### FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

## First Semester M.Sc Statistics Degree Examination, November 2024

### MST1C01 - Analytical Tools for Statistics - I

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

## Part A (Answer any four questions. Weightage 2 for each question)

- 1. Explain Linearity Properties of Reimann-Stieltjes Integral.
- 2. Define pointwise convergence. Give example.
- 3. How do you define the limit of a multivariable function at a given point?
- 4. Define Total Derivative.
- 5. What is meant by inverse Laplace Transform of a function?
- 6. Find Laplace transform of  $f(t) = e^{5t}$
- 7. Define Riemann Stieltjes integral.

(2x4=8 weightage)

#### Part B

### (Answer any four questions, Weightage 3 for each question)

- 8. State and prove mean value theorem on Rieman-Stieltjes integral.
- 9. Let  $f_n(x) = \frac{x}{n}$  for  $x \in [0,1]$ . Determine whether the sequence converges pointwise and uniformly. Justify your answer.
- 10. If f is a monotonic function on [a, b] and g is continuous on [a, b] show that  $\int_a^b f dg$  exists.
- 11. Prove that if a sequence of functions  $f_n$  converges uniformly to f on a closed interval [a, b] and each  $f_n$  is continuous, then f is also continuous on [a, b].
- 12. Discuss the continuity of  $f(x,y) = \begin{cases} \frac{x^2 y^2}{x + y} & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$
- 13. State and prove Taylor's theorem.
- 14. Find inverse Laplace transform of  $\frac{12}{(s-3)^4}$ .

#### Part C

### (Answer any two questions. Weightage 5 for each question)

- 15. State the necessary and sufficient conditions for the existence of the Riemann-Stielties integral and provide an example to illustrate.
- 16. Distinguish between pointwise convergence and uniform convergence. Explain the consequences of uniform convergence in differentiability and integrability.
- 17. Explain Lagrange multiplier method for constrained optimization. Find extreme value of  $u = 8x^2 xy + 12y^2$  subject to x + y = 42
- 18. Solve the initial value problems using Laplace transform

i) 
$$y' + 2y = e^{-t}$$
,  $y(0) = 1$  ii)  $y' + 3y = 10sint$ ,  $y(0) = 0$ 

(2x5=10 weightage)

### FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

### First Semester M.Sc Statistics Degree Examination, November 2024

### MST1C02 - Analytical Tools for Statistics - II

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

### Part A Answer any four (2 weightages for each) 1-7

- 1. Define a vector space and list its eight properties.
- Differentiate between the sum and direct sum of subspaces, and provide examples to illustrate each concept.
- 3. How do you define Rank of product of matrices provide an example
- 4. Define Hermitian, Skew- Hermitian matrices and Unitary matrix and write the specialities using eigen values of them
- 5. Find minimal and characteristic polynomial of the matrix  $\begin{pmatrix} 5 & 3 & 2 \\ 0 & 1 & 4 \\ 0 & 0 & 5 \end{pmatrix}$
- 6. Explain rank and signature of a quadratic form X'AX.
- 7. Prove that the system Ax = b is consistent if and only if b lies in the column space of A.

 $(4 \times 2 = 8 \text{ weightages})$ 

## Part B Answer any four (3 weightages each) 8-14

- Explain with an example for the following i) Quotient space ii) Inner product
   iii) orthogonality
- 9. State and prove Rank-nullity theorem
- 10. Define rank of a matrix. If  $\rho(A)$  is the rank of A, then show that

$$\rho(AB) \leq \min[\rho(A), \rho(B)].$$

- 11. Show that the characteristic roots of a Hermitian matrix are all real.
- 12. Show that F be a linear mapping from a polynomial space  $P^3$  to  $P^2$  such that  $F(x) = \frac{d}{dx}F(x)$ . Then find the rank and nullity of F.
- 13. Prove that the singular values of a matrix are unique, even though the SVD decomposition itself may not be unique.
- 14. Classify the quadratic form  $X'\begin{pmatrix} 1 & 2 & 4 \\ 2 & 4 & 3 \\ 4 & 3 & 2 \end{pmatrix}X$ . Also find the signature.

### Part C Answer any two(5 weightages each) 15- 18

15. A) Apply the Gram-Schmidt orthogonalization process to find an orthonormal basis for the subspace of R<sup>4</sup> spanned by the vectors

$$v_1 = (1, 1, 1, 1), v_2 = (1, 2, 4, 5) \text{ and } v_3 = (1, -3, -4, -2).$$

B) Check for linear independence and dependence of the following vectors

$$V_1 = (1, 1, 1, 1), V_2 = (1, 1, 1, 0)$$
 and  $V_3 = (1, 1, 0, 0).$ 

- 16. Let A and B are two idempotent matrix of order m, and  $I_m$  be identity matrix of order m. Then show
  - A) $I_m$  A is idempotent.
  - B) Each eigen values of A is 0 or 1.
  - C) A + B is idempotent if and only if AB = BA = 0
  - D) AB is idempotent if and only if AB = BA
- 17. A) Show that Moore-Penrose inverse is unique
  - B) State and prove the necessary and sufficient condition for a real quadratic to be positive definite.
- 18. A) Find the Moore-Penrose inverse of the matrix:  $A = \begin{pmatrix} 1 & 2 \\ 0 & 0 \end{pmatrix}$ 
  - B) Prove that a quadratic form  $x^T A x$  is positive definite if and only if all the eigenvalues of A are positive.

 $(2 \times 5 = 10 \text{ weightages})$ 

|    |     | 2011/2/12 |                                         |
|----|-----|-----------|-----------------------------------------|
| 1M | 1 7 | 1 4 6     | 71                                      |
|    |     |           | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |

(Pages: 2)

| Reg. No: | <br> |  |
|----------|------|--|
| Name:    | <br> |  |

### FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

### First Semester M.Sc Statistics Degree Examination, November 2024

### MST1C03 - Probability Theory - I

(2022 Admission onwards)

Time: 3 hours Max. Weightage: 30

### Part A: Short answer type questions (Answer any four questions, weightage 2 for each question.)

- Define a field and a sigma field. By an example show that a field need not be a sigma
  field.
- 2. Define limsup and liminf of a sequence of sets. How they are related? For a monotone sequence of sets show that limsup and liminf are equal.
- 3. Define distribution function of a random variable. Shaw that it is nondecreasing. State correspondence theorem.
- 4. Define MGF of a random variable. Explain any two uses of it.
- 5. State and prove CR inequality.
- 6. Discuss construction of a product space and state Fubini's theorem.
- 7. Show that convex combination of two distribution function is again a distribution function.

## Part B: Short essays/problems Answer any four questions. Weightage three for each question.

- 8. What do you mean by sigma field generated by a class of sets. Define Borel field. Is it the largest sigma field in the real line?
- 9. Define a random variable. Describe the probability space induced by a random variable.
- 10. Define a simple random variable. Show that any nonnegative random variable can be written as the limit of an increasing sequence of nonnegative simple random variables.
- 11. Define convergence in law and convergence in probability. Show that convergence in probability implies convergence in law.
- 12. If  $\{A_n\}$  is a sequence of events show that  $P[\liminf A_n] \leq \liminf P[A_n] \leq \limsup P[A_n] \leq P[\limsup A_n]$ .
- 13. If X and Y are independent U(0,1) random variable find the distribution of their sum.
- 14. State and prove Jordan decomposition theorem on distribution function.

## Part C: essays Answer any two questions. Each question carries weightage 5.

- 15. State and prove Borel 0-1 laws.
- 16. State and prove basic inequality. Hence deduce Markov inequality and Chebyshev's inequality. Discuss an example in which Chebyshev's inequality attains equality.
- 17. State and prove Helly Bray theorems on distribution functions.
- 18. Show that almost sure convergence implies convergence in probability. If  $\{X_n\}$  is a sequence of random variable that converges in probability to a random variable X. Show that there exists a sub sequence that converges almost surely to X.

(Pages : 2)

Reg. No:....

#### FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

### First Semester M.Sc Statistics Degree Examination, November 2024

### MST1C04 - Distribution Theory

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

#### PART A Answer any four (2 weightages each)

- 1. Explain the lack of memory property of geometric random variable.
- 2. Define probability generating function. Obtain the probability generating function of negative binomial random variable.
- 3. What is a mixture distribution? Explain with an example..
- 4. Define Cauchy distribution. If  $X_1, X_2, ..., X_n$  is a random sample from Cauchy distribution then obtain the distribution of the sample mean..
- 5. State and prove Cauchy Schwartz inequality.
- 6. Obtain the pdf of the largest order statistics of a random sample of size n taken from uniform distribution over (-1,1).
- Define noncentral student's t distribution. When will this reduces to central-t distribution

(2 x 4=8 weightages)

### PART B Answer any four (3 weightages each)

- 8. If X and Y are independent gamma random variables then show that U = X + Y and  $V = \frac{X}{X+Y}$  are independent.
- 9. If  $X \sim B(n, p)$ , show that  $E\left(\frac{X}{n} p\right)^2 = \frac{pq}{n}$  and  $Cov\left(\frac{X}{n}, \frac{n-X}{n}\right) = -\frac{pq}{n}$ .
- 10. The trinomial distribution of two random variables X and Y s given by

$$f(x,y) = \frac{n!}{x!y!(n-x-y)!} p^x q^y (1-p-q)^{n-x-y}, x, y = 0, 1, 2, ..., n, \ p, q \ge 0 \text{ and}$$
$$p+q \le 1.$$

- (i). Find the marginal distribution of X and Y.
- (ii). Find the conditional distribution of X and Y.
- 11. Let X & Y be jointly distributed with  $f(x,y) = \begin{cases} \frac{1}{4}(1+xy), |x| < 1, |y| < 1 \\ 0, otherwise \end{cases}$ . Show that X & Y are not independent but  $X^2 \& Y^2$  are independent.
- 12. Derive the MGF of normal distribution.
- 13. Describe the various types of distributions in the Pearson family.
- 14. Prove that the square of a t statistic follows F distribution.

### PART C Answer any two (5 weightages each)

- 15. Obtain the recurrence relation for cumulants of binomial distribution. Hence obtain the first four cumulants.
- 16. If  $X_1, \ldots, X_n$  is a random sample from a normal distribution with mean and variance then show that the sample mean is independent of the sample variance  $S^2$ .
- 17. Let  $X_1, X_2, ..., X_n$  be iid random sample from a uniform distribution over  $(0, \theta)$ . Then find the following
  - a) distribution of median
  - b)  $E(X_{n:n})$ .
- 18. Define non-central F-distribution and derive its density.

(5x 2=10 weightages)

(Pages: 2)

Reg. No:

Name: .....

#### FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

# First Semester M.Sc Statistics Degree Examination, November 2024 MST1C05 - Sampling Theory

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

#### Part A

### Short Answer Type Questions Answer any four questions. (Weightage 2 for each question)

- 1. Define sampling. Write down the advantages of it.
- 2. Explain circular systematic sampling,
- 3. Explain stratified sampling.
- 4. What is the advantage of ratio method of estimation? Prove that the ratio estimator of population mean is not unbiased.
- 5. What is  $\pi ps$  sampling?
- 6. Briefly explain PPSWR and PPSWOR.
- 7. Explain cluster sampling?

 $(4 \times 2 = 8 \text{ weightage})$ 

#### Part B

### Short Essay Type / Problem solving type questions Answer any four questions. (Weightage 3 for each question)

- 8. Prove that if N = nk, with usual notations, systematic sample mean  $\bar{y}_{sy}$  is an unbiased estimator of population mean. Also find its variance
- Explain proportional allocation in stratified sampling. Derive the variance of the unbiased estimator of population mean under this allocation.
- 10. Derive Heartley-Ross unbiased estimator of population men.
- 11. Explain Lahiri's method of selection in probability proportional to size sampling.
- 12. What is Des-Raj's ordered estimator? S.T. this estimator of population total is unbiased
- Explain two-stage sampling with equal cluster sizes. Obtain the variance of unbiased estimator of population mean.
- 14. Derive the variance of estimator of population mean under cluster sampling in terms of intra cluster correlation coefficient.

(4 x3=12 weightage)

# Part C Long Essay Type questions Answer any two questions. (Weightage 5 for each question)

- 15. Explain SRSWOR. Derive the variance of sample mean under this method and compare it with SRSWR. Also Set up the Confidence Interval for population mean.
- 16. Suggest a linear regression estimator of population mean. Find an approximate expression of its variance. Also derive the expression of minimum variance of it.
- 17. (a) Distinguish between ordered and unordered estimators. (b) Define Horvitz

  Thompson estimator for population total and check its unbiasedness. Also derive the variance of it.
- 18. Give an unbiased estimator of population Mean by Two-stage sampling with SRSWOR at both the stages. Derive the sampling variance.

(2 x5=10 weightage)