1	MA	1	N	24	n	61
1	14.1	1	11	44	U	O I

(Pages : 2) Reg. No:.....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Physics Degree Examination, November 2024 MPH1C01 - Classical Mechanics

(2022 Admission onwards)

Time: 3 hours Max. Weightage: 30

PART A (Short answer questions)

Answer all questions. Each question carries a weight of 1 and answerable within 7.5 minutes

- 1. Write a note on Holonomic and Non-Holonomic constraints with example of each type.
- 2. Sate and explain Virial theorem.
- Comment on the statement, 'Hamilton Jacobi equation is the shortest wavelength limit of Schrodinger equation'.
- 4. Explain stable, unstable and neutral equilibrium on the basis of potential energy functions.
- 5. Draw Feigenbaum diagram and obtain Feignbaum constants?
- 6. What is Coriolis force and Centrifugal force?
- 7. Obtain Hamilton's equation of motion from Hamilton's modified principle.
- 8. Write a short note on force free motion of a rigid body with reference to a symmetric top.

(8x1=8 weightage)

PART B (Essay Question)

Answer any two. Each question carries weight of 5 and is answerable within 30 minutes

- Solve the problem of the linear harmonic oscillator using action-angle variables. Cite the circumstances where Hamilton Jacobi theory is more useful.
- Derive the Kepler's three laws of planetary motion in the context of central force motion.
- 11. Discuss the free vibrations of a carbon dioxide molecule and obtain the normal modes and normal frequencies.
- Derive the Euler's equation of motion for rigid bodies using Newtonian and Lagrangian method.

(2x5=10 weightage)

PART C (Problem questions)

Answer any four. Each question carries weight of 3 and is answerable within 15 minutes.

- 13. If F and G are functions of position co-ordinates q_i, and momentum co-ordinates p_i, define the Poisson's brackets of F and G.
 Prove that i) [F, G] = [G, F] (ii) [qi, pj] = δij
- 14. What is velocity dependent potential? Find the Hamiltonian of an electric charge q, of mass m moving at a velocity v, in an electromagnetic field.
- 15. Find the curve joining two points along which a particle falling from rest under the influence of gravity travels from the higher to the lower point in the least time.
- 16. A simple pendulum that is free to swing the entire solid angle is called a spherical pendulum. Find the differential equation of motion of a spherical pendulum using Lagrange's method. Also show that the angular momentum about a vertical axis though the point of support is a constant of motion.
- 17. Masses m and 2m are connected by a light inextensible string which passes over a pulley of mass 2m and radius a. Write the Lagrangian and find the acceleration of the system.
- 18. The Lagrangian of a system is given below. Find the eigen frequencies and eigen vectors of the system using the theory of small oscillation.

$$L = \frac{1}{2}m(\dot{x}_1^2 + \dot{x}_2^2) - \frac{1}{2}[(k+k_1)x_1^2 + (k+k_1)x_2^2] + k_1x_1x_2$$

19. Discuss the iteration of logistic equation $x_{n+1} = ax_n(1-x_n)$, where $0 \le x_n \le 1$ and $1 \le a \le 4$, find the fixed point attractors and onset of chaos through period doubling.

(4x3=12 weightage)

(Pages: 2)

Reg.	No:	
Nimm		

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester M.Sc Physics Degree Examination, November 2024

MPH1C02 - Mathematical Physics

(2022 Admission onwards)

Time: 3 hours Max. Weightage : 30

Section A (Answer all questions. Each carries weightage of 1)

- 1. Give the significance of Dirac Delta Function
- 2. Explain quotient law for tensors.
- 3. Explain the general form of a second order differential equation and classify them based on being elliptic, parabolic or hyperbolic.
- 4. What are the advantages of curvilinear co-ordinate system?
- 5. Explain the convolution property of Fourier transform with an example.
- 6. Wite a short note on the concept of outer product in tensors.
- Explain when does a second-order linear homogeneous differential equation become self-adjoint.
- 8. Define generating function of Bessel differential equation. Evaluate $J_0(0)$.

(8x1=8 weightage)

Section B (Answer any two questions. Each carries weightage of 5)

- 9. Explain the algebraic operations on Tensors.
- Derive expression for Curl in general curvilinear co-ordinate system. Hence deduce it in spherical co-ordinate system.
- 11. Explain Gram-Schmidt orthogonalization procedure with a suitable example
- 12. Define a Fourier transform. Explain any five properties of Fourier transforms.

(2x5=10 weightage)

Section C (Answer any four questions. Each carries weightage of 3)

- 13. Evaluate $\Gamma(\frac{1}{2})$
- 14. If H is a Hermitian operator, prove that e^{iH} is unitary.
- 15. Find Laplace transform of the function $F(t) = \frac{e^{at}-1}{a}$
- 16. Find the Fourier series of the function e^x in the interval $-\pi < x < \pi$
- 17. Prove that $H_{2n}(0) = (-1)^n \frac{(2n)!}{n!}$
- 18. Using Frobenius' method to find the solution of linear oscillator equation

$$\frac{d^2y}{dx^2}$$
+ $\omega^2y=0$, near x=0

19. Check whether the given matrix is orthogonal, $A = \frac{1}{3} \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & -2 \\ -2 & 2 & -1 \end{bmatrix}$

(4x3=12 weightage)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE First Semester M.Sc Physics Degree Examination, November 2024 MPH1C03 – Electrodynamics & Plasma Physics

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A Answer all questions, each question carry weightage 1.

- Write the expressions for retarded potentials. Also get the corresponding phasor quantities.
- 2. What is the Brewsters angle for the case of parallel polarization?
- 3. Show that current density four vector is divergence less?
- 4. What is the skin depth of a good conductor?
- 5. Explain why waves along a lossy transmission line cannot be purely TEM
- 6. Write down the electrodynamic boundary conditions.
- 7. What are the three types of guiding structures that support TEM waves?
- 8. Why plasma exist only at high temperature?

(8 x 1=8 weightage)

Section B

Answer any two questions, each carry weightage 5

- 9. Express all Maxwell equations and Lorentz force equation in tensor notation.
- 10. Discuss the reflection and transmission of EM waves at normal incidence at a plane dielectric boundary. Get a relation connecting reflection coefficient and transmission coefficient.
- 11. What do you mean by plasma? What are plasma oscillations? Get an expression for plasma frequency.
- 12. Explain the propagation of TM modes in a rectangular waveguide.

(2 x 5=10 weightage)

Section C Answer any Four questions, each carry weightage 3

- 13. A sinusoidal electric intensity of amplitude250 V/m and frequency 2.45 GHz exist in a lossy dielectric medium that has relative permittivity of 40 and a loss tangent of 0.35. Find the average power dissipated in the unit volume.
- 14. Show that the orthogonality of E and B is preserved by Lorentz transformation.
- 15. Get the multipole expansion of V in powers of 1/r
- 16. (a) If the no. density of 5eV plasma is 10²⁰ m⁻³. (a) Find Debye length and N_D
 (b) Compute the Cyclotron frequency and Larmor radius for a electron travelling with a speed 500 m/s in a magnetic field of strength of 0.05 T
- 17. Show that in a good conductor, magnetic field intensity lags behind the electric field intensity by 45 degrees.
- 18. What is meant by a distortionless line? What relations must the distributed parameters of a line satisfy in order for the line to be distortionless?
- 19. What is Debye shielding? Get an expression for Debye length?

 $(4 \times 3 = 12 \text{ weightage})$

1	M	1	N	24	0	64	
			20.00	-	1700	700	

(Pages: 2)

Reg.	N	0	:.							4	u	•		•		•		
Name	e:									7					্			

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE First Semester M.Sc Physics Degree Examination, November 2024

MPH1C04 - Electronics

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Section A (Answer all questions, each carry weightage 1)

- What is the pinch-off voltage in a JFET?
- 2. Define threshold current density in a semiconductor laser.
- 3. Define the fill factor of a solar cell.
- 4. Define open-loop gain in an operational amplifier (op-amp).
- 5. What is CMRR, and why is it significant in op-amps?
- 6. Describe the characteristics of a Butterworth low-pass filter.
- 7. What is a shift register?
- 8. What is the SRAM?

(1x8 = 8 weightage)

Section B (Answer ANY TWO questions, each carry weightage 5)

- Explain the construction and operation of depletion-mode and enhancement-mode MOSFETs.
- 10. Explain the construction and characteristics of a tunnel diode and describe its negative differential resistance and operation.
- 11. Explain the operation and characteristics of a differential amplifier, with emphasis on emitter-coupled differential amplifiers.
- 12. Describe the design and frequency response of active low-pass, high-pass, and band-pass Butterworth filters using OPAMPs.

(2x5 = 10 weightage)

Section C (Answer ANY FOUR questions, each carry weightage 3)

- Design a differentiator to differentiate an output signal that varies in frequency from 10 Hz to about 1KHz
- 14. With the help of timing diagram and truth table explain the working of JK Master Slave flip-flop.
- 15. Design a low-pass filter at a cutoff frequency of 1 kHz with a passband gain of 2.
- 16. For an n-channel silicon FET with a $3x10^{-4}$ cm and $N_D = 10^{15}$ electrons/cm³, find (a) the pinch-off voltage and (b) the channel half-width for $V_{GS} = \frac{1}{2} V_P$ and $I_D = 0$.
- 17. Given $g_{fs} = 2.8 \text{mS}$ and $g_{os} = 10 \mu\text{S}$, sketch the FET ac equivalent model.
- 18. If (i) $V_1 = 30\mu V$ and $V_2 = -30\mu V$ and (ii) $V_1 = 1000\mu V$, $V_2 = 900\mu V$ and common mode rejection ratio 100, calculate the percentage difference in output voltage obtained for the two sets of input signals.
- 19. In the astable multivibrator, $R_A = 2.2 \text{ k}\Omega$, $R_B = 3.9 \text{ k}\Omega$ and C=0.1 μ F. Determine the positive pulse width t_c and negative pulse width t_d .

(4x3 = 12 weightage)