(Pages: 2)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.St Mathematics Degree Examination, November 2023

MMT1C01 - Algebra - I

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Answer all questions. Each carries 1 weightage

- 1. Verify whether $\phi(x,y)=(-y,x)$ is an isometry of the Euclidean plane \mathbb{R}^2 .
- 2. Find the order of the factor group $\frac{\mathbb{Z}_4 \times \mathbb{Z}_{12}}{(\langle 2 \rangle \times \langle 2 \rangle)}$.
- 3. State The Fundamental Homomorphism Theorem.
- 4. Find the reduced form and the inverse of the reduced form of the word $a^2b^{-1}b^3a^4c^4c^2a^{-1}$.
- 5. Define Solvable group.
- 6. Show that $(x, y : y^2x = y, yx^2y = x)$ is a presentaion of the trivial group of one element.
- 7. Let $\phi_{\pi}: \mathbb{Q}[x] \to \mathbb{R}$ be the evaluation homomorpism with $\phi_{\pi}(x) = \pi$. Find the Kernel of ϕ_{π} .
- 8. Find the inverse of 2i + j + k in the ring of quaternions.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each carries 2 weightage

Unit I

- 9. Show that a subgroup M of a group G is a maximal normal subgroup of G if and only if G/M is simple.
- 10. Let X be a G-set. For $x \in X$ let $G_x = \{g \in G : gx = x\}$. Prove that G_x is a subgroup of G.

11. Find the order of the element $(2,1)+\langle (1,1)\rangle$ in the factor group $(\mathbb{Z}_3\times\mathbb{Z}_6)/\langle (1,1)\rangle$

Unit II

- 12. Prove that Z has no composition series.
- 13. State and prove First Sylow Theorem.
- 14. Prove that for a prime number p, every group G of order p^2 is abelian.

Unit III

- 15. State and prove Eisenstein criterion for irreducibility of a polynomial.
- 16. Show that the multiplicative group $\langle F^*, . \rangle$ of nonzero elements of a finite field F is cyclic.
- 17. Let R be a commutative ring and let $a \in R$. Show that $I_a = \{x \in R | ax = 0\}$ is an ideal of R.

 $(6 \times 2 = 12 \text{ weightage})$

Part C Answer any two questions. Each carries 5 weightage

- 18. (a) Show that $\mathbb{Z}_m \times \mathbb{Z}_n$ is isomorphic to \mathbb{Z}_{mn} if and only if gcd of m and n is 1.
 - (b) Prove that $\prod_{i=1}^{n} \mathbb{Z}_{m_i}$ is cyclic and isomorphic to $\mathbb{Z}_{m_1...m_n}$ if and only if the numbers m_i for i = 1, 2, ... n are mutually relatively prime.
- 19. (a) State and prove Burnside's Formula.
 - (b) Let p be a prime. Let G be a finite group and let p divide |G|. Prove that G has an element of order p.
- 20. (a) Let H, K be normal subgroups of a group G such that $K \leq H$. Show that G/H is isomorphic to (G/K)/(H/K).
 - (b) Prove that the polynomial $\phi_p(x) = \frac{x^p 1}{x 1} = x^{p-1} + x^{p-2} + \dots + x^{p-1} + x^{p-2} + \dots$ over Q for any prime p.
- 21. (a) State and prove division algorithm for F[x], where F is a field.
 - (b) Show that the multplicative group of all non zero elements of a finite field is cyclic.

 $(2 \times 5 = 10 \text{ weightage})$

2B1N23293

(Pages: 3)

Reg.	No.	 	 	 ٠,		 •	
200							

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M:Sc Mathematics Degree Examination, November 2023

MMT1C02 - Linear Algebra

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Answer all questions. Each carries Iweightage

- 1. Describe explicitly the linear transformation T from F^2 in to F^2 such that $T\varepsilon_1$ =(a,b), T $\varepsilon_2 = (c,d)$.
- 2. Let V be the vector space of all functions from \mathbb{R} to \mathbb{R} which are continuous. Let T be the linear operator on V defined by $(Tf)(x) = \int_{0}^{x} f(t)dt$. Prove that T has no characteristic values.
- 3. Prove that the vector space of polynomials of degree less than or equal to three over R is isomorphic to R^4 .
- 4. Let $\alpha_1=(1, 0, -1, 2)$ and $\alpha_2=(2, 3, 1, 1)$ and let W be the subspace of \mathbb{R}^4 spanned by α_1 and α_2 , which linear functional of the form $f(x_1, x_2, x_3, x_4) = c_1x_1 + c_2x_2 + c_3x_3 + c_4x_4$ are in the annihilator of W?
- 5. Let W be an invariant subspace for T. Then prove that the characteristic polynomial for the restriction operator Tw divides the characteristic polynomial for T
- 6. Let W1 and W2 be subspaces of a finite dimensional vector space V. Prove that $(W_1 \cap W_2)^0 = W_1^0 + W_2^0.$
- 7. Prove that every finite dimensional inner product space has an orthonormal basis.
- 8. Prove that an orthogonal set of non zero vectors in an inner product space is linearly The Library Independent.

(8x1=8weightage)

Part B Answer any two questions from each unit. Each carries 2 weightage

Unir -1

- 9. If W_1 and W_2 are finite dimensional subspaces of a vector space V, then prove that $W_1 + W_2$ is finite dimensional and $\dim W_1 + \dim W_2 = \dim(W_1 \cap W_2) + \dim(W_1 + W_2)$.
- 10. Let V be a n- dimensional vector space over the field F, and let $B = \{\alpha_1, ... \alpha_n\}$ and $B' = \{\alpha'_1 ... \alpha'_n\}$ be two ordered bases of V. then prove that there is a unique, necessarily invertible, nxn matrix P with entries in F such that $[\alpha]_B = P[\alpha]_{B'}$, $[\alpha]_{B'} = P^{-1}[\alpha]_B$ for every vector $\alpha \in V$.
- 11. Let V and W be vector spaces over the field F and let T be a linear transformation from V into W. suppose V is finite dimensional then prove that rank (T) + nullity (T) = dim V.

Unit -2

- 12. If W is the subspace of \mathbb{R}^5 which is spanned by the vectors $\alpha_1 = (2, -2, 3, 4, -1)$, $\alpha_2 = (-1, 1, 2, 5, 2)$, $\alpha_3 = (0, 0, -1, -2, 3)$ and $\alpha_4 = (1, -1, 2, 3, 0)$ then find the annihilator of W.
- 13. Let T be a linear operator on the finite dimensional space V. Let $c_1, c_2, \dots c_k$ be the distinct characteristic vector of T and let W_i be the space of characteristic vector associated with the characteristic value c_i . If $W = W_1 + W_2 + \dots + W_k$ then prove that dim $W = \dim W_1 + \dim W_2 + \dots + \dim W_k$
- 14. Let V and W be vector spaces over the field F. Let B be the ordered basis for V with dual basis B^* and let B' be an ordered basis for W with dual basis B'^* . Let T be a linear transformation from V in to W: Let $A=[T]_{BB'}$ and let $B=[T^t]_{B'^*B^*}$. Then Prove that $B_{ij}=A_{ji}$.

Unit -3

- 15. (a) let T be a linear operator on a finite dimensional space V. if T is diagonalizable and c₁, c₂, c_k be the distinct characteristic vector of T then prove that there exist linear operators E₁,E₂,...,E_k on V such that
 - (i) $E_i E_j = 0$, $i \neq j$
 - (ii) E_i is a projection
 - (iii) The range of E, is the characteristic space for T associated with c,

- 16. Apply Gram-Schmidt process to the vectors $\beta_1 = (1,0,1)$, $\beta_2 = (1,0,-1)$, $\beta_3 = (0,3,4)$ to obtain an orthonormal basis for \mathbb{R}^3 with the standard inner product.
- 17. Let W be a subspace of an innerproduct space V and Let β be a vector in V then prove that the vector $\alpha \in W$ is a best approximation to β by vectors in W if and only if $\beta \alpha$ is orthogonal to every vector in W.

(6x2=12 weightage)

Part C Answer any two questions Each carries 5 weightage

- 18. (a) Let V be a finite dimensional vector space over the field F and let $\{\alpha_1, \alpha_2, ..., \alpha_n\}$ be an ordered basis for V. Let W be a vector space over the same field F and let $\beta_1, \beta_2, ..., \beta_n$ be any vectors in W then prove that there is precisely one linear transformation T from V into W such that $T\alpha_j = \beta_j, j = 1, 2, ..., n$
 - (b) If W is a subspace of a finite dimensional vector space V, prove that every linearly independent subset of W is finite and is part of a basis for W.
- 19. (a) Let the linear operator on \mathbb{R}^3 which is representation the standard ordered basis by the matrix.

$$A = \begin{bmatrix} 5 & -6 & -6 \\ -1 & 4 & 2 \\ 3 & -6 & -4 \end{bmatrix}$$
 check whether T is diagonalizable or not

- (b) Let g, f_1 , f_r be linear functional on a vector space V with respective null spaces N, N_1 , N_2 ,..., N_r then prove that g is a linear combination of f_1 , f_r iff N contains the intersection $N \cap N_1 \cap N_2 \cap ... \cap N_r$
- 20. Let T be a linear operator on a finite dimensional vectorspace V. If f is the characteristic polynomial for T, then prove that f(T)=0.
- 21. (a)Let W be a finite dimensional subspace of an inner product space V and let E be the orthogonal projection of V on W. Then Prove that E is a Idempotent linear transformation of V onto W, W[⊥] is the null space of E and V=W⊕ W[⊥]
 - (b) State and prove Bessel's inequality.

(2x5=10 weightage)

38

47	N23294
2111	ATOM.

(Pages : 2) Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2023

MMT1C03 - Real Analysis - I

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part-A

Answer all questions. Each question carries 1 weightage

- 1) Prove that every infinite subset of a countable set is countable.
- 2) Let X be a set of cardinality 2 and A be the set of all sequences whose terms are elements of X. Prove that A is uncountable.
- Give an example of a continuous bounded function on the segment (1, 2) which has no maximum.
 Justify your answer.
- 4) Check the differentiability of the function $f(x) = \begin{cases} x \sin \frac{1}{x} & (x \neq 0) \\ 0 & (x = 0) \end{cases}$.
- 5) Let $f(x) = \begin{cases} 1 & (if \ x \ is \ rational) \\ 0 & (if \ x \ is \ irrational) \end{cases}$. Prove that $f \notin \mathcal{R}$ on [0,1].
- 6) Let P be a partition of [a, b] and P^* is a refinement of P. Prove that $L(P, f, \alpha) \le L(P^*, f, \alpha)$.
- 7) Let $f_n(x) = \frac{x}{1+nx^2}$. Prove that $\{f_n\}$ converges uniformly on [0,1].
- 8) Define equicontinuous family of functions and give one example.

Part-B

Answer any two questions from each unit. Each question carries 2 weightage

Unit - I

- 9) Prove that a subset E of a metric space X is open if and only if E^c is closed.
- 10) Suppose $K \subset Y \subset X$. Prove that K is compact relative to X if and only if K is compact relative to Y.
- 11) Prove that continuous image of a compact set is compact.

Unit - II

12) Suppose f is a continuous mapping of [a,b] into \mathbb{R}^k and f is differentiable in (a,b). Prove that there exists $x \in (a,b)$ such that $|\mathbf{f}(b) - \mathbf{f}(a)| \le (b-a)|\mathbf{f}'(x)|$.

- 13) Prove that if f is continuous on [a, b] and α is monotonically increasing on [a, b], then f is integrable with respect to α in the Riemann sense.
- 14) If $f_1 \in \mathcal{R}(\alpha)$ and $f_2 \in \mathcal{R}(\alpha)$ on [a, b], prove that $f_1 + f_2 \in \mathcal{R}(\alpha)$ and

$$\int_a^b (f_1 + f_2) d\alpha = \int_a^b f_1 d\alpha + \int_a^b f_2 d\alpha$$

Unit - III

15) If f maps [a, b] inot \mathbb{R}^k and $f \in \mathcal{R}(\alpha)$ for some monotonically increasing function α , prove that $|f| \in \mathcal{R}(\alpha)$ and

$$\left| \int_{a}^{b} \mathbf{f} d\alpha \right| \leq \int_{a}^{b} |\mathbf{f}| d\alpha$$

16) Suppose $f_n \to f$ uniformly on a set E in a metric space. Let x be a limit point of E and suppose that for each n, $\lim_{t\to x} f_n(t) = A_n$. Prove that $\{A_n\}$ converges and

$$\lim_{t\to x} f(t) = \lim_{n\to\infty} A_n$$

17) If K is compact, if $f_n \in \mathcal{C}(K)$ for n = 1,2,3,... and if $\{f_n\}$ is pointwise bounded and equicontinuous on K, then prove that $\{f_n\}$ contains a uniformly convergent subsequence.

Part-C

Answer any two questions. Each question carries 5 weightage

- 18) a) If f is a continuous mapping of a compact metric space X into a metric space Y, prove that f is uniformly continuous on X.
 - b) Let f be monotonic on (a, b). Prove that the set of points in (a, b) at which f is discontinuous is at most countable.
- 19) a) State and prove Taylor's theorem
 - b) Suppose $f \in \mathcal{R}(\alpha)$ on [a, b], $m \le f \le M$, ϕ is continuous on [m, M] and $h(x) = \phi(f(x))$ on [a, b]. Prove that $h \in \mathcal{R}(\alpha)$ on [a, b]
- 20) a) Prove that if f is continuous on [a,b] and α is monotonically increasing on [a,b], then $f \in \mathcal{R}(\alpha)$.
 - b) Suppose $\{f_n\}$ is a sequence of functions, differentiable on [a,b] and such that $\{f_n(x_0)\}$ converges for some point $x_0 \in [a,b]$. If $\{f'_n\}$ converges uniformly on [a,b], prove that $\{f_n\}$ converges uniformly on [a,b], to a function f and $f'(x) = \lim_{n \to \infty} f'_n(x)$; $a \le x \le b$
- 21) State and prove the Stone-Weierstrass theorem.

2R1	N23	295
LUX		

(Pages : 2)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Degree Examination, November 2023

MMT1C04 - Discrete Mathematics

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

(Short Answer Questions)

(Answer all questions. Each question has weightage 1)

- 1. Prove that the intersection of two chains is a chain but that their union need not be a chain.
- 2. Let (X, +, ., ') be a Boolean algebra. Prove that x + 1 = 1 for all $x \in X$.
- 3. Let $A = \{1, 2, ..., 12\}$ and $a \le b$ if a|b. Find a maximal and minimal elements of the set $B = \{2,3\}.$
- 4. Prove that every graph has an even number of vertices of odd degree.
- 5. Define identity graph and give an example.
- 6. Prove that a connected graph G is a tree if and only if every edge of G is a cut edge of G.
- 7. Find a dfa that accepts all strings on {0,1} starting with prefix 01.
- 8. Define a language L and L*, the star closure of L. Give an example.

(8x1=8 weightage)

Part B

(Answer any two question from each unit. Each question carries weightage 2)

- 9. Let $X = RU\{*\}$ where * is some point not on the real line. Define \leq on X as $\{(x,y)\in\mathbb{R}\ X\ \mathbb{R},\ x\leq y\ \text{in the usual order}\ \}U\{(*,*)\}.$ Prove that \leq is a partial order on X.
- 10. State and prove Stone representation theorem for finite Boolean algebra.
- 11. Write the following Boolean function in the disjunctive normal form

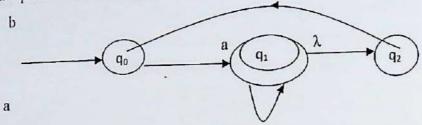
$$F(x_1, x_2, x_3) = (x_1 + x_2')x_3' + x_2x_1'(x_2 + x_1'x_3)$$

Unit II

- 12. If G is a simple graph , then prove that $\kappa(G) \le \lambda(G) \le \delta(G)$.
- 13. Prove that an edge is a cut edge if and only if it belongs to no cycle.
- 14. Prove that K₅ is non-planar.

Unit III

15. Find a dfa equivalent to the following nfa



- 16. Find a grammer that generate the language $L = \{a^{n+2}b^{2n}; n \ge 1\}$
- 17. Show that the language L={awa:w∈ {a,b}*} is regular.

(6x2=12 weightage)

Part C

Answer any two from the following four questions. Each question has weightage 4

- 18. (a) Prove that every Boolean functions of n variables $x_1, x_2, \ldots x_n$ can be uniquely expressed as a sum of terms of the form $x_1^{\varepsilon_1} x_2^{\varepsilon_2} \ldots x_n^{\varepsilon_n}$ where each $x_i^{\varepsilon_i}$ is x_i or x_i' .
 - (b) Prove that the set of all symmetric Boolean functions of n Boolean variables $x_1, x_2 ..., x_n$ is a sub algebra of the Boolean algebra of all Boolean functions of these variables. Also prove it is isomorphic to the power set Boolean algebra of the set $\{0,1,...,n\}$.
- 19. (a) Prove that a graph is bipartite if and only if it contains no odd cycle.
 - (b)Prove that for a cubic graph vertex connectivity and edge connectivity are equal.
- 20. (a)Prove that every tree with at least two vertices has at least two pendant vertices.
 - (b)Let G be a connected graph. Prove that the following statements are equivalent
 - (i) G is Eulerian.
 - (ii) The degree of each vertex of G is an even positive integer.
 - (iii) G is an edge -disjoint union of cycles.
- 21. (a) Are the grammars G1 = ({S}, {a,b}, S, { $S \rightarrow SS$, $S \rightarrow aSb$, $S \rightarrow \lambda$, $S \rightarrow bSa$ }) and G2 =({S}, {a,b}, S, { $S \rightarrow SS$, $S \rightarrow SSS$, $S \rightarrow aSb$, $S \rightarrow bSa$, $S \rightarrow \lambda$ }) are equivalent.
 - (b) Let L be the language accepted by a non deterministic finite accepter $M_N = (Q_N, \sum, \delta_N, q_0, F_N)$. Then prove that there exist a
 - dfa $M_D=(Q_D, \sum, \delta_D, \{q_0\}, F_D)$ such that $L=L(M_D)$.

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Mathematics Degree Examination, November 2023 MMT1C05 - Number Theory

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Answer all questions. Each carries 1 weightage

- 1. Show that $\sum_{d/n} \mu(d) = \begin{bmatrix} \frac{1}{n} \end{bmatrix} = \begin{cases} 1 & \text{if } n = 1 \\ 0 & \text{if } n > 1 \end{cases}$
- Define Mangolt function $\Lambda(n)$ and show that for $n \ge 1$, $\log n = \sum_{d/n} \Lambda(d)$.
- Give an example of a multiplicative function which is not completely multiplicative.
- Derive Selberg identity
- Calculate the highest power of 10 that divides 1000!
- 6. Determine whether 888 is a quadratic residue or non residue modulo of the prime 1999...
- 7. Prove that product of two shift enciphering transformations is also shift enciphering transformations.
- 8. Write a short note on cryptosystem.

 $(8 \times 1 = 8 \text{ weightage})$

Part B Answer any two questions from each unit. Each carries 2 weightage

Unit 1

- 9. Show that if f is an arithmetical function with f(1) = 0, then there is a unique arithmetical function f^{-1} such that $(f * f^{-1}) = (f^{-1} * f) = 1$
- 10. State and prove the Mobius inversion formula.
- 11. State and prove the Euler's Summation formulae.

12. Show that for
$$x \ge 2$$
; $\sum_{p \le x} \left[\frac{x}{p} \right] \log p = x \log x - x + O(\log x)$.

13. Show that for $n \ge 1$, the n^{th} prime P_n satisfies the inequalities

$$\frac{1}{6} n log n < P_n < 12 \left(n \log n + n \log \frac{12}{e} \right)$$

14. State and prove the Abel's identity

Unit 3

- 15. State and prove Gauss lemma
- 16. Explain the advantages and disadvantages of public key cryptosystems as compared to classical cryptosystems.
- 17. Solve the following system of simultaneous congruences $17x + 11y \equiv 7 \pmod{29}$ $13x + 10y \equiv 8 \pmod{29}$.

 $(6 \times 2 = 12 \text{ weightage})$

Part C Answer any two questions. Each carries 5 weightage

- 18. (a) State and Prove Chinese Reminder Theorem.
 - (b) Show that $\frac{1}{6} \frac{n}{\log n} < \pi(n) < \frac{6n}{\log n}$, for every integer $n \ge 2$.
- 19. (a) State and Prove Quadratic reciprocity law.
 - (b) Prove that 5 is a quadratic residue of an odd prime p if $p \equiv \pm 1 \pmod{10}$.
- 20. Let P_n denotes the n^{th} prime. Prove the following are equivalent:

(a).
$$\lim_{x\to\infty} \frac{\pi(x)\log x}{x} = 1$$

(b).
$$\lim_{x\to\infty} \frac{\pi(x)\log\pi(x)}{x} = 1$$

(c),
$$\lim_{n\to\infty}\frac{P_n}{n\log n}=1$$

- 21. (a) Find the inverse of $A = \begin{bmatrix} 15 & 17 \\ 4 & 9 \end{bmatrix} \in M_2\left(\frac{z}{26z}\right)$
 - (b)Describe algorithm for (finding the discrete logs in the finite fields

$$(2 \times 5 = 10 \text{ weightage})$$