3M4A22532

The state of the s

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, April 2022

MMT4E11- Graph Theory

(2020 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

Answer all the 8 questions.

Each question carries 1 weightage

- 1. Show that G is a forest if and only if every edge of G is a cut edge.
- 2. Draw all non-isomorphic spanning trees of K₃
- 3. Discuss the difference between cut vertex and vertex cut using an example.
- 4. Show that r(3,3) = 6
- 5. Prove that $\alpha + \beta = \nu$
- 6. Define k-edge colourable graph with an example.
- 7. Prove that in a critical graph no vertex cut is a clique.
- 8. Define bridge in a graph. Give an example.

Part B

Answer any two questions from each unit. Each question carries 2 weightage

Unit I

- Prove that an edge e of G is a cut edge of G if and only if e is contained in no cycle of G.
- 10. Show that $\kappa \leq \kappa'$ where κ is the vertex connectivity and κ' edge connectivity of a graph.
- 11. Let G be a simple graph with degree sequence $(d_1, d_2, \ldots, d_{\nu})$, where $d_1 \leq d_2 \leq \cdots \leq d_{\nu}$ and $\nu \geq 3$. Suppose that there is no value of m less than $\nu/2$ for which $d_m \leq m$ and $d_{\nu-m} < \nu m$. Then show that G is Hamiltonian.

Unit II

- 12 Define (a) Maximum matching and (b) M-augmenting path in a graph. Prove that if G contains no M-augmenting path, then M is a maximum matching in G.
- 13. Every 3-regular graph without cut edges has a perfect matching.
- 14. Let G be a connected graph that is not an odd cycle. Then prove that G has a 2-edge colouring in which both colours are represented at each vertex of degree atleast two.

Unit III

- 15. If G is simple, then prove that $\pi_k(G) = \pi_k(G e) \pi_k(G \cdot e)$ for any edge e of G.
- 16. Prove that inner bridges avoid one another.
- 17. Prove that a loopless digraph D has an independent set S such that each vertex of D not in S is reachable from a vertex in S by a directed path of length atmost two.

Part C

Answer any six out of nine questions.

Each question carries 5 marks

- 18. Discuss Kruskal's algorithm. Show that any spanning tree $T^*=G[\{e_1,e_2,\ldots,e_{\nu-1}\}]$ constructed by Kruskal's algorithm is an optimal tree.
- 19. (a) Let G be a bipartite graph with bipartition (X,Y). Then show that G contains a matching that saturates every vertex in X if and only if

$$|N(S)| \ge |S|$$
 for all $S \subseteq X$

- (b) If G is a k-regular bipartite graph with k > 0, then prove that G has a perfect matching.
- 20. If G is a simple graph then show that either $\chi' = \Delta$ or $\chi' = \Delta + 1$.
- 21. State and prove Kuratowski's theorem.

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, April 2022 MMT4E09 -Differential Geometry

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PARTA

Answer ALL questions. Each question has I weightage.

- 1. Sketch the level set at height c=2 for the function $f(x_1, x_2) = x_1^2 + x_2^2$.
- 2. Prove that $a_1x_1 + a_2x_2 ... + a_{n+1}x_{n+1} = b$ where $0 \neq (a_1, a_2, a_3, a_{n+1}) \in \mathbb{R}^{n+1}$ and $b \in \mathbb{R}$, forms a n-surface in \mathbb{R}^{n+1} .
- 3. Show that the two orientations on the n-sphere $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = r^2$ of radius r > 0 are given by $N_1(p) = (p, \frac{p}{r})$ and $N_2(p) = (p, -\frac{p}{r})$.
- 4. Let X and Y be smooth vector fields along the parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$. Verify that $(X \dotplus Y) = X \dotplus Y$.
- 5. Let X be parallel vector field along a parametrized curve $\alpha: I \to \mathbb{R}^{n+1}$. Prove that X has constant length.
- 6. Define the circle of curvature of an oriented plane curve.
- 7. Let S be an oriented n-surface in R^{n+1} and let $p \in S$. Define the first and second fundamental forms of S at p.
- 8. Define a parametrized n-surface in R^{n+1} .

 $(8 \times 1 = 8 weightage)$

PART B

Answer any two questions from each unit. Each questioncarries2 weightage.
UNIT I

- 9. Show that for each $p \in R^{n+1}$, the set R_p^{n+1} of all vectors at p is a vector space.
- 10. Show that at each regular point p on a level set $f^{-1}(c)$ of a smooth function there is a well defined tangent space consisting of all velocity vectors at p of all parametrized curves in $f^{-1}(c)$ passing through p.
- 11. Show that the maximum and minimum values of the function $g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ where $a, b, c \in R$ on the unit circle $x_1^2 + x_2^2 = 1$ are the eigen values of the matrix $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$.

- 12. Prove that for each pair of orthogonal unit vectors $\{e_1, e_2\}$ in \mathbb{R}^3 and each $a \in \mathbb{R}$, the great circle $\alpha(t) = \cos at \ e_1 + \sin at \ e_2$ are geodesics on the unitsphere $x_1^2 + x_2^2 + \cos at \ e_1 + \sin at \ e_2$
- 13. Let S be a n-surface in R^{n+1} , let $p,q \in S$, and let α be a piecewise smooth parametrized curve from p to q. Prove that the parallel transport $P_{\alpha}: S_p \to S_q$ along α is
- 14. Let C be a connected oriented plane curve and let $\beta: I \to C$ be a unit speed parametrization of C. Prove that β is either one one or periodic.

Unit III

- 15. Prove that on each compact oriented n-surface S in \mathbb{R}^{n+1} there exists a point p such that the second fundamental form at p is definite.
- 16. Describe a parametrized torus in \mathbb{R}^4 .
- 17. Let S be a compact, connected oriented n-surface in \mathbb{R}^{n+1} whose Gauss Kronecker curvature is nowhere zero. Prove that the Gauss map $N: S \to S^n$ is a diffeomorphism. $(6 \times 2 = 12 \text{ weightage})$

PART C Answer any two questions. Each question carries 5weightage.

- 18. a)Let X be a smooth vector field on an open set $U \subset \mathbb{R}^{n+1}$ and let $p \in U$. Prove that there exists an open interval I containing 0 and an integral curve $\alpha: I \to U$ such that $\alpha(0) = p$.
 - b) Find the integral curve through p(0,1) of the vector field Xon R^2 given by $X(p) = (p, X(p) \text{ where } X(x_1, x_2) = (-x_2, x_1)$
- 19. a) Find the spherical image of the hyperboloid $x_1^2 x_2^2 x_3^2 = 4$, $x_1 > 0$, oriented by $N = \frac{-\nabla f}{||\nabla f||}$ where $f(x_1, x_2, x_3) = x_1^2 - x_2^2 - x_3^2$.
 - b) Let S be a compact, connected oriented n-surface in R^{n+1} . Prove that the Gauss map maps S onto the unit n-sphere S^n .
- 20. a) Show that the Weingarten map at each point p of an oriented n-surface in R^{n+1} is self adjoint.
 - b) Show that the Weingarten map of the n-sphere $x_1^2 + x_2^2 + \cdots + x_{n+1}^2 = r^2$ of radius r > 0, oriented by inward unit normal is simply multiplication by $\frac{1}{r}$.
- 21. a) Let S be an n-surface in \mathbb{R}^{n+1} and let $f: S \to \mathbb{R}^k$. Then prove that f is smooth if and only if $f \circ \varphi : U \to \mathbb{R}^k$ is smooth for each local parametrization $\varphi : U \to \mathbb{R}^k$. b) State and prove the inverse function theorem for n-surfaces.

25

21	14	A2	25	534
44.	100			

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, April 2022

MMT4E14 - Computer Oriented Numerical Analysis

(2019 Admission onwards)

Time: 1 1/2 hours

Max. Weightage: 15

Section A

Answer ALL questions. Each question carries I weight.

- Define a "complex type" variable in Python. Give it a value.
 Write a command to print the sum of the real and imaginary parts?
- 2. Write a Python programme, that will ask to input your name and will print it as the output.
- 3. Write a Python program to get the print out of multilication table of 7 upto $10 \times 7 = 70$ using a "FOR" loop.
- 4. What is the use of "BREAK" and "CONTINUE" in Python? Explain using a suitable example.

 $4 \times 1 = 4$ Weights.

Section B

Answer any THREE questions. Each question carries 2 weights.

- 5. Write a Python program to do the following. Asking the input of a natural number "n" and the number of natural numbers less than "n" and prime to "n".
- 6. Explain the problem and Simpson's 1/3 rule for numerical integration.
- 7. Write short notes on at least three different "Lists" in Python. (One example for each).
- 8. What is 'Data Structures' in Python? Explain with suitable examples.

9. Write a Python proram to input the name, date of birth, and height of 10 persons and to show the print out in the format of a table, preferably with border and inner lines.

 $3 \times 2 = 6$ Weights.

Section C

Answer any ONE question. Each question carries 5 weights.

- 10. a) Write a Python Program to find the Largest of three positive integers you input.
 - b) Explain the problem, the method, the algorithm and a Python program for the Bisection Method.
- 11. Explain the problem, the method, the algorithm and a Python program for the Numerical Solution of Ordinary Differential Equations.

 $1 \times 5 = 5$ Weights.

2M4A225	31
4114	

(Pages: 2)

Reg.	No:	
Nam	e:	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Degree Examination, April 2022

MMT4C15 - Advanced Functional Analysis

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Answer all questions. Each carries 1 weightage

- If A, B are linear operators on a normed space X, prove that A^{-1} and B^{-1} exists if and 1. only if $(AB)^{-1}$ and $(BA)^{-1}$ exists.
- Give an example of an operator whose spectrum is empty. 2.
- Define transpose of a linear map. If $F \in BL(X,Y)$, prove that ||F|| = ||F'||. 3.
- If X is a reflexive normed space, show that X' is also reflexive. 4.
- Give an example to show that 0 can be a spectral value of a compact operator without 5. being its eigen value.
- If X is any inner product space and for $y \neq 0$ in X, define $f_y(x) = \langle x, y \rangle$, $x \in X$. 6. Show that f is a bounded linear functional on X and ||f|| = ||y||.
- If $A \in BL(H)$, show that A is normal if and only if ||A(x)|| = ||A'(x)|| for all $x \in H$. 7.
- Define numerical range. If $A \in BL(H)$, show that $k \in \omega(A)$ if and only if $\overline{k} \in \omega(A^*)$. 8.

 $(8 \times 1 = 8 \text{ weightage})$

Part B Answer any two questions from each unit. Each carries 2 weightage Unit 1

- If X is a Banach space, prove that $A \in BL(X)$ is invertible iff A is bounded below 9. and the range of A is dense in X.
- If X is a Banach space, show that the set of all invertible operators is open in BL(X)10. and the map $A \mapsto A^{-1}$ is continuous.
- If X is a normed space and if X' is separable, show that X is also separable. 11.

Unit 2

- Show that, if Y is a Banach space, then CL(X,Y) is a closed subspace of BL(X,Y). Show that, if I is an infinite dimensional normed space and if $A \in CL(X)$, show that 0 is an 12.
- approximate eigen value of A. approximate organization theorem. Give an example to show that this theorem need not
- hold for an incomplete inner product space.

Unit 3

- 15. Let H be a Hilbert space and $A \in BL(H)$. Then show that there is a unique $B \in BL(H)$ such that $\langle A(x), y \rangle = \langle x, B(y) \rangle$ for all $x, y \in H$.
- self-adjoint, $A \in BL(H)$ is then show that and 16. If $H \neq \{0\}$ $\{m_{_A},M_{_A}\}\subset\sigma_a(A)=\sigma(A)\subset[m_{_A},M_{_A}].$
- 17. Define Hilbert -Schmidt operator. Show that every Hilbert -Schmidt operator is compact.

 $(6 \times 2 = 12 \text{ weightage})$

Part C

Answer any two questions. Each carries 5 weightage

- 18. (a) If X is a Banach space over K and if $A \in BL(X)$, prove that $\sigma(A)$ is a compact subset of K.
 - (b) If $1 \le p < \infty$ and if $\frac{1}{p} + \frac{1}{q} = 1$, show that the dual of ℓ^p is linearly isometric to ℓ^q .
- 19. (a) Define weak convergence. Give an example to show that weak convergence is weaker than norm convergence. Also, show that $x_n \xrightarrow{w} x$ in ℓ^1 iff $x_n \xrightarrow{} x$ in ℓ^1 .
 - (b) Show that every closed subspace of a reflexive normed space is reflexive.
- (a) If A is a compact operator on a normed space X, prove that the eigen spectrum and the spectrum of A are countable sets and have 0 as the only possible limit point.
 - (b) State and prove projection theorem.
- 21. (a) If H is a finite dimensional Hilbert space over C and if $A \in BL(H)$ is a normal operator then proved the space over C and if $A \in BL(H)$ is a normal operator. operator, then prove that there is an orthonormal basis for H consisting of eigen vectors of A.
 - (b) If $A \in BL(H)$, and if each A_n is a compact operator on the Hilbert space H and $||A_n A|| \to 0$, then show that $||A_n - A|| \rightarrow 0$, then show that A is compact,