2)	 is	 false.	 As	 we	 saw,	 this	 statement	 can	 be
expressed	as	the	implication:

On	the	other	hand,

is	true	since	P(3)	is	true	for	example.
If	 the	 open	 sentence	 P(n)	 is	 an	 implication,	 say	 R(n)	 ⇒	 Q(n),	 then	 the

quantified	statement

is	often	expressed	as

Then	∀n	 	Z,	R(n)	⇒	Q(n)	is	true	if	R(n)	⇒	Q(n)	is	true	for	every	integer	n.
For	 statements	 P	 and	 Q,	 the	 converse	 of	 the	 implication	 P	⇒	 Q	 is	 the

implication	Q	⇒	P,	while	the	contrapositive	of	P	⇒	Q	is	the	implication	(∼	Q)



⇒	 (∼	P).	While	 an	 implication	 and	 its	 contrapositive	 are	 logically	 equivalent,
such	is	not	the	case	for	an	implication	and	its	converse.

For	 open	 sentences	 P(n)	 and	 Q(n),	 where	 n	 is	 an	 integer	 variable,	 the
converse	 of	 ∀n	 	 Z,	 P(n)	 ⇒	 Q(n)	 is	 ∀n	 	 Z,	 Q(n)	 ⇒	 P(n),	 while	 the
contrapositive	of	∀n	 	Z,	P(n)	⇒	Q(n)	is	∀n	 	Z,	(∼	Q(n))	⇒	(∼	P(n)).

Consider	the	statement

Its	converse	is

and	its	contrapositive	(using	one	of	De	Morgan’s	laws)	is

For	statements	P	and	Q,	we	write	P	⇔	Q	 to	mean	(P	⇒	Q)	∧	 (Q	⇒	P).	 In
words,	P	⇔	Q	is	expressed	as

P	if	and	only	if	Q.

or	as

P	is	necessary	and	sufficient	for	Q.

In	the	case	of	the	quantified	statement,

can	be	stated	as

As	a	specific	example,	we	have



Appendix	2:	Equivalence	Relations
and	Functions

2.1:	Equivalence	Relations

For	 nonempty	 sets	A	 and	B,	 a	 relation	 R	 from	A	 to	B	 is	 a	 subset	 of	 the
Cartesian	product	of	A	and	B,	that	is,

A	relation	R	on	A	 is	 then	 a	 relation	 from	A	 to	A,	 that	 is,	R	 is	 a	 collection	 of
ordered	pairs	of	elements	of	A.	If	(a,	b)	 	R,	then	a	and	b	are	said	to	be	related
by	R.	This	is	also	expressed	by	writing	a	R	b.	For	example,	if	A	=	{1,	2,	3,	4},
then

is	a	relation	on	A.	So	1	R	2,	that	is,	1	is	related	to	2	by	R.
A	 relation	R	 on	 a	 nonempty	 set	A	 is	 an	 equivalence	 relation	 if	R	 has	 the

following	three	properties:

(1)	R	is	reflexive,	that	is,	x	R	x	for	every	x	 	A.

(2)	R	is	symmetric,	that	is,	whenever	x	R	y,	then	y	R	x	for	all	x,	y	 	A.

(2)	R	is	transitive,	that	is,	whenever	x	R	y	and	y	R	z,	then	x	R	z	for	all	x,	y,	z	
A.

The	relation

is	an	equivalence	relation	on	the	set	A	=	{1,	2,	3,	4}.
The	following	provides	an	example	of	an	equivalence	relation	on	an	infinite

set.



Example	2.1	A	relation	R	on	the	set	Z	of	integers	is	defined	by	x	R	y	if	x	+	y	is
even.	Show	that	R	is	an	equivalence	relation	on	Z.

Solution.	First,	we	show	 that	R	 is	 reflexive.	Let	x	 	Z.	 Since	x	 +	x	 =	 2x	 is
even,	x	R	x	and	so	R	is	reflexive.	Next	we	show	that	R	is	symmetric.	Assume
that	x	R	y,	where	x,	y	 	Z.	Then	x	+	y	is	even.	Since	y	+	x	=	x	+	y,	it	follows
that	y	+	x	is	also	even.	Therefore,	y	R	x	and	R	is	symmetric.

Finally,	we	show	that	R	is	transitive.	Assume	that	x	R	y	and	y	R	z,	where	x,	y,
z	 	Z.	Therefore,	both	x	+	y	and	y	+	z	are	even.	So	x	+	y	=	2a	and	y	+	z	=	2b	for
integers	a	and	b.	Adding	x	+	y	and	y	+	z,	we	obtain	(x	+	y)	+	(y	+	z)	=	2a	+	2b.
Therefore,

Since	a	+	b	−	y	is	an	integer,	x	+	z	is	even.	Hence	x	R	z	and	R	is	transitive.

For	an	equivalence	relation	R	defined	on	a	nonempty	set	A	and	for	an	element
a	 	A,	the	equivalence	class	[a]	is	defined	by

Since	a	 	[a],	every	equivalence	class	is	nonempty.
For	 an	 equivalence	 relation	 defined	 on	 a	 nonempty	 set	 A,	 the	 resulting

distinct	equivalence	classes	produce	a	partition	of	A,	where	 two	elements	of	A
belong	 to	 the	 same	 equivalence	 class	 if	 and	 only	 if	 they	 are	 related.	 For	 the
relation	 R1	 defined	 above	 in	 (2)	 on	 the	 set	 A	 =	 {1,	 2,	 3,	 4},	 the	 distinct
equivalence	classes	are	[1]	=	{1,	3,	4}	and	[2]	=	{2}.	In	this	case,	[4]	=	[3]	=	[1].
For	 the	 relation	R	on	Z	 defined	 in	Example	2.1	by	x	R	 y	 if	x	 +	y	 is	 even,	 the
distinct	equivalence	classes	are

A	common	type	of	equivalence	relation	is	given	in	the	next	example.

Example	2.2	A	relation	R	defined	on	a	nonempty	set	A	of	integers	by	x	R	y	if	x
≡	y	(mod	3)	is	an	equivalence	relation.

For	example,	if

is	 the	 set	 of	 integers	 in	 Example	 2.2,	 then	 the	 distinct	 equivalence	 classes



resulting	from	the	equivalence	relation	R	are

Examples	of	equivalence	relations	seen	in	the	text	are:

		(1)	Two	vertices	u	and	 	in	a	graph	are	related	if	u	is	connected	to	 .	This	is
discussed	in	Section	1.2.

		(2)	Two	graphs	G	and	H	are	related	if	they	are	isomorphic.	This	is	discussed
in	Section	3.2.

		(3)	Two	vertices	u	and	 	in	a	graph	G	are	related	if	they	are	similar	(that	is,	if
there	 exists	 an	 automorphism	 	 of	 G	 for	 which	 (u)	 =	 v).	 This	 is
discussed	in	Section	3.4.

		(4)	Two	edges	e	and	f	in	a	nontrivial	connected	graph	G	are	related	if	e	and	f
lie	on	a	common	cycle	in	G.	This	is	discussed	in	Section	5.2.

	 	 (5)	 Two	 vertices	 u	 and	 	 in	 a	 connected	 graph	G	 are	 related	 if	 they	 are
distance	similar	(that	is,	if	d(u,	x)	=	d( ,	x)	for	every	vertex	x	 	V(G)	−	{u,	
}).	This	is	discussed	in	Section	12.3.

2.2	Functions

For	nonempty	sets	A	and	B,	a	function	f	from	A	to	B,	written	as	f	:	A	→	B,	is
a	relation	from	A	to	B	in	which	each	element	of	A	appears	as	the	first	coordinate
in	exactly	one	ordered	pair	in	 f.	 If	 the	ordered	pair	(a,	b)	belongs	 to	 f,	 then	we
write	b	=	f(a)	and	b	is	called	the	image	of	a.	The	set	of	all	images	of	f	is	called
the	range	of	f.	For	example,	for	A1	=	{r,	s,	t}	and	B1	=	{w,	x,	y,	z},

is	a	function	from	A1	to	B1.	The	range	of	f1	is	{x,	z}.
A	function	 f	 :	A	→	B	 is	one-to-one	 (or	 injective)	 if	 distinct	 elements	 of	A

have	distinct	 images	 in	B.	Therefore,	 f	 is	one-to-one	 if	 for	every	 two	 (distinct)
elements	a1	and	a2	in	A,	it	follows	that	f(a1)	≠	f(a2).	Using	the	contrapositive,	we
can	 also	 say	 that	 f	 is	 one-to-one	 if	 for	 a1,	 a2	 	A,	 whenever	 f(a1)	 =	 f(a2),	 it
follows	that	a1	=	a2.	The	function	 f1	in	(3)	is	not	one-to-one	since	s	and	t	have
the	same	image,	that	is,	f1(s)	=	f1(t).	However,	for	the	sets	A1	and	B1	above,	the



function

is	one-to-one.
A	function	f	:	A	→	B	is	called	onto	(or	surjective)	if	every	element	of	B	is	the

image	of	some	element	of	A,	that	is,	if	the	range	of	f	is	B.	The	function	f1	above
is	not	onto	since	neither	w	nor	y	is	an	image	of	any	element	in	A1.	The	function
g1	in	(4)	is	not	onto	either	since	the	range	of	g1	is	not	B1	as	x	is	not	in	the	range
of	g1.	On	the	other	hand,	for	A2	=	{1,	2,	3}	and	B2	=	{4,	5,	6},	the	function

is	both	one-to-one	and	onto.
A	function	that	is	both	one-to-one	and	onto	is	called	a	bijective	function	or	a

one-to-one	correspondence.	Therefore,	 the	 function	 f2	 in	 (5)	 is	 bijective.	 The
following	gives	an	example	of	a	bijective	function	involving	an	infinite	set.

Example	2.3	Show	that	the	function	f	:	R	→	R	defined	by	f(x)	=	3x	−	8	for	all
x	 	R	is	bijective.

Solution.	First,	we	show	that	f	is	one-to-one.	Assume	that	f(a)	=	f(b),	where	a,
b	 	R.	Then	3a	 −	 8	=	3b	 −	 8.	Adding	 8	 to	 both	 sides	 of	 this	 equation	 and
dividing	by	3,	we	obtain	a	=	b.	Therefore,	f	is	one-to-one.

Next,	we	show	that	f	is	onto.	Let	r	be	a	real	number.	Then	x	=	(r	+	8)/3	is	also
a	real	number.	Furthermore,

and	so	f	is	onto.
Consequently,	f	is	bijective.

For	sets	A,	B	and	C	and	functions	f	:	A	−	B	and	g	:	B	→	C,	the	composition	g	
	f	of	f	and	g	is	the	function	from	A	to	C	defined	by

for	all	a	 	A.
For	example,	let	A	=	{1,	2,	3},	B	=	{a,	b,	c,	d}	and	C	=	{x,	y,	z}	and	let	f	:	A

→	B	and	g	:	B	→	C	be	the	functions



Then	(g	 	f)(1)	=	g(f(1))	=	g(c)	=	z	and,	in	general,

An	important	theorem	involving	composition	of	functions	is	the	following.

Theorem	2.4	If	f	:	A	→	B	and	g	:	B	→	C	are	bijective	functions,	then	g	 	f	is
bijective.

For	a	function	f	:	A	→	B,	the	inverse	relation	f−1	of	f	is	defined	by

The	most	important	theorem	in	this	connection	is	the	following.

Theorem	2.5	For	a	function	f	:	A	→	B,	the	inverse	relation	f−1	 is	a	 function
from	B	to	A	if	and	only	if	f	is	bijective.	Furthermore,	if	f	is	bijective,	then	f−1	is
also	bijective.

For	a	nonempty	set	A,	a	bijective	function	f	:	A	→	A	is	a	permutation	of	A.
The	function	f	considered	in	Example	2.3	is	therefore	a	permutation	of	R.

Example	2.6	Let	A	=	{1,	2,	3,	4,	5,	6}.	The	function	f	:	A	→	A,	where

a	permutation	of	A.

The	function	f	in	Example	2.6	can	also	be	expressed	in	terms	of	permutation
cycles,	namely,	f	=	(134)(26),	which	indicates	that	1	is	mapped	into	3,	which	is
mapped	into	4	and	which	is	mapped	into	1.	The	integers	2	and	6	map	into	each
other,	while	5	is	fixed	(it	maps	into	itself).

Examples	of	functions	seen	in	the	text	are:

(1)	isomorphisms	(Chapter	3),

(2)	automorphisms	(Section	3.4),

(3)	matchings	(Section	8.1),

(4)	colorings	(Sections	10.2	and	10.3),

(5)	the	Channel	Assignment	Problem	(Section	12.5).



Appendix	3:	Methods	of	Proof

3.1	Direct	Proof

Many,	 indeed	 most,	 theorems	 in	 mathematics	 are	 (or	 can	 be)	 stated	 as	 an
implication,	typically	as	a	quantified	statement	∀x	 	S,	P(x)	⇒	Q(x),	where	P(x)
and	Q(x)	are	open	sentences	involving	a	variable	x	whose	values	are	taken	from
a	 set	 S.	 The	 most	 common	 proof	 technique	 is	 a	 direct	 proof,	 where	 P(x)	 is
assumed	to	be	true	for	an	arbitrary	element	x	 	S	and	then	Q(x)	 is	shown	to	be
true.	An	example	of	a	direct	proof	is	given	next.

Example	3.1	If	n	is	an	even	integer,	then	5n	+	7	is	an	odd	integer.

Proof.	 Assume	 that	 n	 is	 an	 even	 integer.	 Then	 n	 =	 2k	 for	 some	 integer	 k.
Therefore,

Since	5k	+	3	is	an	integer,	5n	+	7	is	odd.

A	few	comments	about	Example	3.1	and	its	proof	might	be	useful.	First,	the
implication	in	Example	3.1	can	be	restated	as	follows:

For	every	even	integer	n,	the	integer	5n	+	7	is	odd.
If	we	let	T	denote	the	set	of	even	integers	and	define

P(n):	5n	+	7	is	odd.

then	the	implication	in	Example	3.1	can	be	restated	more	symbolically	as:

When	we	gave	a	direct	proof	of	 the	 implication	 in	Example	3.1,	we	began	by
assuming	 that	n	 is	an	even	 integer	 (or	 letting	n	be	an	even	 integer).	Therefore,
we	began	with	an	arbitrary	element	in	the	set	T.	We	then	showed	that	5n	+	7	is



an	odd	integer.
Two	examples	in	the	text	in	which	a	direct	proof	is	employed	are	Theorems

1.11	and	2.1.

Theorem	1.11	If	G	is	a	disconnected	graph,	then	 	is	connected.

As	 expected	 for	 a	 direct	 proof,	 we	 began	 by	 assuming	 that	 G	 is	 a
disconnected	graph	and	then	showed	that	 	is	connected.

Theorem	2.1	(The	First	Theorem	of	Graph	Theory)	If	G	is	a	graph	of	size	m,
then

Here	we	started	with	a	graph	G	of	size	m	and	showed	that	if	 the	degrees	of
the	vertices	of	G	are	summed,	then	2m	is	obtained.

3.2	Counterexamples

A	 mathematical	 statement	 that	 can	 be	 expressed	 as	 an	 implication	 can	 be
shown	to	be	false	by	providing	a	counterexample.	Suppose	that	a	statement	we
are	 considering	 is	 expressed	 as	∀x	 	S,	P(x)	⇒	Q(x)	where	P(x)	 and	Q(x)	 are
open	sentences	concerning	a	variable	x	whose	values	belong	to	a	set	S.	If	some
specific	element	x	 	S	can	be	discovered	for	which	P(x)	is	true	and	Q(x)	is	false,
then	 x	 is	 a	 counterexample	 to	 the	 statement	 ∀x	 	 S,	 P(x)	 ⇒	 Q(x).
Counterexamples	 often	 occur	when	 a	 conjecture	 is	made	 (that	 is,	 a	 statement
that	 is	 believed	 to	 be	 true)	 and	 an	 example	 is	 found	 to	 show	 that,	 in	 fact,	 the
statement	is	false.	This	is	illustrated	below.

Example	3.2	Determine	whether	the	following	statement	is	true.

																								If	n	is	an	integer,	then	6n	+	3	is	not	prime.

Solution	This	statement	is	false.	For	n	=	0,	it	follows	that	6n	+	3	=	3,	which	is
a	prime.	Therefore,	n	=	0	is	a	counterexample	to	this	statement.

If	the	statement	in	Example	3.2	had	read:



														If	n	is	a	positive	integer,	then	6n	+	3	is	not	prime.,

then	the	statement	would	be	true.
One	instance	of	a	counterexample	in	the	text	occurs	in	Section	10.3,	where	it

was	 mentioned	 that	 Peter	 Guthrie	 Tait	 believed	 that	 if	 G	 is	 a	 3-regular,	 3-
connected,	 planar	 graph,	 then	 G	 is	 Hamiltonian.	 However,	 William	 Tutte
produced	 an	 example	 (a	 counterexample)	 of	 a	 3-regular,	 3-connected,	 planar
graph	(the	Tutte	graph)	that	is	not	Hamiltonian.

3.3	Proof	by	Contrapositive

Recall	for	statements	P	and	Q	that	the	contrapositive	of	the	implication	P	⇒
Q	is	the	implication	(∼	Q)	⇒	(∼	P).	Since	these	two	implications	are	logically
equivalent,	the	statement	∀x	 	S,	P(x)	⇒	Q(x)	can	be	established	by	verifying	the
statement	∀x	 	S,(∼	Q(x))	⇒	(∼	P(x))	is	true.	In	a	proof	by	contrapositive	of
the	statement	∀x	 	S,	P(x)	⇒	Q(x),	we	assume	that	Q(x)	is	false	for	an	arbitrary
element	x	 	S	and	show	that	P(x)	 is	 false.	That	 is,	a	proof	by	contrapositive	of
the	statement	∀x	 	S,	P(x)	∼	Q(x)	is	a	direct	proof	of	its	contrapositive	∀x	 	S,
(∼	Q(x))	⇒	(∼	P(x)).	An	example	of	a	proof	by	contrapositive	is	given	next.

Example	3.3	Let	n	 	Z.	If	11n	−	5	is	odd,	then	n	is	even.

Proof.	Assume	that	n	is	an	odd	integer.	Then	n	=	2k	+	1	for	some	integer	k.

So

Since	11k	+	3	 	Z	is	an	integer,	11n	−	5	is	even.

A	theorem	in	 the	 text	where	a	proof	by	contrapositive	 is	employed	(in	 fact,
twice)	is	Theorem	4.1.

Theorem	4.1	Let	G	be	a	connected	graph.	An	edge	e	of	G	 is	a	bridge	 if	and
only	if	e	lies	on	no	cycle	of	G.

To	 verify	 the	 implication	 “If	 an	 edge	 e	 of	G	 is	 a	 bridge,	 then	 e	 lies	 on	 no
cycle	of	G”	using	a	proof	by	contrapositive,	we	assume	that	e	lies	on	a	cycle	of



G	and	show	that	e	is	not	a	bridge.	To	verify	the	converse	“If	an	edge	e	lies	on	no
cycle	of	G,	then	e	is	a	bridge”	using	a	proof	by	contrapositive,	we	assume	that	e
is	not	a	bridge	and	show	that	e	lies	on	a	cycle	of	G.

3.4	Proof	by	Contradiction

In	a	proof	by	contradiction	of	some	mathematical	statement	A,	we	assume
that	A	is	false	and	show	that	this	leads	to	a	contradiction.	If	A	is	expressed	as	∀x,	
	 S,	 P(x)	⇒	 Q(x),	 then	 assuming	 that	 ∀x	 	 S,	 P(x)	⇒	 Q(x)	 is	 false	 means

assuming	that	there	exists	some	element	x	 	S	such	that	P(x)	is	true	and	Q(x)	 is
false.	An	example	of	a	proof	by	contradiction	is	given	next.

Example	3.4	Let	n	be	a	positive	integer.	If	n3	+	1	is	prime,	then	n	=	1.

Proof.	Assume,	to	the	contrary,	that	there	is	a	positive	integer	n	different	from
1	such	that	n3	+	1	be	prime.	Thus	n	≥	2.	Now	n3	+	1	=	(n	+	1)(n2	−	n	+	1).
Since	n	+	1	>	1	and	n2	−	n	+	1	=	n(n	−	1)	+	1	>	1,	it	follows	that	neither	n	+	1
or	n2	−	n	+	1	is	1	and	so	n3	+	1	is	not	prime,	producing	a	contradiction.

Proofs	by	contradiction	are	often	used	to	prove	negative-sounding	results.	A
theorem	in	the	text	that	illustrates	this	is	Theorem	5.5.

Theorem	5.5	Let	G	be	a	nontrivial	connected	graph	and	u	 	V(G).	 If	 v	 is	a
vertex	that	is	farthest	from	u	in	G,	then	v	is	not	a	cut-vertex	of	G.

To	use	a	proof	by	contradiction,	we	assume	that	v	is	a	vertex	that	is	farthest
from	u	and	that	v	is	a	cut-vertex	of	G.	We	then	produce	a	contradiction.

In	the	following	theorem	in	the	text,	a	proof	by	contrapositive	and	a	proof	by
contradiction	are	both	used.

Theorem	5.1	Let	v	be	a	vertex	incident	with	a	bridge	in	a	connected	graph	G.
Then	v	is	a	cut-vertex	of	G	if	and	only	if	deg	v	≥	2.

A	proof	by	contrapositive	is	used	to	verify	the	implication	“If	v	is	a	cut-vertex
of	G,	then	deg	v	≥	2.”	Thus,	we	assume	that	deg	v	=	1	and	show	that	v	 is	not	a
cut-vertex	of	G.	A	proof	by	contradiction	is	used	to	show	the	converse	“If	deg	v
≥	2,	then	v	is	a	cut-vertex	of	G”.	So	we	assume	that	deg	v	≥	2	and	that	v	is	not	a



cut-vertex.	We	then	show	that	these	lead	to	a	contradiction.

3.5	Proof	by	Minimum	Counterexample

A	 particular	 type	 of	 proof	 by	 contradiction	 is	 proof	 by	 minimum
counterexample.	This	proof	technique	is	often	related	to	the	following	principle.

The	Well-Ordering	Principle	The	set	N	of	positive	integers	is	well-ordered,
that	is,	every	nonempty	subset	of	N	has	a	smallest	element.

Suppose	 that	we	have	a	 sequence	S1,	S2,	S3,	…	of	 statements,	one	 for	each
positive	 integer,	 that	we	wish	 to	prove	are	 true.	 If	we	assume,	 to	 the	 contrary,
that	 not	 all	 of	 these	 statements	 are	 true,	 then	 it	 follows	 by	 the	Well-Ordering
Principle	that	there	is	a	smallest	positive	integer	n	for	which	Sn	is	false.	The	idea
is	to	use	this	information	to	arrive	at	a	contradiction.	An	example	of	a	proof	by
minimum	counterexample	is	given	next.

Example	3.5	For	every	positive	integer	n,	the	integer	n2	−	3n	is	even.

Proof.	Assume	that	this	statement	is	false.	Then	among	the	positive	integers	n
such	that	n2	−	3n	is	odd,	let	m	be	the	smallest	one.	If	n	=	1,	then	n2	−	3n	=	−2,
which	is	even.	Therefore,	m	≥	2.	So	we	can	write	m	=	k	+	1,	where	1	≤	k	<	m.
Since	1	≤	k	<	m,	it	follows	that	k2	−	3k	is	even.	Hence	k2	−	3k	=	2x	for	some
integer	x.	Observe	that

Since	x	+	k	−	1	is	an	integer,	m2	−	3m	is	even,	which	produces	a	contradiction.

A	 theorem	 in	 the	 text	 that	 uses	 a	 proof	 by	 minimum	 counterexample	 is
Theorem	11.18.

Theorem	 11.18	 Every	 graph	 of	 order	 n	 ≥	 3	 and	 size	 at	 least	 	 is
Hamiltonian.

To	 prove	 Theorem	 11.18	 using	 a	 proof	 by	 minimum	 counterexample,	 we



assume	that	the	statement	is	false.	Then	there	is	a	smallest	positive	integer	n	≥	3
for	 which	 there	 exists	 a	 graph	 G	 of	 order	 n	 and	 size	 	 that	 is	 not
Hamiltonian.	 We	 then	 show	 that	 G	 is,	 in	 fact,	 Hamiltonian,	 producing	 a
contradiction.

3.6	Proof	by	Mathematical	Induction

Let	S1,	S2,	S3,	…	be	statements,	one	for	each	positive	integer.	To	prove	that
these	statements	are	true	using	a	proof	by	mathematical	induction,	we

(1)	show	that	S1	is	true	(the	basis	step)	and

(2)	verify	that	the	following	implication	is	true:

An	example	of	a	proof	by	mathematical	induction	is	given	next.

Example	3.6	For	every	positive	integer	n,	2n	+	2	≥	7n	+	1.

Proof.	We	proceed	by	induction.	For	n	=	1,	we	have	21+2	=	23	=	8	=	7	·	1	+	1,
which	verifies	the	statement	for	n	=	1.	Assume	that	2k	+	2	≥	7k	+	1	for	some
integer	k	≥	1.	We	show	that	2(k	+	1)	+	2	≥	7(k	+	1)	+	1	=	7k	+	8.	Now

as	desired.

A	 theorem	 in	 the	 text	 that	 uses	 a	 proof	 by	 mathematical	 induction	 is	 the
following.

Theorem	4.4.	Every	tree	of	order	n	has	size	n	−	1.

To	use	a	proof	by	induction,	we	show	first	that	result	is	true	for	n	=	1.	Then
we	show	that	if	the	size	of	every	tree	of	order	k	is	k	−	1	for	an	arbitrary	positive
integer	k,	then	every	tree	of	order	k	+	1	has	size	k.

There	 is	a	variation	of	 the	standard	proof	by	mathematical	 induction	 that	 is



used	in	the	text	and	is	useful	to	know	in	general.	The	Strong	Form	of	Induction
(or	the	Strong	Principle	of	Mathematical	Induction)	can	be	used	to	show	that
each	of	the	statements	S1,	S2,	S3,	…	is	true.	In	this	case,	we	need	to

(1)	show	that	S1	is	true	(the	basis	step)	and

(2)	verify	the	implication:

						For	each	k	 	N,	if	the	statements	S1,	S2,	…,	Sk	are	true,	then	Sk+1	is
true.

An	 example	 of	 a	 theorem	 that	 uses	 the	 Strong	 Form	 of	 Induction	 is	 the
following.

Example	3.7	Every	 integer	n	 ≥	 2	 is	 either	 prime	 or	 can	 be	 expressed	 as	 a
product	of	primes;	that	is,	n	=	p1	p2…	pm,	where	p1,	p2,	…,	pm	are	primes.

Proof.	 We	 employ	 the	 Strong	 Form	 of	 Induction.	 Since	 2	 is	 prime,	 the
statement	is	certainly	true	for	n	=	2.

For	an	arbitrary	integer	k	≥	2,	assume	that	every	integer	i,	with	2	≤	i	≤	k,	 is
either	prime	or	can	be	expressed	as	a	product	of	primes.	We	show	that	k	+	1	is
either	prime	or	can	be	expressed	as	a	product	of	primes.	Of	course,	 if	k	+	1	 is
prime,	then	there	is	nothing	further	to	prove.	We	may	assume,	then,	that	k	+	1	is
composite.	Then	there	exist	integers	a	and	b	such	that	k	+	1	=	ab,	where	2	≤	a	≤
k	and	2	≤	b	≤	k.	Therefore,	by	the	induction	hypothesis,	each	of	a	and	b	is	prime
or	can	be	expressed	as	a	product	of	primes.	In	either	case,	k	+	1	=	ab	is	a	product
of	primes.

A	theorem	in	the	text	that	employs	the	Strong	Form	of	Induction	is	Menger’s
Theorem	(Theorem	5.16).

Menger’s	 Theorem	Let	 u	 and	 v	 be	 nonadjacent	 vertices	 in	 a	 graph	G.	 The
minimum	number	of	 vertices	 in	 a	 u	 −	v	 separating	 set	 equals	 the	maximum
number	of	internally	disjoint	u	−	v	paths	in	G.

To	 prove	Menger’s	 Theorem	 using	 the	 Strong	 Form	 of	 Induction,	 we	 first
show	that	the	result	is	true	for	all	empty	graphs,	that	is,	graphs	of	size	0.	We	then
assume	 that	 the	 result	 is	 true	 for	 all	 graphs	 of	 size	 less	 than	m,	 where	m	 is	 a
positive	integer,	and	then	prove	that	the	result	is	true	for	every	graph	of	size	m.



3.7	Existence	Proofs

There	are	numerous	statements	 in	mathematics	 that	are	 formed	by	using	an
existential	 quantifier	 (there	 exists,	 there	 is,	 for	 some,	 there	 is	 at	 least	 one).	To
verify	 such	 a	 statement,	 it	 suffices	 to	 display	 an	 appropriate	 example	 (or
alternatively,	to	show	theoretically	that	an	appropriate	example	must	exist	even
though	a	specific	example	hasn’t	been	found).	This	is	illustrated	below.

Example	3.8	There	exist	integers	a,	b	and	c	greater	than	1	such	that	a2	+	b3	+
c4	is	prime.

Proof.	Letting	a	=	7	and	b	=	c	=	2,	we	have	a2	+	b3	+	c4	=	49	+	8	+	16	=	73,
which	is	prime.

Existential	quantifiers	can	occur	within	an	implication.	An	example	of	this	is
stated	next.

Example	3.9	If	 	 is	a	positive	number,	 then	 there	exists	a	positive	number	
such	that	if	|x	−	2|	<	 ,	then	|	(2x	+	3)	−	7|	<	 .

Proof.	Let	 	be	given.	Consider	 	=	 /2	and	suppose	that	|x	−	2|	<	 .	Then

For	the	function	f	:	R	→	R	defined	by	f(x)	=	2x	+	3	for	all	x	 	R,	Example	3.9
would	probably	be	stated	more	commonly	as:	For	every	positive	number	 ,	there
exists	a	positive	number	 	such	that	if	|x	−	2|	<	 ,	then	|(2x	+	3)	−	7|	<	 .	What
Example	3.9	shows	is	that	f	is	continuous	at	2.

A	 theorem	 in	 the	 text	 where	 an	 existential	 quantifier	 is	 encountered	 is	 the
following.

Theorem	2.7	For	every	graph	G	and	every	integer	r	≥	Δ(G),	there	exists	an	r-
regular	graph	H	containing	G	as	an	induced	subgraph.

In	the	proof	of	Theorem	2.7,	we	actually	construct	an	r-regular	graph	H	such
that	the	given	graph	G	is	an	induced	subgraph	of	H.

Although	showing	an	implication	is	false	can	be	accomplished	by	means	of
an	example	(a	counterexample),	showing	an	existence	statement	is	false	requires



a	proof	(to	verify	that	no	example	of	the	type	being	claimed	exists).

Example	3.10	There	exists	a	prime	p	such	that	n2	−	n	+	p	is	prime	for	every
positive	integer	n.

Solution	This	statement	is	false.	Let	p	be	a	prime	and	let	n	=	p.	Then	n2	−	n	+
p	=	p2	−	p	+	p	=	p2,	which	is	not	prime.



Solutions	and	Hints	for	Odd-
Numbered	Exercises

Chapter	1:	Graphs	and	Graph	Models

1.1	Can	 the	 seven	 committees	meet	 during	 the	 three	 time	periods?	Yes.	 (An
explanation	is	required.)

1.3	See	Figure	1.

Figure	1:	The	graph	in	Exercise	1.3

1.7	(b)	S	=	{CUP,	CAP,	TAP,	PAT,	PUT}	(c)	S	=	{RAT,	TAR,	TAP,	CAP,	CAT}

1.11	See	Figure	2.

Figure	2:	The	graph	in	Exercise	1.11

1.13	(a)	See	Figure	3.



Figure	3:	The	graph	in	Exercise	1.13

1.15	Hint:	There	is	only	one	such	graph.

1.17	 (a)	Hint:	Assume,	 to	 the	 contrary,	 that	 there	 exists	 a	 connected	graph	G
containing	two	longest	paths	P	and	Q	that	have	no	vertex	in	common.
Since	G	is	connected,	there	exists	a	u	−	v	path	P′	where	u	is	on	P,	v	is
on	Q	and	no	 interior	vertex	 (a	vertex	 that	 is	not	an	end-vertex)	of	P′
belongs	to	P	or	Q.

(b)	Hint:	The	statement	is	false.

1.19	Hint:	No.

1.21	See	Figure	4.

Figure	4:	The	graph	in	Exercise	1.21

1.23	(a)	Consider	the	5-cycle	(u,	v,	x,	w,	y,	u)	for	k	=	1	and	the	5-cycle	(u,	x,	y,	v,
z,	u)	for	k	=	2.

(b)	Hint:	Note	that	k	≥	3.	Consider	P4	=	(u,	x,	y,	v).

1.25	Proof.	If	G	is	not	bipartite,	then	we	have	the	desired	result.	Thus,	we	may
assume	that	G	is	bipartite.	Let	V1	and	V2	be	two	bipartite	sets	of	G.	Since
the	order	of	G	 is	at	 least	5,	at	 least	one	of	V1	and	V2	contains	3	or	more
vertices,	say	 |V1|	=	k	≥	3.	Since	 the	 subgraph	of	 	 induced	by	V1	 is	 the
complete	 graph	Kk	 and	 k	 ≥	 3,	 it	 follows	 that	 	 contains	 a	 triangle.	 By
Theorem	1.12,	 	is	not	bipartite.

1.27	(a)	K5	+	K2	=	K7	and	K5	×	K2	is	shown	in	Figure	5(a).

(b)	 	and	
(c)	C5	+	K1	is	shown	in	Figure	5(b)	and	C5	×	K1	=	C5.



Figure	5:	The	graphs	in	Exercise	1.27

1.29	(a)	See	the	multigraph	M	in	Figure	6.	(b)	Add	a	loop	at	vertex	2.

Figure	6:	The	multigraph	and	digraph	in	Exercises	1.29	and	1.33

1.33	See	the	digraph	D	in	Figure	6.



Chapter	2:	Degrees

2.1	(a)	No	such	graph	exists.	By	Corollary	2.3,	there	is	no	graph	containing	an
odd	number	of	odd	vertices.

(b)	No	such	graph	exists	since	Δ(G)	≤	6	for	every	graph	G	of	order	7.
(c)	No	 such	 graph	 exists.	 Assume,	 to	 the	 contrary,	 that	 such	 a	 graph	G

exists.	Let	V(G)	=	{v1,	v2,	v3,	v4}.	We	may	assume	that	deg	vi	=	3	for	1
≤	i	≤	3	and	deg	v4	=	1.	Then	each	vertex	vi,	1	≤	i	≤	3,	is	adjacent	to	all
other	vertices	of	G,	including	v4,	which	is	impossible.

2.3	 Solution.	 Let	 x	 be	 the	 number	 of	 vertices	 of	 degree	 4.	 By	 the	 First
Theorem	of	Graph	Theory,	(12	−	x)	·	6	+	4x	=	2	·	31	and	so	x	=	5.

2.5	Solution.	Let	x	be	a	number	of	vertices	of	degree	5.	By	the	First	Theorem
of	Graph	Theory,	(12	−	x)	·	3	+	2	·	4	+	5x	+	6	·	11	=	2	·	62	and	so	x	=	7.

2.7	(a)	Since	every	edge	of	G	joins	a	vertex	of	U	and	a	vertex	of	W,	both	sums	
	and	 	count	every	edge	of	G	exactly	once,

giving	the	desired	result.

(b)	The	size	of	G	is	3|U|	=	3	·	12	=	36.	Let	x	be	the	number	of	vertices	of
degree	2.	Then	2	·	x	+	(10	−	x)	·	4	=	36	and	so	x	=	2.

2.9	Proof.	Assume,	to	the	contrary,	that	these	two	odd	vertices	are	in	different
components	 of	G.	 Then	 some	 component	 of	G	 (which	 is	 itself	 a	 graph)
contains	exactly	one	odd	vertex.	This	contradicts	Corollary	2.3.

2.11	The	bound	is	sharp.	Consider	G	=	K5	 	K5.	Then	n	=	10	and	 (G)	=	4	=	(n
−	2)/2.

2.13	 (a)	 Proof.	 Assume,	 to	 the	 contrary,	 that	 G	 contains	 at	 least	 three
components.	Let	G1,	G2	and	G3	be	any	three	components	of	G.	Let	vi	
	V(Gi)	for	1	≤	i	≤	3.	Since	deg	vi	≥	(n	−	2)/3,	each	component	Gi	(1	≤
i	 ≤	 3)	 contains	 at	 least	 (n	 −	 2)/3	 +	 1	 =	 (n	 +	 1)/3	 vertices.	 Then	G
contains	at	 least	3	 ·	 (n	+	1)/3	=	n	+	1	vertices,	contradicting	 the	 fact



that	G	has	order	n.

Alternative	 Proof.	 Assume,	 to	 the	 contrary,	 that	G	 contains	 at	 least
three	components.	Then	G	contains	a	component	G1	of	order	at	most
n/3.	Let	v	 	V(G1).	Then	deg	v	≤	 (n/3)	−	1	=	(n	−	3)/3,	contradicting
that	 (G)	≥	(n	−	2)/3.

(b)	Consider	G	=	3K3.

2.15	Proof.	Assume	that	G	is	not	bipartite.	Then	G	contains	an	odd	cycle	C.	Let
u	and	v	be	any	two	vertices	on	C.	There	are	two	u	−	v	paths	on	C,	one	of
which	has	even	length	and	one	of	odd	length.

2.17	Proof.	Assume,	to	the	contrary,	that	G	contains	a	vertex	x	such	that	deg	x
≡	0	(mod	3).	Since	G	is	connected,	G	contains	a	w	−	x	path,	say	P	=	(w	=
w0,	w1,	…,	wk	=	x).	Let	t	be	the	smallest	positive	integer	such	that	deg	wt	≡
0	(mod	3).	Then	deg	wt	−	1	 	0	(mod	3).	However,	then,	deg	wt	−	1	+	deg	wt
	0	(mod	3),	a	contradiction.

2.21	For	(a)	and	(b),	see	Figure	7.

Figure	7:	The	graph	in	Exercise	2.21

(c)	Find	four	 induced	subgraphs	F0,	F1,	F2,	F3	of	maximum	order	 in	 the
Petersen	graph,	where	Fr	is	r-regular	for	0	≤	r	≤	3

2.23	See	Figure	8.



Figure	8:	The	graphs	in	Exercise	2.23

2.25	(a)	Since	G	−	v	is	3-regular,	the	order	of	G	−	v	is	even	and	so	the	order	of
G	is	odd.

2.27	The	size	of	G	is	r|U|	=	r|W|.	Dividing	by	r,	we	obtain	|U|	=	|W|.

2.29	(a)	Let	v	be	any	vertex	of	G	and	let	degGv	=	k.	Then	 .
So	 (G)	+	 ( )	≤	k	+	(n	−	1	−	k)	=	n	−	1.

(b)	Proof.	Assume	that	G	is	regular,	say	r-regular.	Then	 	is	(n	−	1	−	r)-
regular.	Therefore,	 (G)	=	r	and	 ( )	=	n	−	1	−	r;	so	 (G)	+	 ( )	=	n
−	1.
For	 the	 converse,	 assume	 that	G	 is	 not	 regular.	Then	G	contains	 two
vertices	u	and	v	such	that	a	=	degGu	>	degGv	=	b.	Therefore,	 (G)	≤	a.
Now	 	and	so	 .	Hence	 (G)	+
( )	≤	a	+	(n	−	1	−	b)	=	n	−	1	−	(b	−	a)	<	n	−	1.

(c)	Proof.	 If	G	r-regular	 of	 order	n,	 then	 	 is	 (n	 −	 1	 −	 r)-regular.	 For
every	 vertex	 v	 of	 G,	 degGv	 =	 r	 =	 (G)	 and	

.	For	the	converse,	suppose	that	degGv	=
r.	Then	 .	Let	u	be	any	other	vertex	of	G.	Then
degG	 u	 ≥	 r	 and	 .	 Thus	

.	 This
implies	that	degGu	=	r	and	 .	Thus	G	r-regular.

(d)	Solution.	Suppose	that	G	has	order	n.	Let	u1,	u2,	…,	uk	be	the	vertices
of	G	such	that	degG	ui	=	 (G)	=	r	for	1	≤	i	≤	k	and	let	v1,	v2,	…,	v 	be
such	that	 	for	1	≤	i	≤	 .	Then	degG	vi	=	n	−	1	−
s	>	r.	Hence	every	vertex	of	G	has	one	of	two	distinct	degrees.

2.31	 Hint:	 For	 a	 vertex	 v	 of	 a	 graph	 G	 of	 order	 n,	 we	 have	
.	Thus,	if	d1,	d2,	…,	dn	 is	a	degree	sequence

of	a	graph	G	of	order	n,	then	(n	−	1)	−	d1,	(n	−	1)	−	d2,	…,	(n	−	1)	−	dn	is	a



degree	sequence	of	 .

2.33	Hint:	If	there	exists	a	graph	G	with	degree	sequence	x,	1,	2,	3,	5,	5,	then
the	order	of	G	is	6.	Since	there	are	two	vertices	of	degree	5,	it	follows	that	
(G)	≥	2	and	so	no	vertex	of	G	has	degree	1.

2.35	Hint:	If	there	exists	a	graph	G	with	degree	sequence	x,	7,	7,	5,	5,	4,	3,	2,
then	 (G)	≥	2.	Since	every	graph	has	an	even	number	of	odd	vertices,	x
must	be	odd	and	 so	 the	only	possible	values	of	x	 are	 3,	 5,	 7.	Apply	 the
Havel-Hakimi	Theorem	to	show	that	x	=	5	or	x	=	3.



Chapter	3:	Isomorphic	Graphs

3.1	See	Figure	9.

Figure	9:	The	graphs	in	Exercise	3.1

3.3	(a)	 ,	(b)	 .

3.5	We	cannot	conclude	 that	 	 from	 this	 information.	For	example,
perhaps	some	vertex	of	G2	other	than	v2	has	degree	3	and	is	adjacent	to	a
vertex	of	degree	2.	See	Figure	10.

3.7	The	 solution	 is	 not	 correct.	 In	 fact,	 .	 That	 there	 is	 no	 path	 of
length	 2	 lying	 inside	 a	 5-cycle	 of	G2	 is	 only	 a	 feature	 of	 the	way	G2	 is
drawn.

3.9	The	graphs	G1	and	G2	are	not	isomorphic.	For	example,	the	two	vertices	of
degree	 2	 in	 G1	 are	 mutually	 adjacent	 to	 two	 vertices,	 while	 the	 two
vertices	of	degree	2	in	G2	are	not.

Figure	10:	The	graphs	in	Exercise	3.5

3.11	Proof.	Suppose	that	|W|	=	a.	Then	|U|	=	a.	Consider	a	vertex	v	 	W.	Then
degGv	 ≥	 n/2.	 Therefore,	 .	 Since
there	are	a	vertices	v	 in	G	with	degGv	 ≥	n/2,	 there	 are	a	 vertices	v	 in	G



with	degGv	≤	n/2	−	1.	Because	there	are	a	vertices	v	in	G	with	degGv	≤	n/2,
it	follows	that	there	are	no	vertices	v	in	G	with	degGv	=	n/2.

3.13	The	graphs	G	and	H	are	isomorphic.

Proof.	The	function	 	is	one-to-one	and	onto.	Consider	any	two	vertices	u
and	v	of	G.	Then	uv	 	E(G)	or	uv	 	E(G).	Assume	first	that	uv	 	E(G)	and
so	dG(u,	v)	=	1.	Since	dH( (u),	 (v))	=	1,	it	follows	that	 (u)	and	 (v)	are
adjacent	in	H.	Next,	assume	that	uv	 	E(G).	Since	dG(u,	v)	≥	2,	we	have
dH( (u),	 (v))	≥	2.	That	is,	if	u	and	v	are	nonadjacent	in	G,	then	 (u)	and	
(v)	are	nonadjacent	in	H.	So	 	is	an	isomorphism.

3.15	The	statement	is	false.	Let	G1	=	P3	=	(u1,	v1,	w1)	and	G2	=	P3	=	 (u2,	v2,
w2).	Then	 .	Define	a	one-to-one	correspondence	 	 :	V(G1)	→
V(G2)	by	 (u1)	=	u2,	 (v1)	=	w2	and	 (w1)	=	v2.	Then	 ,
while	 .

3.17	(a)	Yes,	(b)	No,	(c)	Yes.

3.19	Construct	a	graph	G	with	V(G)	=	{v1,	v2,	…,	vn}	and	where	vivj	 	E(G)	if
and	only	if	Gi	is	isomorphic	to	Gj.	Since	G	is	a	graph,	it	contains	an	even
number	of	odd	vertices.



Chapter	4:	Trees

4.1	Consider	the	graph	G	obtained	from	the	graph	K3	with	V(K3)	=	{v1,	v2,	v3}
by	adding	two	new	vertices	x	and	y	and	the	two	edges	v1x	and	v2y.

4.3	Proof.	Since	e	=	uv	 is	an	edge,	G	contains	 the	u	−	v	path	P	=	 (u,	v).	We
show	that	P	 is	 the	only	u	−	v	path	 in	G.	Assume,	 to	 the	contrary,	 that	G
contains	 another	u	 −	 v	 path	P′.	 Observe	 that	P′	 ≠	P	 and	 so	 the	 path	P′
contains	at	least	three	vertices.	Since	u	and	v	are	the	end-vertices	of	P′	and
P′	is	a	path,	it	follows	that	u,	v	 	V(P′)	−	{u,	v}	and	so	e	 	E(P′).	Thus	P′
together	with	e	=	uv	form	a	cycle	containing	e.	Since	e	is	a	bridge	in	G,	a
contradiction	is	produced.

4.5	(a)	The	size	of	G	is	n	−	1.	Hint:	If	e1	is	an	edge	of	G,	then	G1	=	G	−	e1	has
two	components.	 If	e2	 is	an	edge	of	G1,	 then	G2	=	G1	 −	e2	 contains
three	components.

(b)	The	size	of	G	is	n	−	k.

4.7	(a)	There	are	three	trees	of	order	5.

(b)	 There	 are	 six	 forests	 of	 order	 6	 with	 one	 component,	 six	 forests	 of
order	 6	 with	 two	 components,	 four	 forests	 of	 order	 6	 with	 three
components,	 two	forests	of	order	6	with	 four	components,	one	 forest
of	 order	 6	 with	 five	 components	 and	 one	 forest	 of	 order	 6	 with	 six
components.	So	there	are	20	forests	of	order	6.

4.9	Let	G	=	Cn	−1	 	K1	for	n	≤	4.

4.11	Hint:	T2	=	P4.

4.13	Let	x	be	the	number	of	vertices	of	degree	5.	Thus	21	−	15	−	1	−	x	=	5	−	x
vertices	of	T	have	degree	3.	Since	the	size	of	T	is	21	−	1	=	20,	it	follows
by	 the	 First	 Theorem	 of	 Graph	 Theory	 that	

.	So	x	=	2.

4.15	Let	x	be	the	number	of	vertices	of	degree	2.	Then	the	order	of	T	is	n	=	50	+
4x.	Thus	m	=	49	+	4x.	Summing	the	degrees,	we	obtain	50	·	1	+	2x	+	3x	+
4x	+	5x	=	2(49	+	4x)	and	so	x	=	8.	Thus	n	=	50	+	4·8	=	82.



4.17	(a)	The	graph	T	is	a	double	star	with	two	vertices	of	degree	4.

(b)	Let	T	be	a	tree	of	order	n	where	75%	of	the	vertices	have	degree	1	and
the	remaining	25%	vertices	have	degree	4.	Then	(3n/4)	·	1	+	(n/4)	·	4	=
2(n	−	1).	Solving	for	n,	we	have	n	=	8.	Therefore,	T	is	the	double	star
in	(a).

(c)	Let	T	be	a	tree	of	order	n	where	75%	of	the	vertices	have	degree	1	and
the	 remaining	25%	vertices	have	a	 fixed	degree	x.	Then	(3n/4)	 ·	1	+
(n/4)	·	x	=	2(n	−	1).	Then	n(5	−	x)	=	8,	implying	that	x	≥	4.	So	x	=	2,	3,
4.	Since	n	is	an	integer,	x	≠	2.	Thus	x	=	3	or	x	=	4.	If	x	=	3,	then	n	=	4
and	T	=	K1,	3;	while	if	x	=	4,	then	n	=	8	and	T	is	the	double	star	in	(a).

4.19	 (a)	 Hint:	 Since	 	 and	 ,	 it
follows	 that	 	 and	 so	

.	 Thus,	
.	 Simplifying,	 we	 have	

.

(b)	n1	=	5	+	2·2	+	2	=	11.

4.21	The	graph	 	is	(n	−	1)-regular.	Since	 ,	it	follows
by	Theorem	4.9	that	T	is	isomorphic	to	a	subgraph	of	 .

4.23	Solution.	T	=	K1	or	T	=	P4.

Proof.	Let	T	be	a	tree	of	order	n.	Since	T	and	 	are	both	trees	of	order	n,
it	 follows	 that	 the	 sizes	 of	 T	 and	 	 are	 n	 −	 1.	 Thus	

.	 Hence	 4(n	 −	 1)	 =	 n(n	 −	 1)
and	so	(n	−	1)(n	−	4)	=	0,	implying	that	n	=	1	or	n	=	4.	If	n	=	1,	then	T	=
K1.	If	n	=	4,	then	T	=	P4	or	T	=	K1,	3.	Since	 	and	 	 is	not	a
tree,	it	follows	that	T	=	P4.

4.25	(a)	There	are	8	spanning	trees	of	G	and	two	nonisomorphic	spanning	trees.

(b)	 There	 are	 9	 spanning	 trees	 of	G	 and	 three	 nonisomorphic	 spanning
trees.

4.27	See	Figure	11	for	one	example.



Figure	11:	The	graph	in	Exercise	4.27

4.29	Hint:	By	Kruskal’s	algorithm,	there	is	only	one	choice	at	each	step	for	the
edge	selected.

4.31	For	k	=	2,	let	G	=	C3	with	weights	1,	2,	2.	For	k	≥	3,	let	G	=	Ck	such	that
each	edge	of	G	has	the	same	weight.



Chapter	5:	Connectivity

5.1	(a)	Every	nontrivial	tree	has	this	property.

(b)	 See	 the	 three	 graphs	 in	 Figure	 12,	 where	 v	 is	 a	 cut-vertex	 in	 each
graph.

Figure	12:	The	graphs	in	Exercise	5.1(b)

5.3	Each	of	the	statements	(a)-(d)	is	false.

(a)	Let	G	be	any	graph	in	Figure	12.
(b)	Let	v	be	an	end-vertex	of	G.
(c)	Let	G	=	K1,	n	−	1	(n	≥	3).

(d)	Every	tree	of	order	n	has	n	−	1	bridges	and	at	most	n	−	2	cut-vertices.

5.5	(a)	Let	G	=	K1,	12.

(b)	Let	G	be	either	of	the	first	two	graphs	in	Figure	12.
(c)	Let	G	be	either	of	the	first	two	graphs	in	Figure	12.
(d)	Let	G	=	K2.

5.7	Proof.	Let	x	and	y	be	 two	vertices	of	T	 such	 that	d(x,	y)	=	diam(T)	≥	2.
Then	x	and	y	are	not	cut-vertices	by	Theorem	5.5	and	so	x	and	y	are	end-
vertices	of	T.	Let	v	be	a	vertex	on	the	x	−	y	geodesic	P	that	is	adjacent	to	y.
Then	v	 is	a	cut-vertex.	Assume,	 to	 the	contrary,	 that	v	 is	adjacent	 to	 two
cut-vertices.	Then	v	is	adjacent	to	a	cut-vertex	w	that	is	not	on	P.	Then	G	−
w	 has	 a	 component	 containing	 a	 vertex	 z	 that	 does	 not	 lie	 on	 the	 x	 −	v
subpath	of	P.	Since	T	has	a	unique	x	−	z	path,	the	length	of	this	path	is	d(x,
z)	=	d(x,	y)	+	1	=	diam(T)	+	1,	which	is	impossible.

5.9	The	cut-vertices	of	G	are	r,	t,	w	and	the	bridges	of	G	are	qr,	tw.	The	blocks
of	G	are	shown	in	Figure	13.



Figure	13:	The	graphs	in	Exercise	5.9

5.11	Proof.	By	Corollary	2.5,	G	is	connected.	Thus	it	remains	only	to	show	that
no	 vertex	 of	G	 is	 a	 cut-vertex.	 Let	 v	 	V(G).	 Let	 u	 and	w	 be	 any	 two
vertices	of	G	 that	 are	distinct	 from	v.	We	 show	 that	G	 contains	 a	u	 –	w
path	 that	 does	 not	 contain	 v.	 This	 is	 obvious	 if	 uw	 	E(G),	 so	 we	 can
assume	 that	 u	 and	w	 are	 nonadjacent	 vertices.	 The	 set	N(u)	 of	 vertices
adjacent	 to	 u	 contains	 at	 least	 n/2	 elements,	 as	 does	 N(w).	 Since	 G
contains	n	vertices,	N(u)	 	N(w)	must	contain	at	least	two	vertices,	at	least
one	of	which,	say	x,	is	not	v.	Then	(u,	x,	w)	is	a	u	−	w	path	not	containing
v.

5.13	The	statement	is	false.	See	Figure	14.

Figure	14:	The	graph	in	Exercise	5.13

5.15	Hint:	Let	B	be	a	nonseparable	subgraph	of	G	that	is	not	a	proper	subgraph
of	any	other	nonseparable	subgraph	of	G.	Let	e	and	f	be	two	edges	of	B.
We	show	that	either	e	=	f	or	e	and	f	lie	on	a	common	cycle	of	G.	Suppose
that	e	≠	f.	Let	C	be	a	cycle	that	contains	e.	If	f	 is	on	C,	 then	 the	proof	 is
complete.	Otherwise,	there	is	a	u	−	v	path	P	=	(u	=	u0,	u1,	…,	uk	=	v)	in	B
with	f	=	u0u1	such	that	ui	is	not	on	C	for	0	≤	i	≤	k	≤	1.	Since	uk	is	not	a	cut-
vertex	in	B,	there	is	a	uk	−	1	−	w	path	P′	not	containing	uk	such	that	w	is	the
only	vertex	of	P′	on	C.	(Show	that	there	is	a	cycle	of	B	containing	both	e
and	uk−1	uk.	Then	complete	the	proof	in	this	direction.)

For	the	converse,	let	B	be	the	subgraph	of	a	nontrivial	connected	graph	G
induced	 by	 the	 edges	 in	 an	 equivalence	 class	 resulting	 from	 the
equivalence	 relation	 defined	 in	 Theorem	 5.8.	 We	 show	 that	 B	 is	 a



nonseparable	 subgraph	 of	G	 that	 is	 not	 a	 proper	 subgraph	 of	 any	 other
nonseparable	 subgraph	 of	G.	 Since	 this	 is	 true	 if	B	 consists	 of	 a	 single
edge,	we	assume	that	the	order	of	B	is	3	or	more.	Since	every	two	edges	of
B	lie	on	a	common	cycle,	B	 is	connected.	Let	w	be	a	vertex	of	B.	 (Show
that	 if	 w	 is	 a	 cut-vertex	 of	 B,	 then	 there	 exist	 vertices	 u	 and	 v,	 both
adjacent	 to	w,	 such	 that	 every	u	 −	 v	 path	 contains	w.	 Show	 that	 this	 is
impossible.)	 Thus	w	 is	 not	 a	 cut-vertex	 and	B	 is	 nonseparable.	 (It	 now
remains	to	show	that	B	is	not	a	proper	subgraph	of	any	other	nonseparable
subgraph	of	G.)

5.17	A	vertex-cut	U	of	a	connected	graph	G	is	minimal	 if	no	proper	subset	of
U	is	a	vertex-cut	of	G.	Then	every	minimum	vertex-cut	is	minimal,	but	the
converse	 is	 not	 true.	 One	 question	 to	 ask	 is	 what	 is	 the	 maximum
cardinality	of	a	minimal	vertex-cut	in	a	graph	G.

5.19	The	statement	is	false.	For	example,	let	G	=	K1	+	(K1	 	K2).

5.21	(a)	Let	G	=	C5.

(b)	No	such	example	exists.
(c)	Let	G	=	C5.

(d)	No	such	example	exists

5.23	(a)	Proof.	Let	H	=	G	+	K1,	where	v	 is	a	vertex	of	H	 that	 is	not	 in	G.	We
show	that	k(H)	≥	k	+	1.	Let	S	be	a	set	of	vertices	H	with	|S|	=	k.	There
are	two	cases.

Case	 1.	 v	 	S.	 Since	 every	 vertex	 in	G	 is	 adjacent	 to	 v	 in	H,	 every
vertex	in	H	−	S	is	adjacent	to	−	in	H	−	S	and	so	H	−	S	is	connected.
Case	2.	v	 	S.	Then	H	−	S	=	G	−	(S	−	{v}).	Since	k(G)	≥	k	and	|S	−	{v}|
=	k	−	1,	it	follows	that	G	−	(S	−	{v})	connected.
In	 either	 case,	S	 is	 not	 a	 vertex-cut	 of	H.	 Thus	 the	 removal	 of	 k	 or
fewer	 vertices	 from	H	 does	 not	 disconnect	H	 and	 so	 k(H)	 ≥	 k	 +	 1.
Therefore,	H	is	(k	+	1)-connected.

(b)	Hint:	Use	an	argument	similar	to	the	one	in	(a).

5.25	(a)	See	Figure	15(a).



Figure	15:	The	graphs	in	Exercise	5.25(a)	and	(d)

(b)	No	such	example	exists.
(c)	No	such	example	exists.
(d)	See	Figure	15(d).

5.27	(a)	Hint:	Let	G	be	a	(connected)	graph	with	connectivity	k	≥	1.	Then	there
exists	 a	vertex	v1	of	G	 that	 is	 not	 a	 cut-vertex.	Thus	G1	 =	G	 −	v1	 is
connected.	Let	v2	be	a	vertex	of	G1	that	is	not	a	cut-vertex.

(b)	Hint:	The	answer	depends	on	k	and	G.
(c)	The	statement	is	false.	Let	G	=	K1,	3.

(d)	The	statement	is	true.
Proof.	Assume,	to	the	contrary,	that	there	is	a	vertex-cut	W	such	that	v	
	W.	Since	v	is	adjacent	to	every	vertex	in	G	−	W,	it	follows	that	G	v	W

is	connected,	a	contradiction.
(e)	Hint:	The	statement	is	true.

5.29	(a)	Let	G	=	P3	×	K2.	(b)	Let	G	=	K2,3.

5.31	(a)	k	=	2	=	λ(G)	−	1.	(b)	k	=	1	=	 (G)	−	1.

5.33	Proof.	Since	G	is	5-connected,	G	−	w	is	4-connected.	Therefore,	there	are
four	internally	disjoint	u	−	v	paths	in	G	−	w,	each	pair	of	which	produces	a
cycle.	Let	P1,	P2,	P3,	P4	 denote	 these	 four	 paths	 and	 let	C	 be	 the	 cycle
produced	by	P1	and	P2	and	C′	be	the	cycle	produced	by	P3	and	P4.	These
cycles	have	only	u	and	v	in	common	and	neither	contains	w	since	the	paths
occur	in	G	−	w.

5.35	Proof.	Construct	a	new	graph	H	by	adding	a	new	vertex	w	and	joining	w
to	vi	for	1	≤	i	≤	k.	Since	G	is	k-connected,	it	follows	by	Corollary	5.18	that
H	is	k-connected.	By	Theorem	5.17,	 there	are	k	 internally	disjoint	u	−	w
paths	in	H.	The	restriction	of	these	paths	to	G	yields	the	desired	internally
disjoint	u	−	vi	paths	(1	≤	i	≤	k).

5.37	Hint:	 (Qn)	=	λ(Qn)	=	n.



Chapter	6:	Traversability

6.1	Solution.	A	multigraph	M	 can	 be	 constructed	 that	models	 this	 situation,
where	V(M)	 is	 the	 set	of	 rooms	and	 two	vertices	of	M	 are	 joined	by	 the
number	of	edges	equal	to	the	number	of	doorways	between	the	rooms	in
Figure	16.	Since	M	is	connected	and	contains	exactly	two	odd	vertices	(R3
and	R6),	 it	 follows	 that	M	 contains	 an	Eulerian	 trail.	 So	 such	 a	walk	 is
possible,	 either	 starting	 at	 R3	 and	 ending	 at	 R6	 or	 starting	 at	 R6	 and
ending	at	R3.

Figure	16:	The	multigraph	M	in	Exercise	6.1

6.3	Proof.	Let	Gi	be	ri-regular	of	order	ni(i	=	1,	2,	3).	Since	G1	is	Eulerian,	r1
is	even.	Since	 	is	Eulerian,	n1	−	r1	−	1	is	even.	Thus	n1	is	odd.	Since	G2
is	not	Eulerian,	r2	 is	odd	and	so	n2	 is	even.	Similarly,	r3	 is	odd	and	n3	 is
even.	Observe	that

(1)	every	vertex	of	G1	in	G	has	degree	r1	+	n2	+	n3,	which	is	even,

(2)	every	vertex	of	G2	in	G	has	degree	r2	+	n1	+	n3,	which	is	even,

(3)	every	vertex	of	G3	in	G	has	degree	r3	+	n1	+	n2,	which	is	even.

Since	G	is	connected	and	every	vertex	has	even	degree,	G	is	Eulerian.

6.5	Let	G	=	K5	−	e.

6.7	Solution.	(b)	is	true.	Since	n	is	odd,	r	is	even	and	n	−	1	−	r	is	even.	In	H,
every	vertex	of	G	has	degree	r	+	2	and	every	vertex	of	 	has	degree	(n	−	1
−	r)	+	2,	both	of	which	are	even.	Both	u	and	v	have	degree	2n	+	1.	Thus	H
is	a	connected	graph	having	exactly	two	vertices	of	odd	degree.



6.9	Solution.	 Assume,	 to	 the	 contrary,	 that	 there	 is	 a	 nonempty	 subset	S	 of
V(G)	 such	 that	k(G	 −	S)	>	 |S|.	 Since	G	 contains	 no	 cut-vertices,	 |S|	 ≥	 2.
Moreover,	since	z	is	adjacent	to	all	other	vertices	of	G,	we	must	have	z	
S;	otherwise,	G—S	is	connected.	Also,	since	the	order	of	G	is	7,	removing
four	 or	 more	 vertices	 from	 G	 results	 in	 a	 graph	 with	 three	 or	 less
components.	So	|S|	=	2	or	|S|	=	3.	The	graph	G	−	z	is	in	Figure	17.	If	|S|	=
2,	then	G	−	S	is	disconnected	only	if	the	remaining	vertex	of	S	is	u,	w	or	y
but	then,	k(G	−	S)	=	|S|	=	2.	If	|S|	=	3,	then	G	−	S	can	only	have	more	than
two	components	if	the	remaining	vertices	of	S	are	selected	from	{u,	w,	y}
in	which	case	k(G	−	S)	=	|S|	=	3.	This	says	that	the	condition	for	G	to	be
Hamiltonian	 is	only	necessary	and	not	sufficient,	 that	 is,	 the	converse	of
this	theorem	does	not	hold.

6.11	Hint:	Note	 that	 n	 is	 a	 (n	 −	 3)-regular	 graph.	 If	n	 =	 5,	 then	 5	 =	C5,
which	is	Hamiltonian.	If	n	≥	6,	then	n	−	3	≥	n/2.

Figure	17:	The	graph	G	−	z	in	Exercise	6.9

6.13	 (a)	 Let	 G	 =	 K2,	 4.	 Removing	 the	 vertices	 in	 the	 partite	 set	 having
cardinality	2	produces	a	graph	with	four	components.

(b)	Let	G	=	K4	−	e.	This	graph	contains	two	odd	vertices.

(c)	Let	G	=	K4	−	e.

(d)	Let	G	=	P3.

6.15	Solution.	Yes,	it	is	true.

Proof.	Let	F	be	the	subdivision	graph	of	the	graph	G.	First,	observe	that	if
F	is	Hamiltonian,	then	G	must	be	connected.	If	G	contains	an	end-vertex,
then	F	 does	 as	well.	So	 (G)	≥	2.	 If	G	 contains	 a	 vertex	 of	 degree	 3	 or
more,	then	F	contains	a	vertex	adjacent	to	at	least	three	vertices	of	degree
2.	 Since	 no	Hamiltonian	 graph	 has	 such	 a	 vertex,	 Δ(G)	 ≤	 2.	 So	G	 is	 a



connected,	2-regular	graph;	that	is,	G	=	Cn	for	some	integer	n	≥	3.	Hence
G	is	Eulerian.

6.17	Solution.	All	graphs	of	order	4	together	with	C3	and	P3.

Proof.	First,	if	G	has	order	3	and	contains	an	isolated	vertex,	then	G(3)	is
not	Hamiltonian;	otherwise,	G	is	connected	and	G(3)	is	Hamiltonian.	If	G
=	 4,	 then	G(3)	=	Q3,	which	 is	Hamiltonian.	 So	 if	G	 has	 order	 4,	 then
G(3)	 is	Hamiltonian.	 So	 let	n	 ≥	 5	 and	 let	G	 be	 a	 graph	 of	 order	n.	 Let
V(G(3))	 =	 V(G)	 	 W,	 where	 W	 =	 {vS	 :	 S	 	 V(G),	 |S|	 =	 3}.	 Then	

	 and	 the	 number	 of	 components	 in	G(3)	 −	V(G)	 is	 k(G(3)	 -
V(G))=	 |W|.	 It	 is	 known	 that	 if	 k(G(3)	 −	 V(G))	 >	 |V(G)|	 (that	 is,	 if	

,	 then	G(3)	 is	 not	 Hamiltonian.	 For	 a	 positive	 integer	 n,	 the
inequality	 	is	equivalent	to	n	>	4.	Since	n	≥	5,	the	graph	G(3)	 is
not	Hamiltonian.

6.19	Proof.	First,	observe	that	the	order	of	G	is	2n.	Since	 (G1)	≥	n/2	and	 (G2)
≥	n/2,	the	degree	of	every	vertex	of	G	(in	G1	or	G2)	is	at	least	n/2	+	n/2	=
n.	So	G	is	Hamiltonian	by	Dirac’s	Theorem.

6.21	Hint:	Consider	G′	=	G	+	K1,	where	V(K1)	=	{x}.	Then	degG′	u	+	degG′	v	≥
n	+	1	for	every	two	nonadjacent	vertices	u	and	v	in	G′.	Thus	G′	contains	a
Hamiltonian	cycle	C	and	so	G	contains	the	Hamiltonian	path	C	−	x.

6.23	Hint:	(a)	Yes	(b)	No.



Chapter	7:	Digraphs

7.1	(a)	Proof.	Let	v	be	a	vertex	of	D.	By	hypothesis,	D	−	v	is	a	strong	oriented
graph.	Hence	D	−	v	is	a	directed	cycle	(see	Figure	18(a)).	On	the	other
hand,	D	−	u	is	strong,	so	it	is	a	directed	cycle	as	well.	Since	(w,	x)	is	a
directed	edge,	D	−	u	is	the	directed	cycle	shown	in	Figure	18(b).	Thus
D	 contains	 the	 digraph	 of	 Figure	 18(c)	 as	 a	 subdigraph	 and	 so	D	 is
strong.

Figure	18:	A	directed	cycle	in	the	proof	of	Exercise	7.1(a)

(b)	 From	 (a),	D	 contains	 the	 digraph	 of	 Figure	 18(c)	 as	 a	 subdigraph.
Regardless	of	whether	u	and	v	are	adjacent	or	not,	D	−	w	is	not	strong.

7.3	See	Figure	19.

Figure	19:	The	graphs	of	Exercise	7.3

7.5	Proof.	Let	D	be	a	strong	digraph.	Assume,	to	the	contrary,	that	there	exists
an	edge-cut	S	of	the	underlying	graph	G	of	D	separating	V(G	−	S)	into	two
sets	A	and	B	such	that	there	are	no	arcs	directed	from	A	to	B.	Let	u	 	A	and
v	 	B.	Then	 there	 is	no	u	−	v	 path	 in	D,	 contradicting	 the	 fact	 that	D	 is
strong.	For	the	converse,	assume	that	D	is	not	strong.	Then	D	contains	two
vertices	u	and	v	such	that	there	is	no	u	−	v	path	in	D.	Let	A	=	{x	 	V(D)	:	D
contains	a	u	−	x	path}	and	B	=	V(D)	−	A.	Since	u	 	A	and	v	 	B,	it	follows



that	A	≠	 	and	B	≠	 .	The	set	S	of	edges	of	G	joining	a	vertex	of	A	and	a
vertex	of	B	is	an	edge-cut	of	G.	Since	D	contains	a	u	−	x	path	for	all	x	 	A
and	no	u	−	x	path	for	all	x	 	B,	there	is	no	arc	in	D	directed	from	A	to	B.

7.7	Proof.	First	observe	that	since	T	is	strong,	T	contains	no	vertex	x	with	od	x
=	0	or	id	x	=	0.	Also,	since	T	−	(u,	v)	+	(v,	u)	is	strong	for	every	arc	(u,	v)
of	T,	 it	 follows	 that	T	 contains	 no	 vertex	 x	 with	 od	 x	 =	 1	 or	 id	 x	 =	 1.
Consequently,	od	x	≥	2	and	id	x	≥	2	for	every	vertex	x	of	T.	Since	the	order
of	T	is	n,	where	3	≤	n	≤	5,	it	follows	that	n	=	5	and	every	vertex	x	of	T	has
od	x	=	id	x	=	2.	There	is	a	unique	tournament	of	order	5	with	this	property.

7.9	Proof.	First,	assume	that	T	 is	a	transitive	tournament.	Let	u	and	v	be	 two
vertices	of	T.	Assume,	without	loss	of	generality,	that	(u,	v)	is	an	arc	of	T.
Let	U	 be	 the	 set	 of	 all	 vertices	 to	which	v	 is	 adjacent.	Then	od	v	 =	 |U|.
Therefore,	if	x	 	U,	then	(v,	x)	is	an	arc	of	T.	Because	T	 is	transitive	and
(u,	v)	and	(v,	x)	are	arcs,	it	follows	that	(u,	x)	is	an	arc	of	T.	Therefore,	u	is
adjacent	to	every	vertex	of	U	and	so	od	u	≥	1	+	|U|,	implying	that	od	u	≠
od	v.

For	the	converse,	assume	that	T	is	a	tournament	of	order	n	whose	vertices
have	 distinct	 outdegrees.	 Then	 these	 outdegrees	 are	 0,	 1,	 2,	…,	 n	 −	 1.
Hence	we	may	assume	that	V(T)	=	{v1,	v2,	…,	vn},	where	od	vi	=	n	–	i	for
1	≤	i	≤	n.	We	claim	that	each	vertex	vi(1	≤	i	≤	n	−	1)	is	adjacent	to	vi	+	1,	vi
+	 2,	…,	 vn,	 which	 we	 verify	 by	 induction.	 Since	 od	 v1	 =	 n	 −	 1,	 this	 is
certainly	true	for	the	vertex	v1.	Assume	that	vi	 is	adjacent	to	vi	+	1,	vi	 +	 2,
…,	vn	for	all	vertices	vi,	where	1	≤	i	≤	k	and	1	≤	k	>	n.	Consider	vk	+	1.	By
the	induction	hypothesis,	all	of	the	vertices	v1,	v2,	…,	vk	are	adjacent	to	vk
+	1.	Since	od	vk	+	1	=	n	−	k	−	1,	it	follows	that	−k	+	1	is	adjacent	to	vk	+	2,	vk	+
3,	…,	vn.	We	now	show	that	T	is	transitive.	Let	(u,	v)	and	(v,	w)	be	arcs	of
T.	Then	u	=	vr,	v	=	vs	and	w	=	vt,	where	r	<	s	<	t.	Since	r	≤	t,	it	follows	that
(u,	w)	is	an	arc	of	T	and	so	T	is	transitive.

7.11	 Proof.	 Recall	 that	
.	Now



Therefore,	id	vn	−	od	vn	≥	n	−	1,	which	implies	that	id	vn	=	n	−	1	and	od	vn
=	0.	Since	od	vn	=	0,	it	follows	that	T	is	not	strong.

7.13	Solution.	Let	u	and	v	be	two	distinct	vertices	in	a	tournament	T.	We	may
assume	 that	 (u,	v)	 	E(T)	 and	 so	 (v,	 u)	 	E(T).	 Then	 	 and	

.	Therefore,	 .

7.15	Proof.	We	proceed	by	induction.	Let	T	be	a	strong	tournament	of	order	n	≥
3	and	let	v	be	a	vertex	of	T.	We	first	show	that	T	contains	a	cycle	of	length
3.	Since	T	 is	 strong,	 od	 v	 >	 0	 and	 id	 v	 >	 0.	 Let	N+(v)	 be	 the	 set	 of	 all
vertices	to	which	v	is	adjacent	and	let	N−(v)	be	the	set	of	all	vertices	from
which	 v	 is	 adjacent.	 Thus	N+(v)	 and	N−(v)	 are	 nonempty.	 For	 the	 same
reason,	there	is	a	vertex	u	 	N+(v)	that	is	adjacent	to	some	vertex	w	in	N
−(v).	Hence	(v,	u,	w,	v)	is	a	cycle	of	length	3.

Suppose	that	T	contains	a	cycle	of	length	k,	where	3	≤	k	<	n.	We	show	that
T	contains	a	cycle	of	length	k	+	1.
Let	C	=	(v	=	v1,	v2,	…,	vk,	v1)	be	a	cycle	of	 length	k.	Suppose	 that	 there
exists	a	vertex	u	of	T	not	on	C	such	that	u	is	adjacent	from	some	vertex	of
C	 and	 is	 adjacent	 to	 some	other	vertex	of	C.	Then	 there	 exists	 a	pair	of
adjacent	vertices	of	C,	say	vi	and	vi	+	1	(where	the	subscripts	are	expressed
modulo	k)	such	that	(vi,	u)	and	(u,	vi	 +	 1)	are	both	arcs	of	T.	 In	 this	case,
(v1,	v2,	…,	vi,	u,	vi	+	1,	…,	vk,	v1)	is	a	cycle	of	length	k	+	1	containing	v.

Assume	now	 that	 every	vertex	of	T	 not	on	C	 is	 either	 adjacent	 from	 all
vertices	of	C	or	is	adjacent	to	all	vertices	of	C.	Let	U	be	the	set	of	vertices
of	V(T)	−	V(C)	that	are	adjacent	from	all	vertices	of	C	and	let	W	be	the	set
of	vertices	of	V(T)	−	V(C)	that	are	adjacent	to	all	vertices	of	C.	Since	T	is
strong,	there	is	some	vertex	u	 	U	that	is	adjacent	to	some	vertex	w	 	W.
However	 then,	 (v1,	 v2,	 …,	 vk	 −	 1,	 u,	w,	 v1)	 is	 a	 cycle	 of	 length	 k	 +	 1
containing	v.



Chapter	8:	Matchings	and	Factorization

8.1	(a)	See	Figure	20.

Figure	20:	The	graph	G	in	Exercise	8.1

(b)	A	perfect	matching	of	G	is	M	=	{u0w6,	u1w1,	u2w0,	u3w5,	u4w2,	u5w4,
u6w3}.

8.3	For	the	graph	G1,	the	set	U	can	be	matched	to	W	as	M	=	{av,	bw,	cy,	dz,	ex}
is	 a	matching.	 The	 set	U	 in	G2	 cannot	 be	matched	 to	W	 since	U	 is	 not
neighborly.	For	example,	let	X	=	{v,	x,	y}.	Then	N(X)	=	{a,	c}.

8.5	 Proof.	 Assume,	 to	 the	 contrary,	 that	 there	 exists	 a	 tree	 T	 having	 two
distinct	 perfect	 matchings	 M1	 and	 M2.	 Hence	 there	 exists	 a	 vertex	 v
incident	 with	 distinct	 edges	 e1	 and	 e2	 such	 that	 e1	 	M1	 and	 e2	 	M2,
where,	say,	e1	=	uv	and	e2	=	vw	and	u	≠	w.	Therefore,	T	contains	a	path	of
length	2	whose	edges	are	alternately	in	M1	−	M2	and	M2	−	M1.	Let	P	be	a
path	of	greatest	length	whose	edges	are	alternately	in	M1	−	M2	and	M2	−
M1.	Suppose	that	P	is	an	x	−	y	path	and	x	is	incident	with	an	edge	of	M1	−
M2	on	P.	Since	M2	is	a	perfect	matching,	there	is	an	edge	e	of	M2	−	M1	not
on	P	incident	with	x,	say	e	=	xz.	If	z	is	not	on	P,	then	z,	P	 is	a	z	−	y	path
whose	edges	are	alternately	in	M1	−	M2	and	M2	−	M1	and	whose	length	is
greater	 than	 that	 of	P.	 This	 is	 impossible.	 If	 z	 is	 on	P	 (which	 can	 only
occur	if	z	=	y	and	y	is	incident	with	an	edge	of	M1	−	M2),	 then	a	cycle	is
formed	in	T,	which	is	also	impossible.

8.7	Consider	the	graph	(see	Figure	21).	Let	M1	=	{uv,	ws,	tx,	yz}	and	M2	=	{us,



vw,	xy,	tz}.

Figure	21:	A	graph	for	Exercise	8.7

8.9	Consider	G1	=	K8,	G2	=	K6	−	e,	G3	=	P5,	G4	=	K1,	4.

8.11	If	G	is	a	complete	bipartite	graph,	then	 (G)	=	 ′(G).

8.13	Observe	that	 (H)	=	 ′(H)	=	2	and	 (H)	=	 ′(H)	=	5.	The	set	{t,	u}	 is	a
minimum	vertex	cover,	 {u,	w,	 x,	 y,	 z}	 is	 a	maximum	 independent	 set	 of
vertices,	 {uv,	 tw,	 tx,	 ty,	 tz}	 is	 a	minimum	 edge	 cover	 and	 {uv,	 tw}	 is	 a
maximum	independent	set	of	edges.

8.15	Observe	that	 ′(G)	=	(n1	+	n2)/2.	By	Theorem	8.7,	 ′(G)	=	(n1	+	n2)/2.

8.17	The	graph	G1	has	a	1-factor	but	is	not	1-factorable,	G2	does	not	have	a	1-
factor	(and	therefore	is	not	1-factorable	either)	and	G3	has	a	1-factor	but	is
not	1-factorable.

8.19	Hint:	Construct	a	Hamiltonian	factorization	of	K9.

8.21	Hint:	Let	S	be	the	partite	set	of	K3,	5	with	|S|	=	3.	Then	ko(G	−	S)	=	5.

8.23	Hint:	By	Theorem	8.11,	G	has	a	1-factor	if	G	has	no	bridges;	otherwise,	let
P	=	 (u	=	u0,	u1,	…,	uk	=	v)	be	a	u	−	v	 path	 containing	 all	 bridges	of	G.
Without	loss	of	generality,	we	may	assume	that	uu1	and	uk	−	1v	are	bridges.
Let	G1	 be	 the	 component	 of	 G	 −	 uu1	 containing	 u	 and	 let	 G2	 be	 the
component	of	G	−	uk	−	1v	containing	v.	For	each	i	=	1,	2,	let	ei	=	xiyi	be	an
edge	of	Gi.	Furthermore,	let	G′	be	the	graph	obtained	from	G	by	deleting
the	edges	ei	and	adding	a	new	vertex	wi	and	the	edges	xiwi	and	wiyi	for	i	=
1,	2.	Thus	w1	and	w2	are	the	only	vertices	of	degree	2	in	G′.	Let	F1,	F2	and
F3	are	three	copies	of	G′.	For	each	j	with	1	≤	j	≤	3,	let	w1	j	be	the	vertex	in
Fj	corresponding	to	w1	in	G′	and	w2,	j	be	the	vertex	in	Fj	corresponding	to
w2	in	G′.	Construct	a	graph	F	from	F1,	F2	and	F3	by	(1)	adding	two	new



vertices	z1	and	z2	and	(2)	joining	z1	to	w1	j	for	1	≤	j	≤	3	and	joining	z2	to	w2
j	for	1	≤	j	≤	3.	Then	F	is	3-regular	and	bridgeless	and	so	F	has	a	1-factor
by	Theorem	8.11.	Complete	the	proof	by	showing	that	at	least	one	of	F1,
F2	and	F3	has	a	1-factor.

8.25	Hint:	 If	n	 is	 even,	 then	Cn	 is	 1-factorable.	 If	n	 is	 odd,	 consider	 two	n-
cycles	C	=	(v1,	v2,	…,	vn,	v1)	and	 	in	Cn	×	K2,
where	 	is	an	edge	for	1	≤	i	≤	n.	Consider	three	subgraphs	F1,	F2	and	F3
of	Cn	X	K2,	 where	 	 and	
for	3	≤	i	≤	n.

8.27	Hint:	Consider	C*	=	(v1,	v2,	v3,	v5,	v4,	v6,	v1,	v4,	v2,	v5,	v6,	v3,	v1).

8.29	Hint:	Observe	that	Kn	+	1	=	Kn	+	K1.

8.31	Hint:	The	graph	K7	can	be	decomposed	into	three	copies	of	C3	 	C4.

8.33	Hint:	If	K2,	2,	2	were	K1,	4-decomposable,	then	K2,	2,	2	could	be	decomposed
into	three	copies	of	K1,	4	and	so	there	are	vertices	of	K2,	2,	2	that	are	not	the
center	of	any	star	K1,	4.

8.35	Hint:	The	graph	C6	is	not	graceful.	Consider	the	parity	of	the	labels	as	one
moves	cyclically	about	C6.	On	the	other	hand,	C8	is	graceful.	Let	C8	=	(v1,
v2,	…,	v8,	v1).	Consider	the	labeling	f	defined	by	f(v1)	=	0,	f(v2)	=	8,	f(v3)	=
1,	f(v4)	=	4,	f(v5)	=	5,	f(v6)	=	7,	f(v7)	=	2	and	f(v8)	=	6.

8.37	Hint:	Show	that	T	is	a	graceful	tree	of	size	5	and	then	use	Theorem	8.24.



Chapter	9:	Planarity

9.1	See	Figure	22.	For	G1,	n	=	6,	m	=	10,	r	=	6.	For	G2,	n	=	10,	m	=	17,	r	=	9.
For	G3,	n	=	6,	m	=	12,	r	=	8.	In	each	case,	we	have	n	−	m	+	r	=	2.

Figure	22:	Graphs	for	Exercise	9.1

9.3	(a)	Solution.	The	graph	G	has	order	n	=	7	and	size	m	=	16.	Thus	m	=	16	>
3	·	7	−	6	=	15.	By	Theorem	9.2,	the	graph	G	is	nonplanar.

(b)	Solution.	The	graph	G	has	order	n	=	12	and	size	m	=	33.	Thus	m	=	33
>	3	·	12	−	6	=	30.	By	Theorem	9.2,	the	graph	G	is	nonplanar.

9.5	 (a)	 The	 graph	 of	 the	 octahedron	 is	 a	 4-regular	 planar	 graph	 and	 the
complete	bipartite	graph	K4,	4	is	a	4-regular	nonplanar	graph.

(b)	 The	 graph	 of	 the	 icosahedron	 is	 a	 5-regular	 planar	 graph	 and	 the
complete	bipartite	graph	K5,	5	is	a	5-regular	nonplanar	graph.

(c)	By	Corollary	9.3,	every	planar	graph	contains	a	vertex	of	degree	5	or
less.

Figure	23:	Graphs	for	Exercise	9.5(a)	and	(b)



9.7	(a)	C4.

(b)	No	such	graph	exists	since	a	nonplanar	graph	must	have	at	 least	 five
vertices	to	contain	K5	or	K3,3	(or	a	subdivision	of	either)	as	a	subgraph.

(c)	A	graph	obtained	by	subdividing	a	single	edge	of	K5	exactly	once.

(d)	No	such	graph	exists.	If	G	has	5	vertices	and	10	edges,	 then	G	=	K5,
which	 is	nonplanar.	 (Note	 that	 the	Euler	 Identity	may	appear	 to	hold
since	n	−	m	+	r	=	5	−	10	+	7	=	2,	but	there	is	no	such	planar	graph.)

(e)	Let	G	=	K3.

(f)	Let	G	=	K6	 	K1.

9.9	The	graph	G	is	nonplanar	since	G	contains	a	subdivision	of	K3,3	as	shown
in	Figure	24.

Figure	24:	The	graphs	in	Exercise	9.9

9.11	The	graph	is	planar	as	shown	in	Figure	25.

9.13	(a)	Proof.	First,	suppose	that	G	is	connected.	Note	that	the	inequality	holds
if	m	=	2,	3.	Thus,	we	may	assume	that	m	≥	4.	We	draw	the	graph	G	as
a	plane	graph	and	denote	 the	number	of	 regions	of	G	by	r.	For	each
region	 R	 of	 G,	 we	 determine	 the	 number	 of	 edges	 lying	 on	 the
boundary	of	R	and	then	sum	these	numbers	over	all	regions	of	G.	We
denote	this	number	by	M.	Since	G	has	no	triangle,	there	are	at	least	4
edges	belonging	to	the	boundary	of	each	region.	Thus	M	≥	4r.	On	the
other	hand,	the	number	M	counts	every	edge	of	G



Figure	25:	The	graph	in	Exercise	9.11

once	or	twice,	that	is	M	≤	2m.	Hence	4r	≤	M	≤	2m	or	2r	≤	m.	Since	n	−
m	+	r	=	2,	it	follows	that

Therefore,	m	≤	2n	−	4.
If	G	 is	 disconnected,	 then	 edges	 can	 be	 added	 to	 G	 to	 produce	 a
connected	plane	graph	of	order	n	and	size	m′	without	triangles,	where
m′	>	m.	Then	m′	≤	2n	−	4	and	so	m	≤	2n	−	4.

(b)	Since	K3,3	is	bipartite,	K3,3	has	no	triangles.	The	order	of	K3,3	is	n	=	6
and	the	size	is	m	=	9.	Since	9	>	8	=	2	·	6	−	4	=	2n	−	4,	it	follows	by	(a)
that	K3,3	is	nonplanar.

(c)	Proof.	Assume,	to	the	contrary,	that	there	exists	a	planar	bipartite	G	of
order	n	and	size	m	such	that	 (G)	≥	4.	Then	2m	≥	4n	and	so	m	≥	2n.	On
the	other	hand,	G	is	bipartite	and	so	G	has	no	triangles.	By	(a),	m	≤	2n
−	4,	which	is	impossible.

9.15	Proof.	Assume,	to	the	contrary,	that	there	exists	a	planar	graph	G	of	order
of	n	≤	11	such	that	 (G)	≥	5.	Thus	2m	≥	5n.	On	the	other	hand,	G	is	planar
and	so	m	≤	3n	−	6.	Therefore,	5n	≤	2m	≤	6n	−	12,	 implying	 that	n	≥	12,
which	is	a	contradiction.

9.17	Hint:	The	graph	 	is	planar.	The	graph	 	contains	a	subdivision	of	K3,3
and	 is	 nonplanar.	 The	 graph	 	 is	 nonplanar	 since	

	and	m	>	3n	−	6.

9.19	Hint:	Since	G	is	maximal	planar,	m	=	3n	−	6.	Then	use	the	Euler	Identity.

9.21	Proof.	Assume,	to	the	contrary,	that	G	contains	a	vertex	v	with	deg	v	≤	2.



Suppose	that	G	has	order	n	and	size	m.	Since	G	is	maximal	planar,	m	=	3n
−	6.	Then	G	−	v	is	planar.	Hence	G	−	v	has	order	n	and	size	m′	≥	m	−	2.
Thus	m′	 ≤	 3(n	 −	 1)	 −6	 and	 so	m	 −	 2	 ≤	 3n	 −	 3	 −	 6	 and	m	 ≤	 3n	 −	 7,	 a
contradiction.

9.23	See	Figure	26.

Figure	26:	Embedding	the	graph	in	the	torus	in	Exercise	9.23

9.25	 Solution.	 Since	 K3,3	 is	 a	 subgraph	 of	 K4,	 4,	 it	 follows	 that	 K4,	 4	 is
nonplanar	and	so	γ(K4,	 4)	≥	1.	Since	K4,	 4	can	be	embedded	 in	 the	 torus,
γ(K4,	4)	=	1.

Figure	27:	Embedding	K4,	4	in	the	torus	in	Exercise	9.25

9.27	(a)	False.	Every	planar	graph	can	be	embedded	on	the	sphere	and	therefore
on	the	torus	as	well.

(b)	True.	The	complete	graph	K8	has	genus	2	(by	Theorem	9.12).



(c)	True.	Draw	G	on	 the	sphere	(possibly	with	edges	crossing).	For	each
edge,	insert	a	handle	and	draw	that	edge	only	on	the	handle.

(d)	False.	Every	planar	graph	can	be	embedded	on	the	torus.



Chapter	10:	Colorings

10.1	 (G1)	 =	 (G4)	 =	 3,	 (G2)	 =	 (G3)	 =	 (G5)	 =	 4.	 Since	G1	 contains	 a
triangle,	 	(G1)	≥	3.	Because	there	is	a	3-coloring	of	G1,	 (G1)	≤	3.	Since
G2	contains	K4	as	a	subgraph,	 (G2)	≥	4.	Since	G2	 is	planar,	 (G2)	≤	4.
Since	G3	 contains	K4	 as	 a	 subgraph,	 (G3)	 ≥	 4.	 Because	 there	 is	 a	 4-
coloring	 of	 G3,	 (G3)	 ≤	 4.	 Since	 G4	 contains	 a	 triangle,	 (G4)	 ≥	 3
Because	there	is	a	3-coloring	of	G4,	 (G4)	≤	3.	Since	G5	contains	K4	as	a
subgraph,	 (G5)	≥	4.	Since	there	is	a	4-coloring	of	G5,	 (G5)	≤	4.

10.3	The	chromatic	number	of	a	 tree	of	order	at	 least	2	 is	2	since	a	 tree	 is	a
bipartite	graph.

10.5	Proof.	Let	G	be	a	graph	of	order	6	and	chromatic	number	3	and	let	there
be	a	3-coloring	of	G.	If	there	are	three	(or	more)	vertices	that	are	assigned
the	same	color,	then	G	has	an	independent	set	of	three	or	more	vertices.
Thus	 the	 size	 of	G	 is	 at	most	 .	Otherwise,	V(G)	 can	 be
partitioned	into	three	independent	sets	of	two	vertices	each	and	the	size	of
G	is	at	most	 .

The	result	cannot	be	improved	since	G	=	K2,	2,	2	is	a	graph	of	order	6	and
size	12	having	chromatic	number	3.

10.7	Since	Δ(G)	=	5	and	G	is	neither	complete	nor	an	odd	cycle,	 (G)	≤	Δ(G)
=	5.

10.9	(a)	Proof.	Let	G	=	K5.	Then	G	is	nonplanar	and	 (G)	=	5.	Observe	that	G
−	v	=	K4	is	planar	for	every	vertex	v	of	G	and	 (K4)	=	4.

(b)	Proof.	Let	G	=	K3,3.	Then	G	is	nonplanar	and	 (G)	=	2.	Observe	that	G
−	v	=	K2,3	is	planar	for	every	vertex	v	of	G	and	 (K2,3)	=	2.

10.11	Solution.	Let	G	be	a	graph	whose	vertex	set	is	the	set	of	chemicals.	Place
an	edge	between	two	vertices	(chemicals)	in	G	if	it	is	risky	to	ship	them
in	the	same	container.	The	graph	G	is	shown	in	Figure	28.	Since	 (G)	=
4,	 the	minimum	cost	 of	 shipping	 the	 chemicals	 is	 125	+	3	 ·	 85	=	380.



Container	1:	c1,	c7;	Container	2:	c4,	c5;	Container	3:	c2,	c8;	Container	4;
c3,	c6.

Figure	28:	The	graph	G	in	Exercise	10.11

10.13	 Proof.	 Let	 V1,	 V2,	 …,	 Vk	 be	 the	 k	 color	 classes	 resulting	 from	 a	 k-
coloring	of	G,	where	 the	 vertices	 of	Vi	 are	 colored	 i	 (1	 ≤	 i	 ≤	 k).	 Then
every	 two	 distinct	 color	 classes	 have	 different	 cardinalities.	 Hence	 we
may	assume	that	1	≤	|V1	|	<	|V2	|	<	…	<	|Vk	|.	Since	 (G)	=	k,	it	follows
that	|Vk|	≤	k.	This	implies	that	 |Vi	 |	=	 i	for	every	 i	(1	≤	 i	≤	k).	Hence	V1
consists	of	only	one	vertex	v,	which	is	colored	1.	If	there	is	a	vertex	u	
Vi	(i	≠	1)	that	is	not	adjacent	to	v,	then	u	could	be	colored	1,	which	would
produce	a	contradiction.	Thus	v	is	adjacent	to	all	other	vertices	of	G	and
so	deg	v	=	n	−	1.

10.15	 Let	G	 be	 the	 graph	 with	 vertex	 set	 A	 and	 two	 vertices	 ai	 and	 aj	 are
adjacent	in	G	if	{ai,	aj} 	S.	Then	f	is	a	coloring	of	G.	The	cardinality	of
the	range	of	f	is	 (G).

10.17	 ′(G1)	=	 ′(G2)	=	 ′(G5)	=	4	and	 ′(G3)	=	 ′(G4)	=	5,

10.19	Solution	Draw	an	edge	between	two	vertices	(teams)	if	the	teams	have	to
play	each	other.	The	graph	G	has	odd	order	n	=	7,	size	m	=	13,	and	Δ(G)
=	4.	Since	 ,	it	follows	that	 ′(G)	=	1	+	Δ(G)	=	5,	which
is	the	minimum	number	of	days	to	schedule	all	13	games.	A	coloring	of
the	edges	of	G	is	given	in	Figure	29.



Figure	29:	The	graph	in	Exercise	10.19



Chapter	11:	The	Ramsey	Number	of	Graphs

11.1	Hint:	F1	is	a	subgraph	of	Ks	and	F2	is	a	subgraph	of	Kt.

11.3	Proof.	Let	there	be	given	a	red-blue	coloring	of	G	=	K18.	For	v	 	V(G),
there	are	9	edges	incident	with	v	that	are	colored	the	same	color.	Suppose
that	v	is	joined	to	each	vertex	of	S	=	{v1,	v2,	…,	v9}	by	a	red	edge.	Since
r(K3,	K4)	=	9,	there	is	a	red	K3	or	a	blue	K4	in	H	=	G	[S]	=	K9.	If	there	is	a
red	K3	in	H,	then	G	has	a	red	K4;	if	there	is	a	blue	K4	in	H,	then	G	has	a
blue	K4.	Therefore,	r(K4,	K4)	≤	18.

11.5	 r(2K2,	 P3)	 =	 4.	 Proof.	 Since	 the	 order	 of	 2K2	 is	 4,	 it	 follows	 that
r(2K2,P3)	≥	4.	Next	we	 show	 that	r(2K2,	P3)	 ≤	 4.	Let	 there	 be	 given	 a
red-blue	coloring	of	K4.	If	all	edges	of	K4	are	colored	red,	then	we	have	a
red	2K2.	Thus	we	may	assume	that	at	least	one	edge	is	colored	blue,	say
uv	is	colored	blue	as	shown	in	Figure	30(a).	If	either	ux	or	vy	 is	colored
blue,	then	we	have	a	blue	P3	as	shown	in	Figure	30(b).	Otherwise,	both
ux	 and	 vy	 are	 colored	 red	 and	 we	 have	 a	 red	 2K2	 as	 shown	 in	 Figure
30(c).

Figure	30:	A	red-blue	coloring	of	K4	in	Exercise	11.5

11.7	r(2K2,	2K2)	=	5.	Proof.	 In	 the	coloring	of	K4	 as	 shown	 in	Figure	 31(a)
where	each	red	edge	of	K4	 is	drawn	as	a	bold	edge,	 there	is	no	red	2K2
and	no	blue	2K2.	Thus	r(2K2,	2K2)	≥	5.



Figure	31:	Red-blue	colorings	of	K4	and	K5	in	Exercise	11.7

Next	we	show	that	r(2K2,	2K2)	≤	5.	Let	there	be	given	a	red-blue	coloring
of	K5	and	suppose	that	there	is	no	red	2K2	and	no	blue	2K2.	If	all	edges	of
K5	are	colored	blue,	then	we	have	a	blue	2K2.	Thus	we	may	assume	that	at
least	 one	 edge	 is	 colored	 red,	 say	 xy	 is	 colored	 red	 as	 shown	 in	 Figure
31(b).	 Since	 there	 is	 no	 red	 2K2,	 all	 edges	uv,	uw,	 vw	 are	 colored	 blue.
Since	uw	is	blue,	vx	must	be	red.	Since	uv	is	blue,	wy	is	red.	But	vx	and	wy
produce	a	red	2K2,	which	is	a	contradiction.

11.9	r(K1,	3,	K1,	3)	=	6.	Proof.	There	is	a	red-blue	coloring	of	K5	such	that	the
red	subgraph	and	blue	subgraph	are	both	C5	and	so	contains	no	red	K1,	 3
and	no	blue	K1,	3.	Thus	r(K1,	3,	K1,	3)	≥	6.	Let	 there	be	given	a	 red-blue
coloring	of	K6.	For	a	vertex	v	 of	K6,	 there	 are	 5	 edges	 incident	with	v.
Thus	at	 least	 three	of	 these	5	edges	are	colored	same,	say	red,	and	so	it
contains	a	red	K1,	3.	Therefore,	r(K1,	3,	K1,	3)	=	6.

11.11	r(K1,	4,	K1,	4)	=	7.	Proof.	Consider	the	red-blue	coloring	of	K6	 in	which
the	red	subgraph	is	C6.	Since	the	blue	subgraph	is	3-regular,	there	is	no
red	K1,	4	and	no	blue	K1,	4.	Thus	r(K1,	4,	K1,	4)	≥	7.

Next	we	show	r(K1,	4,	K1,	 4)	≤	7.	Assume,	 to	 the	contrary,	 that	 there	 is	a
red-blue	coloring	of	K7	with	 no	 red	K1,	 4	 and	no	blue	K1,	 4.	 Then	 every
vertex	of	K7	must	be	incident	with	exactly	three	red	edges	and	three	blue
edges,	for	otherwise,	K7	contains	a	red	K1,	4	or	a	blue	K1,	4.	However	then,
the	red	subgraph	of	K7	is	3-regular	of	order	7,	which	is	impossible.

11.13	r(C4,	C4)	=	6.	Proof.	The	coloring	of	K5	of	Figure	32(a)	contains	no	red
C4	and	no	blue	C4.	Thus	r(C4,	C4)	≥	6.



Figure	32:	A	red-blue	coloring	of	K5	and	a	subgraph	of	K6	in	Exercise	11.13

Next	we	show	that	r(C4,	C4)	≤	6.	Assume,	 to	 the	contrary,	 that	 there	is	a
red-blue	coloring	of	K6	with	no	red	C4	and	no	blue	C4,	where	V(K6)	=	{v1,
v2,	…,	v6}.	Since	r(K3,	K3)	=	6,	there	is	either	a	red	K3	or	a	blue	K3,	say
the	former.	Let	the	subgraph	induced	by	{v1,	v2,	v3}	be	a	red	K3.	If	there	is
a	vertex	in	{v4,	v5,	v6}	that	is	joined	to	two	vertices	in	{v1,	v2,	v3}	by	red
edges,	then	K6	contains	a	red	C4.	Thus	each	vertex	in	{v4,	v5,	v6}	is	joined
to	at	least	two	vertices	in	{v1,	v2,	v3}	by	blue	edges.	Furthermore,	no	two
vertices	in	{v4,	v5,	v6}	are	joined	by	blue	edges	to	the	same	two	vertices	in
{v1,	v2,	v3},	 for	otherwise,	a	blue	C4	 is	produced,	giving	a	contradiction.
This	 implies	 that	 every	 vertex	 in	 {v4,	 v5,	 v6}	 is	 joined	 to	 exactly	 two
vertices	in	{v1,	v2,	v3}	by	blue	edges	and	 joined	 to	one	vertex	 in	{v1,	v2,
v3}	 by	 a	 red	 edge.	 Thus	K6	 contains	 the	 red	 subgraph	 shown	 in	 Figure
32(b).	 If	 there	 is	 a	 red	edge	 joining	 two	vertices	 in	{v4,	v5,	v6},	 then	K6
contains	a	red	C4,	a	contradiction.	Thus	the	subgraph	induced	by	{v4,	v5,
v6}	is	a	blue	K3	as	shown	in	Figure	32(c).	However,	then	this	produces	a
blue	C4,	a	contradiction.

11.15	Proof.	Let	p	=	r(Ks,	Kt)	and	let	G	=	Kp	−	1	Now	let	there	be	given	red-blue
coloring	 of	 G.	 Furthermore,	 let	 H	 be	 the	 graph	 obtained	 from	 G	 by
adding	a	new	vertex	v	and	joining	v	to	every	vertex	of	G	by	a	red	edge.
Then	H	=	Kp.	Since	p	=	r(Ks,	Kt),	it	follows	that	H	has	a	red	Ks	or	a	blue
Kt.	If	H	has	a	blue	Kt,	then	G	contains	a	blue	Kt	and	therefore	a	blue	Kt	−
1.	Otherwise,	H	contains	a	red	Ks.	If	the	red	Ks	does	not	contain	v,	then	G
contains	a	red	Ks	and	therefore	a	red	Ks	−	1.	If	the	red	Ks	in	H	contain	v,
then	G	contains	a	red	Ks	−	1.



11.19	(a)	The	graph	G	=	K3,	3,	4,	which	has	size	33.

(b)	The	smallest	such	positive	integer	m	is	33	+	1	=	34.

11.21	T5,	1	=	 5,	T7,	2	=	K3,	4,	T6,	3	=	K2,	2,	2,	T6,	4	=	K1,	1,	2,	2,	T5,	5	=	K5.

11.23	Hint:	1+	 k(n	−	1)/2 .

11.25	The	smallest	positive	integer	m	for	which	every	graph	of	order	n	≥	2	and
size	m	contains	a	Hamiltonian	path	is	 .

Proof.	First	observe	that	the	disconnected	graph	Kn	−	1	 	K1	has	order	n
and	size	 	but	contains	no	Hamiltonian	path.	Next	we	show	that	every
graph	of	order	n	and	size	 	+	1	has	a	Hamiltonian	path.	Let	G	be	such
a	graph	and	let	H	=	G	+	K1,	where	H	is	obtained	by	adding	a	vertex	v	to	G
and	 joining	 v	 to	 every	 vertex	 of	G.	 Then	H	 has	 order	 n	 +	 1	 and	 size	

.	By	Theorem	11.18,	H	has	a	Hamiltonian	cycle
C.	Deleting	v	from	C	produces	a	Hamiltonian	path	in	G.



Chapter	12:	Distance

12.1	rad(G)	=	diam(G)	=	5	and	Cen(G)	=	G.

12.3	Note	that	rad(Ks,	t)	=	1	if	s	=	1	and	rad(Ks,	t)	=	2	if	s	≥	2,	while	diam(Ks,	t)
=	1	if	t	=	1	and	diam(Ks,	t)	=	2	if	t	≥	2.	Thus	Cen(Ks,	t)	=	K1	if	s	=	1	and	t
≥	2	and	Cen(Ks,	t)	=	Ks,	t	otherwise.

12.5	Consider	the	graph	G4	in	Figure	12.3.

12.7	(a)	Hint:	Let	v	 	V(G)	such	that	e(v)	=	diam(G).	Fir	each	i	with	0	≤	i	≤	2,
let	Si	=	{u	 	V(G)	:	d(v,	u)	=	i}	and	let	S3	=	{u	 	V(G)	:	d(v,	u)	≥	3}.	Then
{S0,	S1,	S2,	S3}	is	a	partition	of	V(G).	Complete	the	proof	by	showing	that
d 	(x,	y)	≤	3	for	all	x,	y	 	V(G).

(b)	Let	G	=	P4.

12.9	Proof.	 Assume,	without	 loss	 of	 generality,	 that	 e(u)	 ≥	 e(v).	 Let	 x	 be	 a
vertex	that	is	farthest	from	u.	So	d(u,	x)	=	e(u).	By	the	triangle	inequality,

Hence	e(u)	≤	d(u,	v)	+	e(v),	which	implies	 that	0	≤	e(u)	−	e(v)	≤	d(u,	v).
Therefore,	|e(u)	−	e(v)|	≤	d(u,	v).

12.11	Proof.	Let	x,	y	 	V(G)	such	that	e(x)	=	rad	G	and	e(y)	=	diam	G	and	let	P
=(x	=	u0,	u1,	u2,	…,	ua	=	y)	be	an	x	−	y	path.	By	Theorem	12.2,	 |e(uj)	−
e(uj+	1)|	≤	1	for	0	≤	j	≤	a	−	1.	Let	i	be	the	greatest	integer	with	0	≤	i	≤	a	−
1	such	that	e(ui)	<	k.	Therefore,	e(ui)	≤	k	−	1	and	e(ui	+	1)	≥	k.	Thus	e(ui	+
1)	−	e(ui)	≥	1.	Since	e(ui	+	1)	−	e(ui)	≤	1	by	Theorem	12.2,	it	follows	that
e(ui	+	1)	−	e(ui)	=	1	and	so	e(ui	+	1)	=	1	+	e(ui)	=	k.

12.13	(a)	Proof.	Let	v	be	a	vertex	of	T′	and	suppose	that	eT	(v)	=	k.	Let	u	be	a
vertex	of	T	such	that	d(v,	u)	=	k.	Necessarily,	u	is	an	end-vertex	of	T,
for	otherwise	the	v	−	u	path	in	T	could	be	extended	to	a	longer	path	in
T,	contradicting	the	fact	that	eT	(v)	=	k.	So	eT,	(v)	=	k	−	1.	Therefore,	a
vertex	 of	 minimum	 eccentricity	 in	 T′	 is	 a	 vertex	 of	 minimum



eccentricity	in	T	and	so	Cen(T)	=	Cen(T′).

(b)	Hint:	Note	that	the	center	of	a	graph	G	lies	in	a	block	of	G	For	a	tree
T,	the	only	blocks	are	K1	and	K2.

(c)	 Hint:	 Observe	 that	 if	 the	 end-vertices	 of	 a	 tree	 T	 are	 removed,
producing	a	tree	T′,	then	diam	T	′	=	diam	T	−	2.

12.15	Per(G)	=	G

12.17	Per(Ks,	t)	=	 t	if	s	=	1	and	t	≥	2,	while	Per(Ks,	t)	=	Ks,	t	otherwise.

12.19	Consider	P9	=	(v1,	v2,	…,	v9)	and	let	v	=	v3.

12.21	Hint:	No.

12.23	 Hint:	 If	 G	 is	 self-centered,	 then	 Per(G)	 =	 G.	 For	 the	 converse,	 use
Theorem	12.7	to	show	that	e(v)	=	2	for	every	vertex	v	of	G.

12.25	Hint:	No.

12.27	See	Figure	33.

Figure	33:	The	graph	G	in	Exercise	12.27

12.31	Hint:	Let	V(G)	=	{u1,	u2,	…,	un}	and	let	G′	be	the	graph	obtained	from	G
by	adding	n	vertices	v1,	v2,	…,	vn	and	joining	each	vi	to	ui	for	1	≤	i	≤	n.
Let	P	and	Q	be	two	copies	of	the	path	P5,	where	P	=	(x1,	x2,	…,	x5)	and
Q	=	(y1,	y2,	…,	y5).	Let	H	be	 the	graph	obtained	from	G	 ′,	P	and	Q	by
joining	 each	 end-vertex	 of	 P	 and	Q	 to	 every	 vertex	 of	G.	 Show	 that
Cen(H)	=	Int(H)	=	G.



Chapter	13:	Domination

13.1	(a)	γ(G)	=	3.	(b)	γo	(G)=	4.

13.3	For	n	≥	2,	γ(Kn)	=	1,	γ(Pn)	=	 n/3 ,	γ(Ks,	t)	=	1	if	min{s,	t}	=	1	and	γ(Ks,	t)
=	2	if	min{s,	t}	≥	2,	γ(Q3)	=	2,	γ(PG)	=	3.	For	n	≥	2,	γo	(Kn)	=	2	and

γo	(Kr,	s)	=	2,	γo	(Q3)	=	3	and	γo	(PG)	=	4.

13.5	(a)	Let	G	=	C4	=	(u,	x,	v,	y,	u).	Then	S	=	{u,	v}	is	a	minimum	dominating
set	for	G,	where	N(x)	 	S	=	S	and	N(y)	 S	=	S.

(b)	Hint:	Let	n	=	2k	+	1,	where	k	≥	1	and	let	G	be	the	graph	obtained	by
subdividing	each	edge	of	K1,	k.	Then	v(G)	=	k.

13.7	Hint:	Let	G	be	the	graph	obtained	from	Kn	−	k	with	V(Kn	−	k)	=	{v1,	v2,	…,
vn	−	k}	by	adding	k	new	vertices	u1,	u2,	…,	uk	and	k	new	edges	ui	vi	for	1
≤	i	≤	k.	Then	G	is	a	connected	graph	of	order	n	with	γ(G)	=	k.

13.9	Hint:	For	each	v	 	S,	the	vertex	v	is	not	dominated	by	any	vertex	in	S	−	v
and	 so	 S	 −	 v	 is	 not	 a	 dominating	 set	 for	 G.	 Thus	 S	 is	 necessarily	 a
minimal	dominating	set.	But	S	is	not	necessarily	a	minimum	dominating
set.	For	example,	let	G	=	C6	=	(v1,	v2,	…,	v6,	v1)	and	let	S	=	{v1,	v3,	v5}.

13.11	 (a)	Proof.	 The	 lower	 bound	 follows	 immediately	 from	 the	 observation
that	if	γ(G)	=	1,	then	γ( )	≥	2.	It	remains	to	verify	the	upper	bound.	If
G	has	an	isolated	vertex,	then	γ(G)	≤	n	and	γ( )	=	1;	while	if	 	has
an	isolated	vertex,	then	γ( )	≤	n	and	γ(G)	=	1.	So	in	these	cases,	γ(G)
+	γ( )	≤	n	+	1.	If	neither	G	nor	 	has	an	isolated	vertex,	then	γ(G)	≤
n/2	and	γ(G)	≤	n/2	by	Corollary	13.5	and	so	γ(G)	+	γ( )	≤	n.

(b)	Let	G	=	K1,	n	−	1,	where	n	≥	2.

(c)	Let	G	=	 n.



13.13	For	n	>	k	≥	2,	let	G	be	the	graph	obtained	from	Pk+	2	=	(v0,	v1,	v2,	…,	γk	+
1)	by	adding	k	new	vertices	u1,	u2,	…,	uk	and	k	new	edges	uivi	for	1	≤	i	≤
k.	Then	G	is	a	connected	graph	without	isolated	vertices	for	which	γ(G)	=
γo	(G)	=	k.

13.15	Let	G	be	the	graph	obtained	from	the	4-cycle	(v1,	v2,	v3,	v4,	v1)	by	adding
the	vertices	u1	and	u3	and	joining	ui	and	vi	for	i	=	1,	3.	Then	γ(G)	=	2	and
γo(G)	=	3.
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Guthrie,	Francis	260
Guthrie,	Frederick	260
	
Hadamard,	Jaques	322
Hahn,	Hans	126
Haken,	Wolfgang	259,	265-267
Hakimi,	S.	Louis	44
Hale,	William	352
Hall,	Philip	185,	187,	264
Hamilton,	William	Rowan	144-145,	260-261
Harary,	Frank	39,	120,	158-159,	330,	381
Hausdorff,	Felix	126
Havel,	Václav	44
Haynes,	Teresa	362
Heawood,	Percy	John	262-264,	289-292
Hedetniemi,	Stephen	153,	330-331,	362,	370
Heesch,	Heinrich	265-266
Hell,	Pavol	96
Hierholzer,	Carl	138
Hoffman,	Frederick	381
Holland,	John	330
	
Jacobi,	Carl	210



Jarnik,	Vojt ch	98
Jordan,	Camille	126
	
Kalinin,	Mikhail	136
Kelly,	Paul	J.	41,	78,	253-254
Kempe,	Alfred	Bray	222,	262-265,	267,	286,	289-291
Kirchhoff,	Gustav	104,	221
Kirkman,	Thomas	Penyngton	145,	205,	209,	211
Klein,	Esther	190,	310
Klein,	Felix	70,	221
Koch,	John	266
König,	Dénes	40,	71,	73,	126-127,	156-157,	188-190,	286
Kotzig,	Anton	212
Kruskal,	Joseph	Bernard	96,	98
Kuratowski,	Kazimierz	78,	234,	236
	
Lagrange,	Joseph-Louis	69
Lehmer,	Derrick	325
Lovász,	László	277
Loyd,	Sr.,	Sam	229
Lyndon,	Roger	96
	
Mac	Lane,	Saunders	264
Mantel,	Willem	308-309
May,	Kenneth	260
Mayer,	Jean	265
Menger,	Karl	126-127
Milgram,	Stanley	325
Minkowski,	Hermann	156
Möbius,	August	268
Moon,	John	W.	103
Mycielski,	Jan	276
	
Nash,	John	157
	
Ore,	Oystein	146,	158-159,	265,	362
	
Peano,	Giuseppe	126
Petersen,	Julius	198-199,	201,	220-222,	285
Poincaré,	Jules	Henri	264
Pólya,	George	322
Pósa,	Lajos	150
Prim,	Robert	Clay	98
	
Rado,	Richard	72,	315,	318
Ramsey,	Frank	Plumpton	297-298
Rashidi,	Reza	373
Ray-Chaudhuri,	Dijen	206
Rédei,	László	171,	173
Ringel,	Gerhard	211-212,	247,	292



Robbins,	Herbert	E.	168
Robertson,	Neil	251,	267,	277
Rosa,	Alexander	213,	225
Russell,	Bertrand	297
	
Sanders,	Daniel	P.	267
Schossow,	Fredrick	217
Schur,	Issai	72
Selberg,	Atle	322-323
Seymour,	Paul	251,	267,	277
Sherwani,	Naveed	373
Shimamoto,	Yoshio	266
Slater,	Peter	342,	362
Smith,	Cedric	R.	198
Smith,	Henry	262,	289
Sós,	Vera	322
Stanton,	Ralph	G.	198,	382
Steiner,	Jakob	210-211
Stemple,	Joel	265
Stone,	Arthur	198
Straus,	Ernst	324
Sutner,	Klaus	379
Swart,	Edward	266
Sylvester,	James	Joseph	221,	261-262,	267
Syslo,	Maciej	334
Szekeres,	George	190,	309-310
	
Tait,	Frederick	Guthrie	263
Tait,	Peter	Guthrie	199,	222,	263-264,	286-288
Teller,	Edward	78
Temple,	Frederick	264
Thomas,	Robin	267,	277
Tietze,	Heinrich	269
Turán,	Paul	156,	190,	309-310,	321-322
Turing,	Alan	198
Tutte,	William	T.	159,	197-198,	251,	266-267,	288,	382
	
Ulam,	Stanislaw	M.	78-79
	
Veblen,	Oswald	157
Vizing,	Vadim	G.	282
von	Neumann,	John	78
Voxman,	William	316
	
Wagner,	Klaus	237,	250
Wells,	David	50-51
Whitehead,	Alfred	North	297
Whitney,	Hassler	118,	127,	168,	198,	266
Wielandt,	Helmut	72
Wilf,	Herbert	168
Wilson,	Richard	206



Wordsworth,	Willian	144
Wylie,	Shaun	198
	
Yellen,	Jay	382
Youngs,	J.W.T.	(Ted)	247,	292
	
Zhang,	Ping	382
Zykov,	Alexander	A.	158-159,	282



Mathematical	Terms

Abelian	group	69
Achromatic

edge	labeling	131
index	131

Acyclic	graph	87
Adjacency	matrix	48
Adjacent

edges	9
vertices	3

Adjacent
from	27,	162
to	27,	162

Arc	27,	162
Automorphism	66
Automorphism	group	67
	
Between	two	vertices	338
Bi-graceful

graph	226
labeling	225

Bipartite	graph	21
Complete	23

n-Bit	string	24
Block	112
Blue	F	298
Boundary

of	a	region	230
vertex	of	a	graph	336
vertex	of	a	vertex	336

Bridge	86
Brooks’	Theorem	275
	
g-Cage	222
Cartesian	product	of	graphs	24
Caterpillar	88
Cayley	color	digraph	70
Cayley’s	Tree	Formula	103
2-Cell	244

embedding	244
Center	of	a	graph	328
Central	vertex	328
Channel	Assignment	Problem	352
k-Chromatic	268
Chromatic	index	281
Chromatic	number	268
Circuit



in	a	digraph	163
in	a	graph	12-13

Classic	Ramsey	number	302
Clique	272
Clique	number	272
Closed	neighborhood	361
Closed	walk	11,	163
Closure	of	a	graph	148
Code	341
Cofactor	104
Co-graceful

graph	226
labeling	226

Collaboration	graph	323
Color	class	269,	372
Color	sum	294
Color-preserving	isomorphism	373
k-Colorable	268
Coloring	267-268,	274

Edge	281
F-Coloring	374
k-Coloring	268,	293
Complement	of	a	graph	20
Complementary	labeling	211,	355
Complete

bipartite	graph	23
graph	19
multipartite	graph	23
k-partite	graph	23
vertex	337

Component	14
Connected

digraph	163
graph	13
Strongly	163
vertices	13
Weakly	163

k-Connected	graph	116
Connectivity	115

Edge-	116
Contracting	an	edge	249
Contraction	249

Edge	249
Converse	of	a	digraph	168
Cost	of	an	edge	96
Cover	189
Cube	of	a	graph	120
3-Cube	24
n-Cube	24
Cubic

graph	38
map	287



Cut-vertex	108
Cycle

in	a	digraph	163
in	a	graph	13,	19

k-Cycle	13
Cyclic	decomposition	210
Cyclic	factorization	200
Cyclic	group	70
	
Deck	79
Decomposable	209
H-Decomposable	209
Decomposition	209
H-Decomposition	209
Deficiency	253

Maximum	253
Total	253

Degree	of	a	vertex
in	a	graph	31
in	a	multigraph	36
in	a	pseudograph	36

Degree	sequence	43
Detour	346

diameter	347
distance	346
eccentricity	347
radius	347

Diameter
of	a	digraph	349
of	a	graph	16,	328

Digraph	27,	162
Dihedral	group	70
Directed

circuit	163
cycle	163
distance	163,	348
edge	27,	162
graph	27
path	163
trail	162
walk	162

Disconnected	graph	13
Disjoint	collection	of	paths	128
Distance

in	a	digraph	163
in	a	graph	15,	328

Distance-labeled	graph	130
Distance	similar	vertices	344
Dominate	361
Dominating	set	361
F-Dominating	set	374
Domination	361



Domination	number	362
F-Domination	number	374
Double	star	88
Dual	267
	
Eccentric

graph	335
subgraph	335

Eccentric	vertex
of	a	graph	334
of	a	vertex	334

Eccentricity	328,	349
Edge	2

set	2
Edge	chromatic	number	281
Edge	coloring	281
k-Edge	coloring	281
k-Edge-connected	graph	117
Edge-connectivity	116
Edge	contraction	249
Edge	cover	189
Edge	covering	number	189
Edge-cut	116
Edge	independence	number	189
Edge-induced	subgraph	10
Edge	rotation	357
Embedded	241,	243,	253

Homogeneously	255
Uniformly	255

Embedding	a	graph
in	a	graph	253
in	the	plane	241

Empty	graph	20
End-vertex	31
Equal

graphs	2
walks	48

Erd s	number	323
Erd s-Bacon	number	325
Euler	Identity	231
Eulerian

digraph	165
graph	134

Eulerian	circuit
in	a	digraph	165
in	a	graph	134

Eulerian	trail	134
Euler’s	Polyhedral	Formula	50
Even

component	195
cycle	13
vertex	33



Exterior	region	229
Extreme	vertex	337
	
F-coloring	374
F-degree	51
F-irregular	52
F-regular	52
F-domination	374
F-domination	number	374
Factor	204
1-Factor	194
2-Factor	201
Factorable	204

1-Factorable	199
2-Factorable	201
F-factorable	204

Factored	199
1-Factorization	199
Fibonacci	numbers	2
First	Theorem

of	Digraph	Theory	162
of	Graph	Theory	31-32

Five	Color	Theorem	290
Forest	88
Four	Color

Conjecture	264
Problem	261
Theorem	268

Frame	255
Framing	number	255
Frucht’s	Theorem	73
	
Gallai	Identities	191
Generating	set	68
Generator	of	a	group	68
Genus

of	a	graph	243
of	a	surface	243

Geodesic
in	a	digraph	163,	348
in	a	graph	15,	328

Girth	222
Graceful

graph	212
labeling	211

Graph	2
Graph	Minor	Theorem	251
Graphical	sequence	44
Greatest	common	subgraph	357
Grötzsch	graph	276
Group	69

Automorphism	67



Grundy
labeling	131
index	131

	
Hall’s	condition	185
Hamiltonian

digraph	171
graph	141

Hamiltonian	cycle
in	a	digraph	171
in	a	graph	141

Hamiltonian-factorable	202
Hamiltonian	factorization	202
Hamiltonian	number	153

Upper	154
Hamiltonian	path

in	a	digraph	171
in	a	graph	141

Hamiltonian	walk	152
Harary	graphs	39,	120
Heawood	graph	224
Heawood	Map	Coloring	Theorem	292
Homogeneously	embedded	255
Hypercube	24
	
Icosian	Game	144
Identifying	adjacent	vertices	249
Incidence	matrix	48
Incident	9,	27,	162
Indegree	36,	162
Independence	number	191,	269
Independent	set

of	edges	184
of	vertices	191,	269

Induced	by	a	set
of	edges	10
of	vertices	10

Induced	subgraph	10
Instant	Insanity	214
Interior	338

vertex	338
Internal	vertex	124
Internally	disjoint	paths	124,	128
Irregular	graph	50-51
F-Irregular	graph	52
Isolated	vertex	31
Isomorphic

digraphs	61,	169
graphs	56
groups	69

Isomorphism
(for	digraphs)	169



(for	graphs)	56
(for	stratified	graphs)	373

Isomorphism	classes	64
	
Join	of	two	graphs	24
Joining	two	vertices	9
	
Kempe	chain	262
Kevin	Bacon	Game	324
Kevin	Bacon	number	324
Kirkman	triple	system	206
Kirkman’s	Schoolgirl	Problem	205
Klein	four	group	70
König’s	Theorem	286
Königsberg	Bridge	Problem	136
Kruskal’s	Algorithm	96
Kuratowski’s	Theorem	236
	
Labeled	graph	3
L(2,	1)-Labeling	355
Labeling	(at	distance	2)	355
Leaf	31
Length	of	a	walk	11,	162
Lights	Out	Puzzle	379
Line	2
Locating

code	341
set	342

Location	number	342
Loop	27
	
Marriage	Theorem	188
Matches	184
Matching	184

Maximum	189
Perfect	189,	194

Matrix
Adjacency	48
Incidence	48

Matrix	Tree	Theorem	104
Maximal	planar	graph	233
Maximum

coloring	(of	edges)	315
deficiency	253
degree	31
independent	set	of	vertices	191,	269
matching	189

McGee	graph	224
Menger’s	Theorem	124
Metric	328

basis	342



dimension	342
space	328

Minimal
dominating	set	366
edge-cut	116

Minimally
nonembeddable	251
nonplanar	251
Minimum
coloring	268
coloring	of	(edges)	315
F-coloring	374
degree	31
dominating	set	361
F-dominating	set	374
edge	cover	189
edge-cut	116
locating	set	342
radio	k-coloring	353
radio	labeling	355
separating	set	124
spanning	tree	96
Spanning	Tree	Problem	96
total	dominating	set	368
vertex	cover	191
vertex-cut	115

Minor	250
Modular

chromatic	number	294
k-coloring	294

Monochromatic	F	315
Monochromatic	Ramsey	number	315
Multigraph	26
	
Neighbor	9
Neighborhood	31,	185,	361

closed	361
open	361

Node	2
Non-isomorphic	graphs	56
Nonplanar	graph	229
Nonseparable	graph	111
Nontrivial	graph	3
	
Odd

component	195
cycle	13
vertex	33

Open	neighborhood	361
Open	walk	11,	163
Orbit	of	a	graph	68
Order	of	a	graph	3



Orientation	28,	162
Oriented	graph	27,	162
Outdegree	36,	162
	
Parallel	edges	26
Parameter	31
k-Partite	graph	23

Complete	23
Partite	sets	21,	23
Party	Theorem	51
Path

in	a	digraph	163
in	a	graph	12-13,	19

Perfect	graph	277
Perfect	Graph	Theorem	277

Strong	277
Perfect	matching	189,	194
Peripheral	vertex	333
Periphery	333
Petersen	graph	39,	142-144,	199-200,	221-224
Petersen’s	Theorem	198
Planar	graph	228

Maximal	233
Plane	graph	229
Point	2
Pouring	180
kth	Power	of	a	graph	120
Prim’s	Algorithm	98
Problem	of	the

Five	Palaces	269
Five	Princes	269

Proper
coloring	267
edge	labeling	130
path	130
subgraph	10

Pseudograph	26
	
Radio

k-chromatic	number	353
k-coloring	353
labeling	355
number	355

Radius
of	a	digraph	349
of	a	graph	328

Rainbow	F	315
Rainbow	Ramsey	number	316,	318
k-Rainbow	Ramsey	number	319
Ramsey	number	299,	302
Ramsey’s	Theorem	298
Recognizable	parameter/property	76



Reconstructible	graph	78
Reconstruction

Conjecture	78
Problem	79

Red	F	298
Red-blue	coloring	298

in	a	stratified	graph	373
C-Reducibility	266
D-Reducibility	265
Reducible	configuration	265
Region	229
Regular	graph	38
F-Regular	graph	52
r-Regular	graph	38
Regular	of	degree	r	38
Resolving	set	342
Root	of	a	tree	88
Rooted	tree	88
Rotated	357
Rotation	distance	357

graph	358
	
Self-centered	graph	328
Self-complementary	graph	59
Separating

set	of	vertices	124
two	vertices	124

Shadow
graph	276
vertex	276

Sharpness	35
Similar	vertices	68
Simple	graph	2
Simplicial	vertex	337
Size	of	a	graph	3
Solution	of	a	deck	79
Spanning

subgraph	10
tree	95

Spine	of	a	caterpillar	88
Square	of	a	graph	120
Star	23

Double	88
Steiner	triple	system	209
Strata	372
Stratification	372
k-Stratification	372
Stratified	graph	372
k-Stratified	graph	372
Strong	digraph	163
Strong	Perfect	Graph	Theorem	277
Strongly	connected	digraph	163



Subdigraph	162
Subdivision

graph	of	a	graph	151
of	a	graph	236

Subgraph	10,	65
Edge-induced	10
Induced	10
Proper	10
Spanning	10

Subgroup	69
Surface	of	genus	k	243
Symmetric	digraph	162
Symmetric	group	69
Symmetric	property	of	distance	328
System	of	distinct	representatives	187-188
	
Tait	coloring	287
Three	Houses	and	Three	Utilities	Problem	229
Torus	241
Total

deficiency	253
dominating	set	367
domination	367

Total	domination	number	368
Tournament	169

of	paired	comparisons	176
Trail

in	a	digraph	162
in	a	graph	12-13

Transformed	by	an	edge	rotation	357
Transitive	tournament	170
Tree	87
Triangle	13
Triangle	inequality	for	distance	328
Triangle-free	graph	276
Triple	206,	209
Trivial

graph	3
walk	11

Turán	graph	311
Turán’s	Theorem	312
Tutte-Coxeter	graph	224
	
Unavoidable	set	of	reducible	configurations	264
Underlying	graph

of	a	digraph	163
of	a	multigraph	53

Uniformly	embedded	255
Union	of	graphs	14
Unlabeled	graph	3
Upper	Hamiltonian	number	154



	
Value

of	a	radio	k-coloring	353
of	a	radio	labeling	355

Vertex	(vertices)	2,	27,	162
set	2

Vertex-connectivity	115
Vertex	cover	191
Vertex	covering	number	191
Vertex-cut	115
Vertex	independence	number	191,	269
Vertex-transitive	graph	68
Vizing’s	Theorem	282
	
Wagner’s	Theorem	250
Walk

in	a	digraph	162
in	a	graph	11

Weakly	connected	digraph	163
Weight

of	an	edge	96
of	a	subgraph	96

Weighted	graph	53
Word	graph	5



List	of	Symbols

Symbol Meaning Page
V,	V(G) vertex	set	of	G 2
E,	E(G) edge	set	of	G 2
G	=	H equal	graphs	G	and	H 2
H	 	G H	is	a	subgraph	of	G 10
G[S],	G[X] induced	or	edge-induced	subgraph 10

S G,	 X G induced	or	edge-induced	subgraph 10

G	−	e,	G	−	X deleting	edges	from	G 10
G	−	v,	G	−	U deleting	vertices	from	G 11
G	+	e adding	edge	e	to	G 11
k(G) number	of	components	of	G 14
G	 	H union	of	G	and	H 14
d(u,	v) distance	between	u	and	v 15
diam(G) diameter	of	G 16
Pn path	of	order	n 19
Cn cycle	of	order	n 19
Kn complete	graph	of	order	n 19

complement	of	G 20

n empty	graph	of	order	n 20
Ks,	t complete	bipartite	graph 23
Kn1,	n2,	…,	nk complete	k-partite	graph 23
G	+	H join	of	G	and	H 24
G	×	H Cartesian	product	of	G	and	H 24
G	 	H Cartesian	product	of	G	and	H 24
Qn n-cube 24
deg	v degree	of	a	vertex	v 31
N(v) neighborhood	of	v 31
(G) minimum	degree	of	G 31

Δ(G) maximum	degree	of	G 31
od	v outdegree	of	v 36
id	v indegree	of	v 36
Hr,	n Harary	graph 39
A adjacency	matrix 48
F	deg	v F-degree	of	v 51



G	≅	H G	is	isomorphic	to	H 56
G	 	H G	is	not	isomorphic	to	H 56
Aut(G) automorphism	group	of	G 67
Sn symmetric	group 69
w(e) weight	of	an	edge	e 96
w(H) weight	of	a	subgraph	H 96
k(G) connectivity	of	G 115
λ(G) edge-connectivity	of	G 116

Gk kth	power	of	G 120
Γ′(T) Grundy	index	of	T 131
ψ′(T) Achromatic	index	of	T 131
PG Petersen	graph 143
C(G) closure	of	G 148
h(G) length	of	a	Hamiltonian	walk	in	G 153

h*(G) Hamiltonian	number	of	G 153

h+(G) upper	Hamiltonian	number	of	G 154

(u,	v) directed	distance	from	u	to	v 163
′(G) edge	independence	number	of	G 189
′(G) edge	covering	number	of	G 189
(G) independence	number	of	G 191
(G) vertex	covering	number	of	G 191
ko(G) number	of	odd	components	of	G 195
Sk surface	of	genus	k 243
γ(G) genus	of	G 243
fr(G) framing	number	of	G 255
(G) chromatic	number	of	G 268
(G) clique	number	of	G 272

S(G) shadow	graph	of	G 276
′(G) chromatic	index	of	G 281
(Sk) chromatic	number	of	Sk 291

σ(v) color	sum	of	vertex	v 294
mc(G) modular	chromatic	number	of	G 294
r(F1,	F2) Ramsey	number	of	F1	and	F2 299
r(s,	t) Ramsey	number	of	Ks	and	Kt 302
Tn,	k Turan	graph 311
mr(F,	H) monochromatic	Ramsey	number	of	F	and	H 315
RR(F) rainbow	Ramsey	number	of	F 316
RR(F1,	F2) rainbow	Ramsey	number	of	F1	and	F2 318
RRk(F1,	F2) k-Ramsey	number	of	F1	and	F2 319
e(v) eccentricity	of	a	vertex	v 328
rad(G) radius	of	G 328
Cen(G) center	of	G 328
Per(G) periphery	of	G 333



Ecc(G) eccentric	subgraph	of	G 335
Int(G) interior	of	G 338

cW(v) locating	code	of	a	vertex	v	with	respect	to	W 342
loc(G) location	number	of	G 342
D(u,	v) detour	distance	between	u	and	v 346
eD(v) detour	eccentricity	of	v 347
radD(G) detour	radius	of	G 347
diamD(G) detour	diameter	of	G 347
rck(c) value	of	a	radio	k-coloring	c 353
rck(G) radio	k-chromatic	number	of	G 353
rn(c) value	of	a	radio	labeling	c 355
rn(G) radio	number	of	G 355

complementary	labeling	of	c 355
d(G,	H) rotation	distance	between	G	and	H 357
D(S) rotation	distance	graph	of	a	set	S 358
N[v] closed	neighborhood	of	v 361
γ(G) domination	number	of	G 362
γt(G) total	domination	number	of	G 368
γF	(G) F-domination	number	of	G 374
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