This article was downloaded by: [SANIL SHANKER KP]

On: 20 September 2011, At: 22:08

Publisher: Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered
office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Applied Artificial Intelligence

Publication details, including instructions for authors and
subscription information:

AP FD . . .
,15-[-.":[; A http://www.tandfonline.com/loi/uaai20
HT_.L I.EH"

A NOTE ON TWO APPLICATIONS OF
LOGICAL MATCHING STRATEGY

sanil Shanker KP ? , Elizabeth Sherly ® & Jim Austin ©

Department of Computer Science, University of Kerala, Kerala,
India

® Indian Institute of Information Technology and Management —
Kerala, Kerala, India

¢ Department of Computer Science, University of York, York, UK

Available online: 20 Sep 2011

To cite this article: Sanil Shanker KP, Elizabeth Sherly & Jim Austin (2011): A NOTE ON TWO
APPLICATIONS OF LOGICAL MATCHING STRATEGY, Applied Artificial Intelligence, 25:8, 708-720

To link to this article: http://dx.doi.org/10.1080/08839514.2011.606663

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: http://www.tandfonline.com/page/terms-and-conditions

This article may be used for research, teaching and private study purposes. Any
substantial or systematic reproduction, re-distribution, re-selling, loan, sub-licensing,
systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation
that the contents will be complete or accurate or up to date. The accuracy of any
instructions, formulae and drug doses should be independently verified with primary
sources. The publisher shall not be liable for any loss, actions, claims, proceedings,
demand or costs or damages whatsoever or howsoever caused arising directly or indirectly
in connection with or arising out of the use of this material.

http://www.tandfonline.com/loi/uaai20
http://dx.doi.org/10.1080/08839514.2011.606663
http://www.tandfonline.com/page/terms-and-conditions

Downloaded by [SANIL SHANKER KP] at 22:08 20 September 2011

Applied Artificial Intelligence, 25:708-720, 2011 .
Copyright © 2011 Taylor & Francis Group, LLC e If?fl?:ng‘cirﬁnm
ISSN: 0883-9514 print/1087-6545 online

DOI: 10.1080,/08839514.2011.606663

A NOTE ON TWO APPLICATIONS OF LOGICAL
MATCHING STRATEGY

Sanil Shanker KP', Elizabeth Sherly?, and Jim Austin®

lDe[mn‘ment of Computer Science, University of Kerala, Kerala, India

2Indian Institute of Information Technology and Management — Kerala, Kerala, India
Department of Computer Science, University of York, York, UK

O This paper proposes Logical Matching Strategy for sequential pattern matching. We show the two
real-world applications of the method: (1) locate repeating sequential pattern and (2) alignment-free
comparison of sequential pattern of finite length using fuzzy membership values that generate auto-
matically from the number of matches and mismatches. The results show the utility of the method by
analyzing DNA sequences taken from the National Center for Biotechnology Information (NCBI)
databank. The Logical Matching Strategy can possibly be applied to develop a method of research
in sequental pattern matching.

INTRODUCTION

Sequential pattern matching algorithms devised on the basis of an
alphabet set and pattern length are different from one another mainly
because of the shifting procedure and the periodicity (Klésgen and Zytkow
2002; Laxman and Sastry 2006). The proposed Logical Matching Strategy
for sequential pattern matching is based on the concept of string matching.
The following reviews some of these methods. In the Brute Force method,
the string matching algorithm compares a pattern character by character in
each and every location of the text. Alternatively, it is possible to solve the
problems of string matching with the help of finite automata.

For example, in Aho and Corasick (1975), a string matching automation
is built from the pattern as a preprocessing step before matching. The text is
then scanned through the automation to find occurrences of the pattern in
the text. The Knuth-Morris-Pratt algorithm avoids back-tracking on the text

Sanil Shanker KP would like to thank European Research and Educational Collaboration with Asia
for financially supporting this research.

Address correspondence to Sanil Shanker KP, Department of Computer Science, University of Ker-
ala, Thiruvananthapuram, Kerala 695581, India. E-mail: sanilshankerkp@gmail.com

Downloaded by [SANIL SHANKER KP] at 22:08 20 September 2011

Two Applications of Logical Matching Strategy 709

when a mismatch occurs by exploiting the knowledge of the matched
substring in the text prior to the mismatch (Knuth, Morris, and Pratt
1977). The main peculiarity of the Boyer-Moore algorithm is that some of
the characters in the text can be skipped completely without comparing
them with the pattern, because it can be shown that they can never contrib-
ute to an occurrence of the pattern in the text (Boyer and Moore 1977). The
Horspool algorithm is effective when the alphabet size is large and the
length of the pattern is small, because the shift value is computed in the pre-
processing stage for all the characters in the alphabet set (Horspool 1980).

The designs of the preprocessing phase and searching phase determine
the efficiency of the sequential pattern matching algorithm. The characters
in the sequence pattern are preprocessed in the preprocessing phase. The
information from the preprocessing phase is used in the searching phase in
order to reduce the total number of character comparisons.

This paper presents a newly devised algorithm based on logical matching
and we show two applications: (1) locate repeating sequential pattern and
(2) alignmentfree comparison of sequential pattern of finite length using
automatically generating fuzzy membership values (Norwich and Turksen
1984; Dombi 1990; Medasani, Kim, and Krishnapuram 1998; Bezdek et al.
1999). The paper points out the fundamental difference of the method with
the global alignment using dynamic programming (Eddy 2004).

Preliminaries

Alphabet: Symbols or characters are considered to be the basic elemen-
tal building blocks in string matching. An alphabet is a specific set of sym-
bols. It is usually a finite set. For instance, X = {a, b, ¢, d, ¢} is an alphabet
containing symbols a, b, ¢, d and e.

String: A string is a sequence of instances of symbols or characters over
a finite alphabet 2. For instance, ‘aabaeada’ is a string over the alphabet
¥ ={a, b, ¢, d, e}. The length of the string S is a number of instances of
the symbols or number of characters in the string. The string S may be
represented as S=s; s $3...... Sm» Where s; is an instance of a symbol, or
character and m is the length of the string S and is represented as |S].

Exact String Matching Problem: Exact string matching is the technique of
finding the occurrence of a particular string, called a pattern, in another
string called the text. Let P=p; ps...p, and T=1{; {,... ¢, be the pattern
and the text of lengths m and n respectively over the same finite alphabet
2 such that m < n. We say that the pattern P occurs in text 7T at the text
location k, 1 <k<mn—m. For example: Let T= ‘cbbababaababacaba’ and
P="‘baba’ be the text and pattern over the finite alphabet X ={a, b, c}.
Here, the pattern ‘baba’ occurs in text locations 3, 5, and 10, respectively.

Downloaded by [SANIL SHANKER KP] at 22:08 20 September 2011

710 S. Shanker KP et al.

Fuzzy Membership Function: If Xis a collection of objects, then a fuzzy set
Ain X is a set of ordered pairs: A={(x, us(x)): x€ X, us(x): X—[0,11}
where p,(.) is called the membership function of A, and is defined as a
function from Xinto [0,1].

THE LOGICAL MATCHING STRATEGY

Definition: The sequence is arranged so that each character coincides
with its corresponding index and then proceeds to match logically the
indices of the pattern with those of the text.

APPLICATIONS IN THE CONTEXT OF REAL-WORLD PROBLEMS

We describe the method in the context of the real-world problem,
biological sequence pattern searching. This problem remains a computation-
ally difficult problem because the total number of sequences in the underly-
ing databases grows exponentially with the progress of research (Altschul
etal. 1994; Pevzner and Waterman 1995; Rigoutsos and Floratos 1998). Algo-
rithms devised for the comparison of molecular sequences are based on the
concept of string matching (Gusfield 1997). A substring of a text pattern may
exist either as tandem repeating or non-tandem repeating as represented in
(i) and (ii), respectively (Benson 1999; Mitra and Acharya 2003): (i)
GAAGAAGAA, (ii) GAAGGGAATCATGAA. Here, we proposed two applica-
tions of Logical Matching Strategy with sequence datum (see Figure 1).

Input(Sequential Text and Pattern)
Phase -1: Prefprocessing
(Generating Indices of Text and Pattern)
Phase -2
l. Locate Repeating Il. Alignment-free comparison of
Pattern Sequential Patterns

FIGURE 1 Two applications of Logical Matching Strategy.

l. Locate Repeating Sequential Pattern

Method
Let T=t; t5...t,and P=p; p>... p,, be two strings of lengths n and m,
respectively, from the same finite alphabet X such that m < n.

Phase 1. Generate indices of T'and P
Phase 2. Match the indices of P with the indices of T

Downloaded by [SANIL SHANKER KP] at 22:08 20 September 2011

Two Applications of Logical Matching Strategy 711

Simulation with Artificial Data

In this simulation, we demonstrate the proposed algorithm with arti-
ficial data, where the text is known data, and the pattern is the data to
be used as the search query.

Text = aaaagaagaagaagaagaagaagaagaagaaaataaagaaaagttagccg

Pattern=-gaa n=50, m=3

Phase 1. Generate indices of Text and Pattern.

Shift the Text (see Figure 2) and Pattern (see Figure 3) from right to
left so that each character coincides with its corresponding index in its
respective column, and arrange the characters with respect to the corre-
sponding indices.

Text=<A(1,2,3,4,6,7,9, 10, 12, 13, 15, 16, 18, 19, 21, 22, 24, 25, 27,
28, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 46); T (34, 44, 45); G(5, 8, 11, 14,
17, 20, 23, 26, 29, 38, 43, 47, 50); C(48, 49)>

Pattern = <A(2, 3); G(1)>

Phase 2. Match the indices of Pattern with the indices of Text as
Indices of Text +— Characters of Text «+ Characters of Pattern < Indices
of Pattern

Characters Indices of Characters

of Pattern Pattern of Text Indices of Text
f i) f ‘
G 1) G (5, 8, 11, 14, 17, 20, 23, 26, 29, 38, 43, 47, 50)
A (2) A I, 5,%_ _6 7,9,10, 12,13, 15, 16, 18, 19, 21, 22, 24,
25,27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 46)
A (3) A 1,2,3,4,6,7,9,10, 12, 13, 15, 16, 18, 19, 21, 22, 24,
25,27, 28, 30, 31, 32, 33, 35, 36, 37, 39, 40, 41, 42, 46)

Here, the pattern (g, a, a) repeats in the positions (5, 6, 7), (8, 9, 10), (11,
12, 13), (14, 15, 16), (17, 18, 19), (20, 21, 22), (23, 24, 25), (26, 27, 28), (29,
30, 31) in a tandem way and (38, 39, 40) in a non-tandem way with respect
to the text (Figure 4).

Il. Alignment-Free Sequence Comparison

The alignment-free sequence comparison methods are still in the early
stage of development compared to alignment-based methods (Blaisdell
1986; Vinga and Almeida 2003). To compare the sequential patterns, we
compute the score using fuzzy membership values that generate automati-
cally from the number of matches and mismatches by Logical Matching
Strategy. The alignmentfree sequence comparison algorithm using Logical
Matching Strategy works as follows:

Downloaded by [SANIL SHANKER KP] at 22:08 20 September 2011

712 S. Shanker KP et al.

A T G C
50 *
49 *
48 *
47 *
46 *
45 *
44 *
43 *
42 *
4 *
40 *
39 *
38 *
37 *
36 *
35 *
34 *
33 *
32 *
31 *
30 *
29 *
28 *
27 *
26 *
25 *
24 *
23 *
22 *
21 *
20 *
19 *
18 *
17 *
16 *
15 *
14 *
13 *
12 *
" *
10 *
9 *
8 *
7 *
6 *
5 *
4 *
3 *
2 *
1 *

FIGURE 2 Text (Phase 1).

Method
Let T=t; t5...t, and P=p; ps...p, be Text and Pattern of lengths n
and m, respectively, where n> m.

Downloaded by [SANIL SHANKER KP] at 22:08 20 September 2011

Two Applications of Logical Matching Strategy 713

A T G C
3 *
2 *
1 *

FIGURE 3 Pattern (Phase 1).

Phase 1. Generate Indices of Text and Pattern.

Phase 2. Using Logical Matching Strategy, compute the number of
Matches (Text, Pattern) and Mismatches (Text, Pattern).

Compute score, S(Text, Pattern) =
Match in Text = Myaich(pattern) [Pattern] —Mismatch in Text =x

I‘Mismatch(Pattern) [Pattern] Wherea ”Match(Pattern) [Pattern] + MMiismatch (Pattern)
[Pattern] =1

(See Appendix)

Seql = C G A G A A C T G A A T G A T

= 3%
@
> 3k
o)

Seq2 = C

47|50

A %Y —
Al1]2]|3 4@7@1 2)[13 516@19 22|24)25)27)28/30)|31|32|33|35|36|37(39)40|41|42|4
9

>
S
=
&
w

/oo

10)|112 ((13)|15 [(16)|18 [19)| 21|22} 24 | 25) 27 | 28] 30@ 32|33|35(36|37 3941 424

FIGURE 4 Matching regions: patterns in the text.

Simulation with Artificial Data

We demonstrate the proposed method with two artificial sequences:
Seql <CGAGAACTGAATGAT> and Seq2 <CTAGAAGAGAACGAT>.

Downloaded by [SANIL SHANKER KP] at 22:08 20 September 2011

714 S. Shanker KP et al.

Phase 1. Generate indices of Seql and Seq2.

Seql = <A(S, 5,6, 10, 11, 14); Seq2= <A(3, 5, 6, 8, 10, 11, 14);

T(8, 12, 15); T(2, 15);
G(2, 4,9, 13); G(4, 7,9, 13);
c@1, 7> C(1, 12)>

Phase 2. Compute Match(Seql, Seq2) and Mismatch(Seql, Seq2) using
Logical Matching Strategy.

c 1 7 - 1st Match in Seql

T 8 12 15 - 1st Mismatch in Seql
A 3 5 6 10 11 14 - 2nd Match in Seql
G 2 4 9 13 - 3rd Match in Seql

A 3 B 6 10 11 14 - 4th Match in Seql

A 3 5 6 10 11 14 - 5th Match in Seql

G 2 4 9 13 - 2nd Mismatch in Seql
A: 3 5 6 10 11 14 - 3rd Mismatch in Seql
G 2 4 9 13 — 6th Match in Seql

A %3 5 6 10 11 14 — 7th Match in Seql
A3 5 6 10 11 14 - 8th Match in Seql

¢ o107 T — 4th Mismatch in Seql
G 2 4 9 13 — 9th Match in Seql

A %3 5 6 10 11 14 - 10th Match in Seql
T 8 12 15 " - 11th Match in Seql

Score =Match in Seql = (Match in Seq 2/Length of Seq2) -

MisMatch in Seql % (MisMatch in Seq2/Length of Seq2)

=Match in Seql # fmatch(seqz) [Seq2] —MisMatch in Seql s HUtismatch
(Seq2) [Seq2]

=11 (11/15) —4 % (4/15) =11%0.733 — 4% 0.266 ~ 7.

EXPERIMENTAL RESULTS

For testing the proposed method, the program has been written in C
language under Linux platform. (See Figures 5 and 6). The results
(Table 1) show the utility of the algorithm to locate exact tandem repeat
by analyzing DNA sequences of various sizes from real data (www.ncbi.nlm.
nih.gov). To evaluate the alignmentfree sequence comparison algorithm
using Logical Matching Strategy, the method was tested against DNA
sequences, the inputs have been taken from the Locus ACU90045 as com-
mon text and ACU90045, PAU90054, HSU90049, LPU90051, NAU90053,
AVU90046, DCU90047, LEU90050, DPU90048, MGU90052 as patterns
of common range 541-560 (20bp) from the NCBI databank and we
demonstrate the difference with the global alignment using dynamic
programming (Table 2).

Downloaded by [SANIL SHANKER KP] at 22:08 20 September 2011

Two Applications of Logical Matching Strategy 715

begin

intialize T and P withn « |T |,m « [P|
* Input: Sequence T and P */

/*Phase 1 */

forie Otom-1

generate (indices of P)

end for

for i« 0ton-1

generate (indices of T)

end for

/*Phase 2 */

for i< 0ton-1
match (indices of P) with (indices of T)
end for

end

FIGURE 5 Pseudocode: locate repeating pattern.

begin

initialize T and P withn « |T |, m « |P|
/* Input: Sequence T and P */

/*Phase 1 */

for i« 0tom-1

generate (indices of P)

end for

fori<0ton-1

generate (indices of T)

end for

/*Phase 2 */

fori< 0ton-1

compute Match (T, P) and Mismatch (T, P)
Score(T, P) « Match in Text* Muamenratemy[Pattem] - Mismatch in Text * Miuismatch¢panem)[P attern]
end for

end

FIGURE 6 Pseudocode: alignment-free comparison of sequential pattern.

(0¢¢ ‘665 ‘88%) £(98 ‘G8 ‘¥8) *(¢8 ‘68 ‘I8) (08 ‘6L ‘8L) *(LL ‘9L ‘GL)
1(90¢ ‘G0¢ F0%) (083 ‘6L3 (B2 6L ‘8L) “(14 0L ‘69) (89 ‘L9 99) (99 F9 ‘€9)
‘8L3) (953 ‘%93 ‘6G3) (G138 ‘P16 ‘618) (89 ‘19 ‘09) (6G ‘8¢ ‘LS) (96 ‘G FQ) (8¢ ‘B¢ ‘19)

1(608 ‘805 ‘L03) (46T 961 ‘G61) (141 (09 ‘6% ‘8F) (L¥ ‘OF ‘GF) ‘(b¥ ‘S¥ ‘&) ‘(1F ‘0% ‘6%) (dq09¢) 0291 1921 9SBISIP
‘0L ‘69T) (60T ‘80T ‘40T) (ST ‘I ‘IT) (8¢ ‘LE ‘9%) (g¢ F¢ ‘€¢) (3¢ ‘1§ ‘0%) (68 ‘83 ‘L3) w0y $$0000” AN ovD av Apauuay
(696 ‘8g¢ ‘£9¢) <(19¢ ‘09§ ‘6¥¢) “(0F¢
‘665 ‘86¢) (98¢ ‘¢8¢ Fe8) (FIE ‘GI¢ (I8T ‘081 ‘6L1)
B1¢) (80€ ‘L0E ‘908) “(8FT “L¥PT ‘OV1) *(8LT ‘LLT ‘9LT) “(GLT “PLI ‘SLT) “(BLT ‘1LT ‘OLI)
SGFL TR OPT) (91T ‘GIT “PIT) “(L6 ‘96 (691 ‘89T ‘L9T) (991 ‘G9T P91) “(£91 ‘@91 ‘191) (dq£98) ¥L1° " 1861
‘G6) (89 ‘29 ‘99) ‘(¥G ‘¢S ‘@9 (01 ‘6 ‘8) (09T ‘64T ‘8GT) “(LSGT ‘94T ‘GGT) (ST ‘64T ‘GST) uoL8y 16863NSH [9)%0) Vidda Vidda
(173 ‘0%G ‘656 ‘863) (L83 988 ‘958 F£8)
(666 ‘666 ‘163 ‘063) (633 ‘833 ‘L33 ‘983) (953 ‘753
‘686 ‘663) (188 ‘033 ‘616 ‘813) *(L13 ‘913 ‘G135 ‘F13)
“($18 316 ‘115 ‘018) (608 ‘803 ‘L0G ‘903) (E61 ‘G61
‘I6T ‘061) (68T ‘88T ‘8T ‘981) (481 ‘F81 ‘681 ‘G81)
S(I8T ‘08T ‘64T ‘SLT) “(LLT ‘OLT ‘GLT ‘VL1) “(LT ‘64T (dq.163) 03GI1 " ¥a311 g Aydonsip
(103 ‘00% ‘661 ‘861) TLT0LT) (69T ‘89T ‘£9T 99T) <(G9T F9T ‘C9T ‘G91) :UOLSNY 339Y6EEAV 910D SNd OIUOI0A
(8L ‘14 ‘0L) (69 89 ‘£9) (99 ‘G9 ‘}¥9)
(9 ‘39 ‘19) (09 ‘65 ‘89) (LS ‘9G ‘G9) “(¥S ‘€S ‘G9)
(16 ‘06 ‘6F) (8% ‘L¥ ‘9F) “(&¥ ‘¥ ‘0F) (6% ‘8¢ ‘LE)
(61T ‘81T ‘L11) 19 ‘g¢ ‘¥g) <(6€ ‘3¢ ‘T8) (0% ‘65 ‘83) (L3 ‘93 ‘¢3) (A4 9ZT)9IP6EL " 18861 SWOIpUAg
S(ITT°OTT 601) (S0T POT ‘601) (£ ‘9°9) “(¥& ‘65 ‘Ga) (18 ‘08 ‘61) “(81 ‘LT ‘O1) (ST FI ‘CI) w018y STINANNH 990 TINA VX oerg
(66T ‘8ST “LET)
H(96T ‘68T ‘FET) (66T 6T ‘18T) (0ST ‘651 ‘831)
“(L31 ‘9a1 ‘Sal) “(Fal ‘¢al ‘Gal) (131 ‘081 ‘611)
S(8TT “LTT ‘9TT) “(STT “PIT “611) “(BIT ‘TIT ‘O11)
2(60T ‘80T ‘20T) (90T ‘G0T ¥01) (0T ‘GOT ‘TOT)
(00T ‘66 ‘86) (L6 ‘96 ‘G6) *(¥6 ‘€6 ‘36) (16 ‘06 ‘68) (dq081) 00§ " 131 9sLISIP
(SP1 PP1 ‘SF1) (88 ‘28 ‘98) (48 ‘F8 ‘¢8) (38 ‘I8 ‘08) ‘(6L ‘8L ‘LL) uo8NY 111300 AN [9)%0) daH uoiununyy
(TLT “0LT ‘691) “(89T ‘L9T ‘991) (991 ‘¥91 ‘€91)
(06¢ ‘685 ‘88¢) “(G¥& ‘FF3 ‘¢¥3) (081 (39T ‘19T ‘091) “(6GT ‘8SI ‘LGT) “(9GT ‘GST FSI) (dqggy) core 1713 BIXE)E
‘6LT ‘8LT) (60T ‘GOT ‘TOT) (IS ‘0S5 ‘6F) “(£GI ‘BST ‘1GT) <(0ST ‘6%1 ‘SF1) (L¥1 ‘OF1 ‘G¥1) w0133y 1SG09G00HV vvO vadd SRIENEING |
yeador wopuel-uoN yeadar wapue) 1oexy Nibleg | Jnow uoneugisop IseasI(q
yeadoy Eliels)

suonisod Suneadoy

£3oreng Suryorepy reordoy Suisn wraneg Suneadoy Jo suonisod 9yl 91ed20T | TTIVL

TTOZ equaloas 0Z 80:22 e [dM HIMNVYHS TINVS] Ag pspeoumod

716

(831 ‘L&l ‘9a1)
(0T “€0T ‘B0T) (86 ‘L6 96) (36 ‘16 ‘06)
(L8 ‘98 ‘G8) (38 ‘18 ‘08) (9T ‘ST ¥1I)

(831 ‘L&1 ‘931) (Va1 ‘681 ‘G31)
S(GITPILCTIT) (66 ‘8¢S “LE) “(0€ ‘68 ‘83)

(113 ‘015 ‘608) ‘(508 ‘F03 ‘03) ‘(SF1
GF1 TFD) (30T ‘TOT ‘001) *(¥§ ‘6 ‘3%)

(60T ‘80T ‘LOT)
S(T0T ‘00T ‘66) (€8 ‘@8 ‘I8) (4L ‘FL ‘€L)

(831 ‘11 “0&1) “(611 ‘81T ‘LII) “(S11 ‘GIL
“TIT) “(0TT ‘60T ‘80T) *(SL ‘GL “1L) (0L ‘69 ‘89) *(¥9
‘69 ‘39) (19 ‘09 ‘69) (8¢ ‘LG ‘99) (4G ¥G ‘¢9) (3¢
‘16 ‘09) (6% ‘8% ‘L¥) (9% ‘SF ‘PF) “(SF ‘&P ‘1F) ‘(0%
‘66 ‘8%) (4§ ‘9¢ ‘G8) “(¥¢ ‘g¢ ‘@e) (1§ ‘0% ‘63) ‘(83 (dgog1) g1 "1
‘L6 ‘98) (S8 ‘¥& ‘€8) (86 ‘18 ‘03) (L ‘9 ‘S) (¥ € ‘3) :uoLdy 9¢H8YNSH
(96T “GGT ‘FST) (€41 ‘BST
TGT) <(0ST ‘6% 1 ‘8F1) (611 GIT ‘ILT) (00T ‘66 ‘86)
(L6 ‘96 ‘96) (36 ‘¢6 ‘86) (16 ‘06 ‘68) (88 ‘L8 ‘98) (dq081) 08611031
(38 ‘I8 “08) (6L ‘8L “LL) “(£9 ‘@9 ‘19) (09 ‘6S ‘8S) U0y §F9%00 N
(033 ‘615 ‘813)
“(L18 ‘918 ‘G13) (061 ‘681 ‘881) (L8 ‘981 ‘G8I)
S(PST ‘68T ‘G8T) “(I8T ‘08T ‘6L1) (8L ‘LLI ‘OLT)
S(GLT BLT “GLT) <(BLT “TLT OLT) (69T ‘89T ‘LIT) (dqova) oaL " 18¥
2(991 ‘99T P9T) (€91 ‘9T ‘191) (£ ‘9 ‘%) (¥ ‘¢ ‘3) o133y ¢6€000 NN
(Lg ‘9¢ ‘G¢) ‘(¢ ‘€8 ‘@8) (1€ ‘0§ ‘68) (83
‘26 ‘98) (98 ¥ ‘6a) (8 ‘13 ‘08) (61 ‘81 ‘L1) (91 (dqoL1) 116" " &¥55
‘GT F1) (61 ‘81 ‘11) (0T 6 ‘8) (£ ‘9 ‘Q) ‘(¥ ‘€ ‘@) :uoL8Y 60%F00 AN
(668
‘865 ‘L63) (966 ‘G666 ‘F63) (831 ‘LaI ‘9a1) (931
Pl ‘681) (88T ‘T8I ‘081) (611 ‘8TT ‘LI1) (911
‘GIT PIT) “(SIT ‘GIT ‘TIIT) (36 ‘16 ‘06) (68 ‘88 ‘LY)

TTOZ equaloas 0Z 80:22 e [dM HIMNVYHS TINVS] Ag pspeoumod

009D

00D

OVO

01D

GINA

INd9Vd

LVOS

INa

QWOIPUAS
AX 2[Seiy
Aydomsip
Iemosnw
reaSudreyd
-0

LVOS

1 Aydonsdp
JTUOJOAN

717

Downloaded by [SANIL SHANKER KP] at 22:08 20 September 2011

718 S. Shanker KP et al.

TABLE 2 The Results of Alignment—free Comparison Using Logical Matching Strategy and Global
Alignment Using Dynamic Programming

Alignment-free comparison using Logical Pattern in text
Matching Strategy using logical Global alignment
matching using dynamic
Locus Region: 541-560(20 bp) strategy (%) programming
Text: ACU90045 cgacctctggacaggecact 100% cgacctctggacaggecact
Pattern: ACU90045 cgacctctggacaggccact cgacctctggacaggecact
Text: ACU90045 cgacctctggacaggecact 45% cga-cctetg-gacaggecact
Pattern: PAU90054 cgacccactgagaaacctct cgacccactgaga-a-acctct
Text: ACU90045 cgacctctggacaggecact 35% cgacc-tetggac-aggecact
Pattern: HSU90049 cgaccaactgacaaggctct cgaccaact-gacaagg-ctct
Text: ACU90045 cgacctctggacaggecact 30% cg-acctctggacaggeeact
Pattern: LPU90051 cgtcccactgacaagectct cgtcccact-gacaagcectct
Text: ACU90045 cgacctctggacaggecact 25% cgacc-tctggac-aggecact
Pattern: NAU90053 cgcccaactgacaaggcetct cgcccaact-gacaagg-ctct
Text: ACU90045 cgacctctggacaggecact 20% cgacctctggac-aggccact
Pattern: AVU90046 agacctctagacaaagctct agacctctagacaaag-ctct
Text: ACU90045 cgacctctggacaggccact 20% Cgacctctggacaggccact
Pattern: DCU90047 aggcctttggacaaacctct aggcctttggacaaacctct
Text: ACU90045 cgacctctggacaggecact 20% cgacctc-tggacaggccact
Pattern: LEU90050 agacccgttgacaagcccct agacc-cgttgacaagcecct
Text: ACU90045 cgacctctggacaggecact 10% cgacc-tetggacaggecact
Pattern: DPU90048 agaccagttgacaaaccttt agaccagt-t-gacaaaccttt
Text: ACU90045 cgacctctggacaggccact 10% cgacct-ctggacaggecact
Pattern: MGU90052 agacctactgacaaacctct agacctact-gacaaacctct

Difference with Global Alignment Using Dynamic Programming

To align two sequences using global dynamic programming, the optimal
scores are computed in a two-dimensional matrix, with runtime O (mn). On
the other hand, in Logical Matching Strategy, the sequence is arranged so
that each character coincides with its corresponding index and then pro-
ceeds to match logically the indices of the subsequence with those of the
text. In the Phase 1 of the algorithm, the time complexity is O(m +n) and
in the Phase 2, the computational time depends on the length of the text.

CONCLUSION

We have presented the method of Logical Matching Strategy and its two
applications (1) locate repeating sequential pattern and (2) alignment-free
comparison of sequential pattern of finite length. The method provides a
solution to the problem of locating the exact tandem repeat and finding
alignmentfree similarities between two finite sequences by calculating
the score using automatically generating fuzzy membership values. The
Logical Matching Strategy can be applied to develop a method of research
in sequence analysis to locate biologically meaningful segments.

Downloaded by [SANIL SHANKER KP] at 22:08 20 September 2011

Two Applications of Logical Matching Strategy 719

REFERENCES

Aho, A. V,, and M. J. Corasick. 1975. Efficient string matching: An aid to bibliographic search. Commu-
nications of the ACM 18:333-340.

Altschul, S. F.,, M. S. Boguski, W. Gish, and J. C. Wootton. 1994. Issues in searching molecular sequence
databases. Nature Genetics 6:119-129.

Benson, G. 1999. Tandem repeats finder: A program to analyze DNA sequences. Nucleic Acids Research
27:573-580.

Bezdek, J. C., J. M. Keller, R. Krisnapuram, and N. R. Pal. 1999. Fuzzy models and algorithm for pattern
recognition and image processing. Massachusetts: Kluwer Academic Publishers.

Blaisdell, B. E. 1986. A measure of the similarity of sets of sequences not requiring sequence alignment.
In: Proceedings of National Academy of Sciences 83 (14): 5155-5159. USA.

Boyer, R. S., and J. S. Moore. 1977. A fast string searching algorithm. Communications of the ACM
20:762-772.

Dombi, J. 1990. Membership function as an evaluation. Fuzzy Sets and Systems 35:1-21.

Eddy, S. R. 2004. What is dynamic programming? Nature Biotechnology. 22:909-910.

Gusfield, D. 1997. Algorithms on strings, trees and sequences: Compuler science and computational biology. New
York: Cambridge University Press.

Horspool, R. N. 1980. Practical fast searching in strings. Software: Practice & Experience 10 (6): 501-506.

Klésgen, W., and J. M. Zytkow. 2002. Handbook of data mining and knowledge discovery. New York: Oxford
University Press.

Knuth, D. E., J. H. Morris Jr., and V. R. Pratt. 1977. Fast pattern matching in strings. SIAM Journal on
Computing 6 (1): 323-350.

Laxman, S., and P. S. Sastry. 2006. A survey of temporal data mining. Sadhana 31 (Part 2): 173-198.
Medasani, S., J. Kim, and R. Krishnapuram. 1998. An overview of membership function generation
techniques for pattern recognition. International Journal of Approximate Reasoning 19:391-471.
Mitra, S., and T. Acharya. 2003. Data mining multimedia, soft computing and bioinformatics. 143-180. New

Jersey: John Wiley & Sons, Inc.

Norwich, A. M., and 1. B. Turksen. 1984. A model for the measurement of membership and the
consequence of its empirical implementation. Fuzzy Sets and Systems 12:1-25.

Pevzner, P. A, and M. S. Waterman. 1995. Open combinatorial problems in computational molecular
biology. In: Proceedings of the third Israel symposium on theory of computing and systems, 158-173. IEEE
Computer Society Press.

Rigoutsos, 1., and A. Floratos. 1998. Combinatorial pattern discovery in biological sequences. Bioinfor-
matics 14 (1): 55-67.

Vinga, S., and J. Almeida. 2003. Alignmentfree sequence comparison—a review. Bioinformatics
19:513-523.

APPENDIX

Let T=t; t3... 1, and P=p; ps... p, be two strings of lengths n and m
respectively from the same finite alphabet X such that n >m.

When P compares (alignmentfree) with 7" gives r matches and s mis-
matches, r+s=m

MMatch (Pattern) [PAttern] + Pntismacch (Pattern) [Pattern] = Match in Pattern/
Length of Pattern

+ Mismatch in Pattern/Length of Pattern

=r/m+s/m=r+s)/m=m/m=1

Example: 1

Text= A T

Q—Q

Pattern= A T

Downloaded by [SANIL SHANKER KP] at 22:08 20 September 2011

720 S. Shanker KP et al.

MMatch (Pattern) [Pattern] = Match in Pattern/Length of Pattern =4/4=1,

MMismatch (Pattern) [Pattern] = Mismatch in Pattern/Length of
Pattern=0/4=0

Score, S(Text, Pattern) =

Match in Text:# fyaich (Pattern) [Pattern] — Mismatch in Text =«

MMismatch (Pattern) [Patte rn]

=4 %1-0=4
Example: 2
Text= A T G C
| \ | #
Pattern=- A T G G

.uMatch(Pattern) [Pattern] - 3/4 - 075; HMismatch (Pattern) [Pattern] - 1/4 =
0.25
S(Text, Pattern) =3%0.75 — 1% 0.25=2

Example: 3
Text= A T G C
| # | #
Pattern= A C G G

MMatch (Pattern) [Pattern] = 2/4 = 05’ MMismatch (Pattern) [Pattern] = 2/4 =0.5
S(Text, Pattern) =2 * 0.5 -2 * 0.5=0

Example: 4
Text= A T G C
|
Pattern= T A G G

MMatch (Pattern) [Pattem] = 1/4 - 025’ MMismatch (Pattern) [Pattern] - 3/4 =0.75
S(Text, Pattern) =1%0.25 —3%0.75=—2

