Reg. No:...

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Mathematics Degree Examination, April 2022 BMT6B14(E03) – Mathematical Programming with Python and Latex

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A All questions can be attended. Each question carries 2 marks. Cieling 20 marks

1. Write the output of the python program

x = 12 y = 3 print(x = 4*y)

- 2. What is slicing in python? Give example of any two different types of slicing.
- 3. Explain mutable and immutable types in python.
- 4. Write the syntax of while loop in python.
- 5. Explain the output of the function range(3,71,6) in python.
- 6. Write the use of break statement in python.
- 7. Give example of two library functions in python and specify their uses.
- 8. How do you write comments in a python program? What is its importance?
- 9. Write the output of the python program:

a = 'abc.abc.abc'

aa = a.split('.')

print (aa)

mm = '+'.join(aa)

print (mm)

- 10. What is Mathplotlib? Write a use of it.
- 11. Write three different document types in LATEX.
- 12. Write the LATEX code to get the output $\sum_{n=1}^{10} (2n+1)$.

Section B All questions can be attended. Each question carries 5 marks. Cieling 30 marks

- 13. Write a python program to input two numbers and to give the following output as print: The first number, the second number, the sum and the product.
- 14. Write a python program to get output as the multiplication tale of 7 starting from $1 \times 7 = 7$ upto $10 \times 7 = 70$.
- 15. Explain the power function used in python.
 What is the default value of exponent in python?
- 16. Give example of a python program to show the use of input and output of files.
- 17. Write a python program to set the order 2×3 for a matrix, input its entries and print the matrix.
- 18. Write a python program for a Pie Chart. Assume your own data.
- 19. Give one example each for non-numberised and numberised listings in LATEX.

Section C Answer any One Question. Each question carries 10 marks. 10 marks from this section

- 20. Write a python program to input the coefficients of a quadratic equation and to display the solution and nature of roots. Include proper comments, suitable messages for the inputs and formatted printing of the output.
- 21. Prepare the IATEX code to generate a question paper similar to the one that you are writing now. It is enough to include only two questions in each section.

			1000	0	-0
4.77	-1	A	17.	U:	00
11	Вσ	1		-	58

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Mathematics Degree Examination, April 2022

BMT6B13-DIFFERENTIAL EQUATIONS

(2019 Admission onwards)

Time: 2.5 hours

Max. Markss: 80

PART A

All the questions can be attended. Each question carries 2 marks.

- 1. What is meant by a singular solution of a differential equation.
- 2. Define an exact differential equation. Check whether (x+y)dy (x-y)dx = 0 is exact?
- 3. Solve the differential equation $y' + 2t^2y = 0$.
- 4. Find the interval in which the initial value problem:

$$ty' + 2y = 4t^2$$
, $y(1) = 2$ has a unique solution.

- 5. Find the order and degree of the differential equation $\frac{d^4y}{dx^4} + 5\left(\frac{d^2y}{dx^2}\right)^3 \frac{dy}{dx} = y$.
- 6. Find the fundamental set of solutions of the differential equation y'' + 6y' + 9y = 0.
- 7. State Abel's theorem.
- 8. Check whether the functions $y_1 = t$ and $y_2 = t + 3$ are linearly independent or not.
- 9. Define Unit step function. What is its Laplace transform?
- 10. Find the reduction formula for $L[t^n]$ for any positive integer n
- 11. Find the Laplace Transform of $e^{-3t}\cos 3ht$.
- 12. Find $L^{-1}\left[\frac{e^{-3s}}{(s-1)^4}\right]$
- 13. What is the fundamental period of sin4t?
- 14. Verify that $u(x,t) = x^3 + 3xt^2$ is a solution of the one-dimensional wave equation.
- 15. Find the Fourier Series expansion for f(x) = x in $[-\pi, \pi]$ with $f(x) = f(x + 2\pi) \forall x \in \mathbb{R}$

PART B

All the questions can be attended. Each question carries 5 marks.

- 16. Find an integrating factor for the differential equation $(y x^2)dx + (x^2 \sin y x)dy = 0$. And then solve the equation.
- 17. Solve the differential equation $t^2y' + 2ty = y^3$ where t > 0
- 18. Solve $x^2y'' 3xy' + 4y = 0$ given y(1) = 0 and y'(1) = 3.
- 19. Solve the non homogeneous differential equation $y'' 3y' + 2y = 4x + e^{3x}$
- 20. If $f(t) = t \operatorname{sinat}$, then find L[f(t)]
- 21. Find $L^{-1}\left\{\frac{3s}{s^2-s-6}\right\}$.
- 22. Express the function $f(x) = x^2$ when -1 < x < 1 as a Fourier Series with period 2.
- 23. Find the half range sine series expansion of the function f(x) = 1 x, $0 \le x \le 1$

(ceiling 35 Marks)

PART C:

Answer any two questions. Each question carries 10 marks.

- 24. a) Solve the differential equation x(y-x)dy = (y+x)ydx
 - (b) Using Picard's Iteration method solve the initial value problem y' = x + y with y(0) = -y
- 25. (a) Solve by using the method of variation of parameters $y'' + 4y = 3 \cos c t$
 - (b) Solve the differential equation y'' + y = cost
- 26 (a) Using the convolution property find the inverse Laplace transform of $\frac{1}{s^2(s^2+9)}$
 - (b) Using Laplace transform, solve the initial value problem

$$y'' - 3y' + 2y = 4e^{2t}$$
 , $y(0) = -3$ and $y'(0) = 5$

27. (a) Find the half range cosine series expansions of the function

$$f(t) = \begin{cases} \frac{2k}{l}t & ; \quad 0 \le t < \frac{l}{2} \\ \frac{2k}{l}(l-t) & ; \quad \frac{l}{2} \le t < l \end{cases}$$

(b) Solve using the method of separation of variables $u_x + u_y = 0$.

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Mathematics Degree Examination, April 2022

BMT6B12 - Calculus of Multivariable - 2

(2019 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

Section A All questions can be attended. Each question carries 2 marks. Cieling 25 marks

- 1. Write equation of normal to the curve $\frac{x^2}{16} \frac{y^2}{9} = 1$ at the point $(5, \frac{9}{4})$.
- 2. Locate the critical points for the function $f(x,y) = x^2 + y^2 2x 4y$.
- 3. Write the method of Lagrange multiplier.
- 4. Evaluate $\int_{1}^{2} \int_{0}^{1} x^{2}y dx dy$.
- 5. Write the integral $\int_{R} \int (x+y)dA$ using polar coordinates where R is the region in the first quadrant bounded by the circle $x^2 + y^2 = 4$.
- 6. Write the formula to find the area of a surface x = h(y, z).
- 7. Describe the method of converting a triple integral from rectangular coordinates to cylindrical coordinates.
- 8. Find the curl of the vector field $\mathbf{F}(x,y) = xy\hat{i} + (x+y^3)\hat{j}$.
- 9. Evaluate the line integral $\int_C (x+y) ds$ where C is $\mathbf{r}(t) = 3t\hat{i} + 4t\hat{j}$, $0 \le t \le 1$.
- 10. State the theorem connecting Independence of Path and Conservative Vector Fields.
- 11. If a line integral over any simple closed curve is zero, prove that the line integral is independent of path.
- 12. Test whether $\mathbf{F}(x,y) = 2xy\hat{i} + x^2\hat{j}$ is a conservative vector field or not.
- 13. State the Green's theorem for simple regions. Explain the terms used in the statement.
- 14. Find the area enclosed by the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ using line integral and Green's theorem.
- 15. State the Stoke's theorem.

Section B

All questions can be attended. Each question carries 5 marks. Cieling 35 marks

- 16. Classify the critical points for the function $f(x,y) = x^2 + 3y^2 6xy 2x + 4y$.
- 17. Reverse the order of integration and evaluate the integral $\int_{0}^{1} \int_{y}^{1} \frac{\sin x}{x} dx dy$.
- 18. Find the area of the surface $z = \frac{1}{2}x^2 + y$ that lies above the triangular region with vertices (0,0), (1,0) and (1,1).
- 19. Evaluate $\iint_B \int (xy + x^2z + yz^2)dV$ where B is the cuboid $\{(x, y, z)\} | -1 \le x \le 1, 0 \le y \le 2, 1 \le z \le 3\}$.
- 20. For a scalar function f and a vector function \mathbf{F} , prove that $\operatorname{curl}(f\mathbf{F}) = f \operatorname{curl} \mathbf{F} + \nabla f \times \mathbf{F}$.
- 21. Find the work done by the force field $\mathbf{F} = x^2\hat{i} + y^2\hat{j} + z^2\hat{k}$ on a particle that moves along the curve $C: \mathbf{r}(t) = t\hat{i} + t^2\hat{j} + t^3\hat{k}$, $0 \le t \le 1$.
- 22. Find a parametrisation of the surface of the cone $z = \sqrt{x^2 + y^2}$.
- 23. Use divergence theorem to compute $\iint_S \mathbf{F} \cdot \mathbf{n} \, dS$ where S is the unit sphere $x^2 + y^2 + z^2 = 1$ and $\mathbf{F}(x, y, z) = (x + \sin z)\hat{i} + (2y + \cos x)\hat{j} + (3z + \tan y)\hat{k}$.

Section C

Answer any Two Questions. Each question carries 10 marks. 20 marks from this section

- 24. Find the absolute maximum and the absolute minimum values of the function $f(x,y) = 2x^2 + y^2 4x 2y + 3$ on the region $D = \{(x,y | 0 \le x \le 3, 0 \le y \le 2\}$.
- 25. Evaluate $\int_T \int (x^2y + yz^2)dV$ where T is the region bounded by the cylinder $x^2 + z^2 = 1$ and the planes y + z = 2 and y = 0.
- 26. Show that $\mathbf{F}(x,y,z) = 2xy^2z^3\hat{i} + 2x^2yz^3\hat{j} + 3x^2y^2z^2\hat{k}$ is a conservative field. Find a scalar function f(x,y,z) whose gradient is $\mathbf{F}(x,y,z)$.

 Also evaluate $\int_C \mathbf{F} \cdot d\mathbf{r}$ where C is any curve from the point (0,0,0) to the point (1,1,1).
- 27. Find the surface area of a sphere of radius a using the idea of parametrised surface.

Reg. No:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Mathematics Degree Examination, April 2022

BMT6B11 - Complex Analysis

(2019 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

SECTION A Answer the following questions. Each carries two marks (Ceiling 25)

- 1. Show that $f(z) = \bar{z}$ is no where differentiable.
- 2. If f(z) has a derivative at z_0 , then prove that f(z) is continuous at z_0 .
- 3. Suppose that f(z) is analytic in a domain D, if $f'(z) = 0 \ \forall z \in D$, prove that f(z) is constant in D
- 4. If u and v are harmonic functions conjugate to each other in some domain, then prove that u and v must be constant there.
- 5. Let C denote the quarter circle defined by $x=4\cos t,y=4\sin t,0\leq t\leq 4$, Evaluate $\int_C xy^2dy$
- 6. Evaluate $\int_C xydx + x^2dy$ where C is the graph of $y = x^3, -1 \le x \le 2$
- 7. Define complex valued functions and evaluate $\int_0^1 (1+it)^2 dt$
- 8. If $|f(z)| \le M$ every where on a contour C and L is the length of C then prove that $|\int_C f(z)dz| \le ML$
- 9. State and prove Liouville's Theorem
- 10. Let f(z) = 2z + 5i defined in $|z| \le 2$. Find the points where |f(z)| has its maximum and minimum in the region
- 11. True or false: Absolute convergence of a series implies convergence of that series. Is the converse true? Justify.
- 12. Prove that $\sum_{k=1}^{\infty} \frac{(3-4i)^k}{k!}$ converges
- 13. Identify t the type of singularity of (a) $\frac{\sin z}{z}$ (b) $\frac{1}{(2-z)^3}$
- 14. Identify the type of singularity of (a) $\frac{z^2}{1+z}$ (b) $ze^{1/z}$

15. Find the residues at the singular point (a) $\frac{4}{1-z}$ (b) $\frac{\sin z}{z^4}$

SECTION B

Answer the following questions. Each carries five marks (Ceiling 35)

- 16. Explain L'Hopital's Rule and evaluate $\lim_{z\to 2+i} \frac{z^2-4z+5}{z^3-z-10i}$
- 17. Solve $\sin z = \cosh 4$
- 18. Evaluate $\int_C (6x^2 + 2y^2) dx + 4xy dy$ where C is given by $x = \sqrt{t}, y = t, 4 \le t \le 9$
- 19. Let C be the arc of the circle |z|=2 from z=2 to z=2i that lies in the first quadrant. Without evaluating integral show that $\left| \int_C \frac{dz}{z^2-1} \right| \leq \frac{\pi}{3}$
- 20. Find all Laurent series representation of the function $f(z) = \frac{1}{1-z^2}$ with center at z=1
- 21. Find all Laurent series representation of $f(z) = \frac{-2z+3}{z^2-3z+2}$ with center 0.
- 22. Find the residue at at the singular point (a) $f(z) = \frac{z^3 + 2z}{(z-i)^3}$ (b) $g(z) = \cot z$
- 23. Show that $\int_0^{2\pi} \frac{d\theta}{a + b \cos \theta} = \frac{2\pi}{\sqrt{a^2 b^2}}, a > b > 0$

SECTION C

Answer any two questions $(2 \times 10 = 20 \text{ Marks})$

24. (a) Show that for the function

$$f(z) = \begin{cases} \frac{z^2}{z} & when \quad z \neq 0\\ 0 & otherwise \end{cases}$$

even though partial derivative of component function exists and satisfy C-R equations at z = 0, f(z) is not differentiable at z = 0.

- (b) Show that f(z) = Re z is no where differentiable.
- 25. (a) If f is a analytic in a simply connected domain D, then prove that f has an antiderivative in D, that is there exist a function F such that F'(z) = f(z)
 - (b) Evaluate $\int_0^{1+i} e^{\pi z} dz$
- 26. Expand $f(z) = \frac{1}{z(z-1)}$ in a Laurent series valid for the following domains:
 - (a) 0 < |z| < 1 (b) |z| > 1 (c) 0 < |z-1| < 1 (d) |z-1| > 1
- 27. (a)A function analytic in a punctured disk $0 < |z z_0| \le R$ has a pole of order n at $z=z_0$ if and only if f(z) can be written in the form $f(z)=\frac{\phi(z)}{(z-z_0)^n}$ where ϕ is analytic
 - (b) If f has a simple pole at $z=z_0$ then $Res(f(z),z_0)=lim_{z\to z_0}[(z-z_0)f(z)]$

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Mathematics Degree Examination, April 2022

BMT6B10 - Real Analysis

(2019 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

Section A All questions can be attended Each question carries 2 marks

- 1. Show that $f(x) = x^2$ is uniformly continuous on [-1, 1].
- 2. State and prove Lipschitz condition for uniform continuity.
- 3. State Bernstein Approximation Theorem.
- 4. Let $f: [0, 5] \rightarrow \mathbb{R}$ be defined by f(x) = 3. Show that f is Riemann integrable.
- 5. If f is Riemann integrable then prove that the value of the integral is unique.
- 6. Prove that the step function is Riemann integrable.
- 7. State First form of the Fundamental Theorem of Calculus.
- 8. Evaluate the integral $\int_{0}^{2} t^{2} \sqrt{1+t^{3}} dt$. Justify your steps.
- 9. Prove that the sequence $g_n(x) = x^n$ converges point wise on (-1, 1].
- 10. Show that $\sum_{n=1}^{\infty} \frac{1}{n^p + n^2 x^2}$ is uniformly convergent for all values of x, if p>1.
- 11. Test the convergence of the improper integral $\int_{0}^{\infty} \sin x dx$.
- 12. If $\int_{a}^{\infty} f(x)dx$ converges absolutely then prove that $\int_{a}^{\infty} f(x)dx$ converges.
- 13. Test the convergence of $\int_{1}^{5} \frac{dx}{\sqrt{x^4 1}}$.
- 14. Prove that the Beta function is symmetric.
- 15. Prove that $\Gamma n = (n-1)\Gamma(n-1)$.

Section B All questions can be attended Each question carries 5 marks

- 16. State and prove Boundedness Theorem on Continuous functions.
- 17. Show that $g(x) = \sqrt{x}$ on [0,2] is not a Lipschitz function.
- 18. Let h(x)=x for $x \in [0,3]$. Show that $h \in R[0,3]$ and evaluate its integral over the interval [0,3].
- 19. If $f \in R[a, b]$ then prove that f is bounded on [a, b].
- 20. Show that the sequence $S_n(x) = \frac{n}{x+n}$ for every $x \ge 0$ is uniformly convergent on [0,m] for any m.
- 21. Show that $\int_{a}^{\infty} \frac{1}{x^{p}} dx$ is converges if p > 1 and diverges if $p \le 1$, for a > 0.
- 22. Examine the convergence of $\int_{0}^{1} \frac{dx}{\sqrt{1-x^2}}$
- 23. Evaluate $\int_{0}^{\pi/2} \sin^{7} x dx$.

Ceiling - 35 Marks

Section C

Answer any two questions Each question carries 10 marks

- 24. (a) State and prove Uniform Continuity Theorem.
 - (b) If $f \in \mathbb{R}[a, b]$ and if $|f(x)| \le M$ for all $x \in [a, b]$, then prove that

$$\left| \int_{a}^{b} f(x) dx \right| \le M(b-a).$$

- 25. (a) Prove that a sequence (f_n) of bounded functions on $A \subseteq R$ converges uniformly on A to f if and only if $||f_n f||_A \to 0$ as $n \to \infty$.
 - (b) Show that $h_n(x) = x^n(1-x)$ for $x \in [0,1]$ is converges uniformly on [0,1].
- 26. (a) Test for the convergence of the improper integral $\int_{1}^{\infty} \frac{dx}{x\sqrt{x^2+1}}$.
 - (b) Evaluate the Cauchy Principal Value of $\int_{-1}^{5} \frac{dx}{(x-1)^3}$.
- 27. (a) Prove that $B(m,n) = \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$
 - (b) Prove that $B(m.n) = \frac{\Gamma m \Gamma n}{\Gamma (m+n)}$.