FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Computer Science Degree Examination, November 2023 MCS1C01 – Discrete Mathematical Structures

(2022 Admission onwards)

Time: 3 hours Max. Weightage: 30

PART A

Questions 1 to 7. Answer any four. Each questions carries two weightage.

- 1. State the rules for producing well formed formula. Give one example of it.
- 2. Explain the principle of duality with suitable example.
- 3. Define closure of a relation.
- 4. State and explain pigeon hole principle.
- 5. Discuss semigroup with an example.
- 6. Explain integral domain with an example.
- 7. Define Bipartite graph. Give example.

(4x2=8 weightage)

PART B

Questions 8 to 14. Answer any four. Each questions carries three weightages.

- 8. Explain theory of inference for the statement calculus with suitable example.
- 9. Define Boolean algebra, Boolean function, and Boolean expression. Give example.
- 10. Show that every chain is a distributed lattice.
- 11. Write a note on permutation group and cyclic group.
- 12. Explain Hamiltonian path and circuit.
- 13. Discuss basic properties of Algebraic system defined by Lattices
- 14. Illustrate Dijkstra's algorithm with example.

(4x3=12 weightage)

PART C

Questions 15 to 18. Answer any two. Each questions carries five weightage.

- 15. (a) Given h(x) = (1 + 2x)/(7 + x) then find $h^{-1}(x)$.
 - (b) Let say S is the set of all the people in the world and r is the relation defined on a set Such that $(a,b) \in \mathbb{R}$, where a and b are people if a is taller than b then find whether (S,R) is a poset or not?
- 16. Demonstrate Homomorphism, Ring and Field with examples.
- 17. Prove the following:
 - I) For any a,b,c and d in a lattice (A,\leq) , if $a\leq b$ and $c\leq d$ them a v $c\leq b$ v d, a A $c\leq b$ A d
 - II) For any a and b in Boolean algebra prove that: $\overline{aVb} = \overline{a} \wedge \overline{b}$, $\overline{a \wedge b} = \overline{a}V\overline{b}$
- 18. Explain about Kruskal's Algorithm with suitable example

(2x5=10 weightages)

2M1N23251	(Pages: 1)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Computer Science Degree Examination, November 2023 MCS1C02 – Advanced Data Structures

(2022 Admission onwards)

Time: 3 hours Max. Weightage: 30

PART A

Questions 1 to 7. Answer any four. Each questions carries two weightage.

- 1. Define Skip Lists.
- 2. Define Big Oh.
- 3. Differentiate direct recursion and indirect recursion.
- 4. What is B-Tree? Explain.
- 5. What are applications of heaps?.
- 6. What do you understand about a minimal spanning tree?
- 7. What is meant by hash-table? What is its importance?

(4x2=8 weightage)

PART B

Questions 8 to 14. Answer any four. Each questions carries three weightage.

- 8. What is the trade off between time and space complexity?
- 9. Write a note on triplet representation of Sparse matrix.
- 10. Perform heap sort on the data: 26, 10, 51, 1, 65, 11, 29, 50, 12, 70.
- 11. What is m-search tree? Give examples.
- 12. Explain Haffman's algorithm
- 13. What are leftist heap trees? Explain insertion operation on leftist heap.
- 14. What is a Splay Tree? Give properties.

(4x3=12 weightage)

PART C

Questions 15 to 18. Answer any two. Each questions carries five weightage.

- 15. Explain algorithm for conversion of infix expression to postfix expression.
- 16. Explain algorithms for linear search and binary search. Compare their complexities.
- 17. Explain various collision handling methods in hashing.
- 18. Explain bubble sort and quicksort algorithms with the help of suitable examples. Analyze complexities of both algorithms.

(2x5=10 weightage)

2M1N23252	(Pages: 1)	Reg. No:
		Namer

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Computer Science Degree Examination, November 2023 MCS1C03 – Theory of Computation

(2022 Admission onwards)

Time: 3 hours Max. Weightage: 30

PART A (Answer any four. Each question carries Two weightage.)

- What is epsilon NFA?
- 2. Give applications of Finite Automata with examples.
- 3. Define regular grammar.
- 4. What do you mean by closure properties of a language?
- 5. Define Type 0 grammar.
- 6. Whether languages accepted by DTM and NDTM are the same?
- 7. Write note on different variants of Turing Machines?

 $(4 \times 2 = 8 \text{ weightage})$

PART B (Answer any four. Each question carries Three weightage.)

- 8. Give DFA for the language. $L = \{all \text{ strings with NOT more than three 'b' s; } \Sigma = \{a, b\} \}$.
- Explain the pumping lemma for regular language.
- 10. State equivalence of CFG and PDA (no proof is needed).
- 11. Define Normal forms CNF and GNF with one example each.
- 12. Give the difference between Turing acceptable and Turing decidable class of languages.
- 13. Explain LBA with a suitable example.
- 14. What do you mean by saying that a problem is NP complete.

 $(4 \times 3 = 12 \text{ weightage})$

PART C (Answer any two. Each question carries Five weightage)

- 15. How to convert a given NFA to DFA? Give the steps and procedure, by taking a suitable example.
- 16. Construct a DPDA for the language $L = \{0^n1^n \mid n \ge 1\}$
- 17. Explain PCP problem with suitable examples.
- 18. Explain Chomsky hierarchy of languages, with giving examples for each.

 $(2 \times 5 = 10 \text{ weightage})$

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Computer Science Degree Examination, November 2023 MCS1C04 – The Art of Programming Methodology

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

Answer any 4 questions. Each question carries 2 weightage

- 1. What is format specifier?
- 2. Describe the steps involved in executing a program written in C.
- 3. Explain conditional operator with example.
- 4. Explain the role of C pre-processor.
- 5. What is string? How they are declared?
- 6. Draw a Flow chart to display the Fibonacci series up to n.
- 7. Mention the difference between character array and integer array.

 $(4 \times 2 = 8 \text{ weightage})$

Part B Answer any 4 questions. Each question carries 3 weightages

- 8. Explain Union with Suitable example.
- 9. Write a program to insert a new integer into a sorted integer array.
- 10. Write a C program to sort n strings in ascending order using pointers.
- 11. Explain different looping structures in C with examples.
- 12. What do you mean by command line arguments? Write a program to find the sum and average of n numbers using command line arguments.
- 13. Write a note on Macros.
- 14. Illustrate with suitable examples "Syntax error", "Run time error", and "Logical error"

 $(4 \times 3 = 12 \text{ weightage})$

Part C Answer any 2 questions. Each question carries 5 weightages

- 15. Explain different storage class specifies with example.
- 16. What is dynamic memory allocation? Explain the different dynamic memory allocation function in C.
- 17. Write a program to accept a few lines of text, convert it to lowercase and store it in a file called lowertxt,dat
- 18. Design a flow chart to convert a decimal number into an equivalent Hexadecimal number and write C program

 $(2 \times 5 = 10 \text{ weightage})$

	RIMMEL
	N/4/3/
Z1711	N23254

Dagge	11	
Pages	11	ı

Reg.	No:	 	••	٠.			*		*		•			•
		 		•	15-12	 5.00	27	•	974	154		Ā	3)	9

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Computer Science Degree Examination, November 2023 MCS1C05 - Computer Organization and Architecture

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A

Questions 1 to 7. Answer any four. Each questions carries two weightage.

- 1. Draw and explain SR flip flop.
- 2. Outline the working of 4:1 multiplexer.
- 3. Differentiate between cash memory and virtual memory.
- 4. Explain virtual interrupt.
- 5. Explain working of DMA.
- 6. With example explain timing diagram.
- 7. Outline 8086 register organisation.

(4x2=8 weightage)

PART B

Questions 8 to 14. Answer any four. Each questions carries three weightages.

- 8. Design 2-bit asynchronous binary counter using JK flip flops.
- 9. Describe the register organisation of CPU.
- 10. Explain hardwire control unit.
- 11. Identify the steps in execution of branch instruction.
- 12. Explain memory interleaving.
- 13. Explain shift register with suitable example.
- 14. Explain the addressing mode of 8085.

(4x3=12 weightage)

PART C

Questions 15 to 18. Answer any two. Each questions carries five weightage.

- 15. Explain in detail about the organisation and working of virtual memory system.
- 16. With a suitable example explain working of binary counters. Write a note on binary codes.
- 17. Give a detailed account of micro programmed and hardwired control unit.
- 18. Explain steps in non-restoring division algorithm. Illustrate the algorithm with a suitable example.

(2x5=10 weightages)