5

2M1	N	27	2	36
	7	-		\mathbf{v}

(Pages:	2)
---------	----

Reg. No	o:.	1 *	٠,	٠.	٠	• •	٠		• •	•	٠			٠	
Name:															

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Chemistry Degree Examination, November 2023

MCH1C01 - Quantum Mechanics and Group Theory

(2022 Admission onwards)

Time: 3 hours Max. Weightage: 30

Section A Short Answer Answer 8 Questions out of 12. Each question carries a weightage of 1 (8 x 1 = 8)

- 1) Generate matrix representation for S₃
- 2) What is meant by SALC?
- 3) Write down cyclic boundary condition required for a rigid rotor.
- 4) Explain Uhlenbeck and Goudsmith postulate of spin
- 5) When are two groups isomorphic? Explain.
- 6) Find the maximum velocity of photoelectrons ejected by an 80 nm radiation if the work function of photoelectrode is 4.73 eV
- 7) What are eigen functions?
- 8) Write down quantum mechanical operator for L_x .
- 9) What is degeneracy of the SHO energy level with energy $\frac{9}{2}h\vartheta$?.
- 10) What are the factors which depend on a quantum mechanical tunnel effect?.
- 11) Classify the following into even and odd functions: (1) tan(x) (2) (3+x)(3-x)
- 12) What are stationary states?

- 13) Explain
 - (i) Laplacian operator (ii) Hermitian operator (iii) Non commuting operators.
- 14) Derive energy expression for particle on a ring.
- 15) A particle of mass 2.00×10^{-26} g is in a one-dimensional box of length 4.00 nm. Find the frequency and wavelength of the photon emitted when this particle goes from the n = 3 to the n = 2 level.
- 16) Write the $\Phi(\phi)$ equation for hydrogenic species and give its general solution.

- 17) The total representation for C_2v point group is $3A_1+A_2+2B_1$ and $3B_2$. Find the vibrational degrees of freedom
- 18) Find $[\widehat{x}, \widehat{P}_x]$
- 19) Derive C_{4v} character table.

Section B Essay Answer 2 Questions out of 4. Each question carries a weightage of 5 (2 \times 5 = 10)

- 20) Deduce time independent Schrödinger wave equation from classical wave equation.
- 21) Discuss the quantum mechanics of rigid rotor.
- 22) Describe the applications of direct product of irreducible representations.
- 23) Find the molecular orbital's of H₂O by constructing C_{2v} character table.

27	A1	TIT	37	27
41	711	N2	32	31

(Pa		120	2)
11/9	UPC		/ 1
11 4	としい		41

Reg.	No				•	•				•	•	٠		

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Chemistry Degree Examination, November 2023 MCH1C02 – Chemistry of Elements

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A Short Answer Answer 8 Questions out of 12. Each question carries a weightage of 1 (8 X 1 = 8)

- 1) What are super acids?
- 2) Give an account on the classification of borides.
- 3) What are the different types of bonding present in boranes? What are the structural features of B₄H₁₀?
- 4) Discuss the reaction of diborane with bases.
- 5) Discuss the structure and thermochromic properties of S₄N₄.
- 6) What is Ellingham diagram? Discuss the abrupt change in the diagram.
- 7) Write a note on zintl ions.
- 8) Explain any two applications of Latimer diagram by taking an example.
- Write down the ground state term symbols for the metal ions with confiurations:
 (a) 3d²4s⁰ and (b) 3d⁷4s⁰.
- 10) Write the principle of VSM.
- 11) What is Bethe's notation? Give the Bethe's notation for : ${}_{17}^{35}Cl + {}_{0}^{1}n \rightarrow {}_{1}^{1}H + {}_{16}^{35}S$
- 12) Explain photonuclear reactions with suitable example.

- 13) Explain the solvent system and Usanovich concepts of acids and bases.
- 14) Discuss the MO approach to the bonding in diborane.
- 15) Write a note on carboranes and its classification. Classify the following carboranes on the basis of Wade's rule- (i) C₂B₇H₁₈, (ii) C₂B₁₀H₁₂ and (iii) C₂B₄H₈
- 16) What are silicones? Discuss its structure and applications.
- 17) Distinguish between isopoly and heteropoly anions? Give examples.
- 18) Explain the significance of Pourbaix diagram using the compounds of iron.
- Give an account on the detection and measurement of radiation using scintillation counters.

Section C Essay Answer 2 Questions out of 4. Each question carries a weightage of 5 $(2 \times 5 = 10)$

- 20) Explain the chemistry of liquid NH₃ and SO₂ as non- aqueous solvent.
- 21) (a)Discuss the preparation, structure, and applications of P-N compounds. (3wt)
 - (b) Write the structure of (a) P_4S_3 and (b) P_4S_{10} (2 wt)
- 22) (a)Explain Curie and Curie- Weiss law. (2 wt)
 - (b) Discuss the orbital contribution to magnetic moment and its quenching (3wt)
- 23) Write notes on: (a) Liquid drop model and (b) optical model of nucleus. (3 + 2 wt)

(Pages	21
(PAGES	 /)
11 444	

Reg.	No:.	- • •	٠.,	٠	٠.	 •		*	٠	•	

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Chemistry Degree Examination, November 2023 MCH1C03 – Structure & Reactivity of Organic Compounds

(2022 Admission onwards)

Time: 3 hours Max.Weightage: 30

Section A Short Answer Answer 8 Questions out of 12. Each question carries a weightage of 1 (8 X 1 = 8)

- 1) Why does tropylium ion exist as an ionic compound?
- 2) Differentiate between Classical and non classical carbocation.
- 3) Among 2-phenethyl acetate and propyl acetate, which will readily undergo hydrolysis? Why?
- 4) Write a note on transition state theory.
- 5) Discuss the conformation of 2- bromocyclohexanone.
- 6) Menthyl chloride is less susceptible to elimination reactions than neomenthylchloride. Explain.
- 7) Identify and sketch the Re-and Si- faces of 2- butanone.
- Differentiate between homotopic and enantiotopic hydrogens with suitable examples.
- 9) Distinguish between stereoselectivity and stereospecificity.
- 10) Write a note on Sharpless Epoxidation
- 11) Discuss the role of CBS as chiral catalyst.
- 12) Give examples of compounds containing nitrogen and sulphur showing optical isomerism.

- 13) Draw the energy profile diagrams of S_N1 and S_N2 reactions. Explain their significance in understanding the mechanism.
- 14) Write a note on conformationally biased molecular system. Give some of their applications.
- 15) Explain the conformations of cyclohexane, and methyl cyclohexane.
- 16) Predict the different products formed from the four diastereomeric 2-bromo-4-phenylcyclohexanols when treated with base or Ag₂O.

- 17) Explain Bredt's rule.
- 18) Discuss the stereochemistry of aldoximes and ketoximes.
- 19) What is chiral pool? Illustrate with a suitable example. What is its significance in relation to asymmetric synthesis?

Essay Section C Answer 2 Questions out of 4. Each question carries a weightage of 5 $(2 \times 5 = 10)$

- 20) Discuss aromaticity in (i) 8,10 and 14 annulenes and (ii) hetroannulenes.
- 21) (a) Emphasizing the significances of Hammett parameters, derive & explain Hammett equation.
 - (b) Explain Taft equation and its advantages over Hammett equation.
- 22) (i) Discuss optical activity in cis, trans isomers of 1,2-, 1,3-and 1,4-dimethylcycloheaxanes.
 - (ii) Discuss optical activity in allenes and biphenyls.
- 23) (a) Discuss the Asymmetric aldol reaction using Zimmermann-Traxler model.
 - (b) Discuss the double diastereoselection through matched and mismatched aldols.

8

8

2M1N23239	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Chemistry Degree Examination, November 2023 MCH1C04 – Thermodynamics, Kinetics & Catalysis

(2022 Admission onwards)

Time: 3 hours Max. Weightage: 30

Section A Short Answer Answer 8 Questions out of 12. Each question carries a weightage of 1 (8 X 1 = 8)

- 1) Distinguish between absolute entropy and residual entropy.
- Why partial molar quantities are important in studying the thermodynamics of open systems?
- 3) State and explain Onsagar reciprocal relation.
- 4) Write phenomenological relations.
- 5) Define explosion limit with an example.
- 6) What is branched chain reaction? Give an example.
- 7) What is meant by a diffusion controlled reaction?
- 8) What is London equation? How is it used?
- 9) Define isosteric heat of adsorption.
- 10) What is meant by temperature programmed desorption? What is its use?
- 11) Arrive at the equation for $\frac{1}{2}V_{max}$ for an enzyme catalyzed reaction starting from Michaelis-Menten equation.
- 12) What is meant by autocatalysis? Give one example.

- 13) Describe the determination of partial molar volume.
- 14) Show that unimolecular gas phase reactions follow first order kinetics at low pressure and second order kinetics at high pressure.
- 15) Derive Duhem-Margules equation and mention its applications.
- 16) Explain the brusselator and oregonator for oscillating chemical reactions

- 17) What are molecular beams? Explain the stripping and rebound mechanism observed in molecular beam experiments.
- 18) Explain how non-ideal solution deviates from Raoult's law.
- 19) Discuss Rice Herzfeld mechanism using suitable example.

- 20) Explain Excess functions. Illustrate the determination of Excess volume, Excess entropy and Excess free energy.
- 21) Explain potential energy surfaces. What is the significance of saddle point in a potential energy surface?
- 22) What are fast reactions? Discuss the flash photolysis and relaxation methods for studying fast reaction.
- 23) Discuss the BET theory of adsorption and derive the BET equation.