1B6A22013	5
-----------	---

(Pages: 2)	Reg. No:
	Momas

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Chemistry Degree Examination, April 2022 BCH6B09 - Inorganic Chemistry IV

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A (Short answers) (Answer questions up to 20 marks. Each question carries 2 marks)

- 1. What is the coordination number of the central metal ion in the following complexes: (i) $[Ni(en)_3]^{2+}$ (ii) $[Fe(C_2O_4)_3]^{3-}$
- 2. Name two scanning probe microscopes?
- Cu(I) compounds are colourless and diamagnetic, while Cu(II) compounds are coloured and paramagnetic. Why?
- 4. Why do zirconium and hafnium have same size?
- The absorbance of an iron thiocyanate solution containing 0.00500 mg Fe/mL was reported as 0.4900 at 540 nm. Calculate the specific absorptivity of iron thiocyanate assuming that a 1.00 cm cuvette was used.
- 6. Given the IUPAC names of (i) [Co(NH₃)₆]Cl₃ (ii) K₄[Fe(CN)₆]
- 7. What is an ambidentate ligand. Give one example.
- When a coordination compound CoCl₃.5NH₃ is mixed with AgNO₃, 2 moles of AgCl
 are precipitated per mole of the compound. Write the structural formula of the
 complex and its IUPAC name.
- 9. What is Wilkinson's catalyst?
- 10. State whether Fe₂(CO)₉ obeys the 18electron rule or not. Justify your answer.
- 11. Draw the structure of Cis platin. Comment on the major limitation of its medicinal use?
- 12. Why is lead considered as a toxic metal?

(Ceiling of marks: 20)

Section B (Paragraph)

(Answer questions up to 30 marks. Each question carries 5 marks)

- 13. Explain Sodium- Potassium pump?
- 14. Give the Randles-Seveik equation for 25°C and discuss its application in cyclic voltammetry?
- 15. What is monazite sand? Explain a method to separate the group of lanthanides from the other ingredients of the monazite sand.
- 16. On the basis of VBT, account for the fact that $[Fe(CN)_6]^{2-}$ is weakly paramagnetic while $[Fe(CN)_6]^{4-}$ is diamagnetic?
- 17. Explain briefly how EDTA is useful in the determination of metal ions?
- 18. How is ferrocene prepared? Illustrate the Friedel-Crafts alkylation and acylation reactions of ferrocene.
- 19. Explain the principle and working of AFM?

(Ceiling of marks: 30)

Section C (Essay)

(Answer any one. Each question carries 10 marks)

- 20. Write an account on the MOT of octahedral complexes containing only sigma bonds?
- 21. Discuss the structures and functions of Haemoglobin and Myoglobin.

 $(1 \times 10 = 10 \text{ marks})$

		U.	16
10	6A22	U.	ιv
ID	01		

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Chemistry Degree Examination, April 2022 BCH6B10 - Organic Chemistry III

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A (Short Answers)

(Answer questions up to 20 marks. Each question carries 2 marks)

Using Woodward Fieser rules, calculate the UV λ_{max} of the following compound. 1.

- How can you differentiate benzaldehyde from acetophenone by IR spectroscopy? 2. Discuss with the position of signals.
- Discuss the principle and two applications of TLC. 3.
- Draw the Haworth structures of D (+) Glucose and D (-) Fructose. 4.
- Write the chemistry behind the Fehling's test used for differentiating a reducing sugar 5. from non reducing one.
- How will you prepare alanine by Strecker synthesis method? 6.
- Discuss the chemistry of Ninhydrin test. 7.
- How structurally testosterone is different from progesterone. Illustrate with both chemical 8. structures.
- Write any four biological functions of lipids. 9.
- Write the structure and uses of Limonene. 10.
- Give the mechanism of conversion of allyl phenyl ether in to o-allyl phenol. 11
- Explain why in [4 + 2] cycloaddition reaction, diene is activated by electron donor 12. substituents and dienophile by electron withdrawing substituents.

(Ceiling of Marks: 20)

Section B (Paragraph) (Answer questions up to 30 marks. Each question carries 5 marks)

- Explain the position of signal, spin-spin splitting pattern and hence draw the ¹H NMR 13. spectrum of ethyl acetate and acetophenone.
- Discuss the detailed steps of Killiani Fischer synthesis of epimeric hexoses from a 14. pentose.
- Discuss solid phase peptide synthesis with illustrative examples. 15.
- Explain (a) Iodine value and its calculation (b) HDL, LDL level and heart attack 16.
- Give the structure of natural rubber. Discuss vulcanization and its advantages. 17.
- Explain the electrocyclic ring closure of cis-trans hexa-2,4-diene and trans-trans hexa-18. 2,4-diene under thermal and photochemical conditions, highlighting the stereochemistry involved.
- Explain in detail how the photochemical synthesis of Vitamin D takes place in the human 19. body.

(Ceiling of Marks: 30)

Section C (Essay) (Answer any one. Question carries 10 marks)

- (1) The spectral data of a compound shows following characteristics signals. 20.
 - (a) UV 1 nax 262 nm
 - (b) IR- (i) 1618 cm⁻¹, 1470 cm⁻¹ (ii) 1720 cm⁻¹ (iii) 2810 cm⁻¹, 2730 cm⁻¹ (iv)3060 cm⁻¹
 - (c) NMR (i) δ 7-8 ppm, 5H, multiplet (ii) δ 9.8 ppm, 1H, singlet. (7 Marks) Explain each and every peaks, position, spin-spin splitting pattern of signals and hence suggest a suitable structure for the compound.
 - (2) Discuss the Woodward Hoffmann rules for electrocyclic reactions briefly. (3 Marks)
- (1) Discuss primary, secondary, tertiary and quaternary structures of proteins. (6 Marks) 21.
 - (2) Discuss the chemical steps involved in the interconversions of glucose and fructose.

(4 Marks)

(1x10=10 Marks)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Chemistry Degree Examination, April 2022 BCH6B11 - Physical Chemistry III

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A (Short answers) (Answer questions up to 20 marks. Each question carries 2 marks)

- Explain Wien effect.
- 2. Define molar conductivity and equivalent conductivity.
- 3. Define single electrode potential. What are the factors influencing electrode potential?
- 4. For the cell: $Zn(s)/Zn^{2+}(aq)$ // $Cu^{2+}(aq)/Cu(s)$, calculate the equilibrium constant at 25° C. Given $E^{0}_{Zn/Zn}^{2+} = -0.76$ V and $E^{0}_{Cu/Cu}^{2+} = -0.37$ V.
- 5. What is meant by buffer solution? Define buffer index.
- 6. What are azeotropes? Give one example.
- 7. State and explain Boyle-Van't Hoff law for solutions.
- Calculate the Miller indices of a plane which makes the intercepts ½ a on X-axis, ½ b
 on Y-axis and goes parallel to the Z-axis.
- 9. What are colligative properties? Give two examples.
- 10. Define the term space lattice and unit cell.
- 11. Why does ZnO appears yellow on heating?
- 12. Define coordination number. What is the coordination number of Cs⁺ion in CsCl structure?

(Ceiling of Marks: 20)

Section B (Paragraph) (Answer questions up to 30 marks. Each question carries 5 marks)

- 13. State and explain Kohlrausch's law. Mention any two applications of the law.
- 14. State and explain Raoult's law.
- What are fuel cells? Explain the working of fuel cells.
- Explain levelling solvent and differentiating solvent.
- Explain the reasons for abnormal results obtained for molar masses of certain solutes when determined by measurement of the colligative properties of their solutions.

- 18. Differentiate n-type and p-type semiconductors.
- 19. Calculate the pH of a mixture containing 0.01 M acetic acid and 0.03 M sodium acetate solutions, pK_a of acetic acid is 4.8.

(Ceiling of Marks: 30)

Section C (Essay) (Answer any one. Each question carries 10 marks)

- 20. (a) What are liquid crystals? How are they classified? Mention two of its applications.
 - (b) A face centered cubic crystal (atomic mass = 59) has a cell edge of 400 pm. Calculate its density.
- 21. (a) Explain the term transport number. Discuss the moving boundary method of determining transport numbers.
 - (b) Define potentiometric titrations. Explain the principle of potentiometric titration of an acid against a base.

 $(1 \times 10 = 10 \text{ Marks})$

Reg. No:.....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Chemistry Degree Examination, April 2022

BCH6B12 - Advanced & Applied Chemistry

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A (Short Answers) (Answer upto 20 marks. Each carries 2 marks)

- 1. Briefly explain any one method of synthesis of quantum dots.
- 2. Give any two applications of nano-materials in medicinal field.
- 3. What is meant by atom economy in green chemistry?
- 4. What is meant by operating systems? Give one example.
- 5. Differentiate addition polymers and condensation polymers with examples.
- 6. Define Cetane number. What is its significance?
- 7. Discuss linear and non-linear regression.
- 8. What is meant by rocket propellant?
- 9. What is meant by pharmacognosy?
- 10. What are the essential nutrients of plants?
- 11. Explain any two common adulterants and their identification methods in milk?
- 12. What are anti-oxidants? Give examples.

(Ceiling of marks: 20)

Section B (Paragraph) (Answer questions up to 30 marks Each question carries 5 marks)

- 13. Discuss various applications of colloids.
- 14. Explain the chemistry behind the setting of cement.
- 15. Compare molecular mechanics and *ab initio* methods in computational chemistry calculations
- 16. Define with examples of insecticides, herbicides, rodenticides and fungicides.
- 17. What are biodegradable polymers? Discuss the methods of preparation of PGA, PLA and PHBV.
- 18. Explain the raw materials and the chemistry involved in the TiO₂ pigment manufacturing in Tavancore Titanium products Ltd.
- 19. Explain the composition of chocolate, milk powder and soft drinks.

(Ceiling of marks: 30)

Section C (Essay)

(Answer any one. Each question carries 10 marks)

- 20. State and explain the twelve principles of green chemistry.
- 21. i) Discuss the preparation of paracetamol and aspirin. (5 marks)
 - ii) Explain the preparation and use of Rosaniline and indigo dyes (5 marks)

1B6A22019

(Pages: 2)

Reg. No:.... Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Chemistry Degree Examination, April 2022 BCH6B13(E2) - Polymer Chemistry

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A (Short answers) (Answer questions up to 20 marks. Each question carries 2 marks)

- 1. What are Copolymers? Give an example.
- 2. Differentiate between chain and step growth polymerization.
- 3. What is ring opening polymerization?
- 4. Explain average molecular weight of polymers.
- 5. What is viscoelasticity of polymers?
- 6. What is meant by degree of polymerization?
- 7. Explain oxidative degradation of polymers.
- 8. What is calendering?
- 9. Explain compression in polymer processing.
- 10. What is meant by dopping?
- 11. Differentiate between HDPE and LDPE.
- 12. Give two examples and applications of polymers formed by aliphatic polyamides.

(Ceiling of marks: 20)

Section B (Paragraph type questions) (Answer questions up to 30 marks. Each question carries 5 marks)

- 13. Explain branched chain and cross linked polymers with example.
- 14. Write short note on blow molding and thermoforming.
- 15. What is Zeigler-Natta polymerization? Give the mechanism.
- 16. What are free radical and ionic polymerizations? Give examples.
- 17. What is glass transition temperature? What are the factors affecting it?
- 18. Explain the determination of viscosity average molecular weight.
- 19. What are different plastic identification codes?

(Ceiling of marks: 30)

Section C (Essay)

(Answer any one question. Each question carries 10 marks)

- 20. Explain different polymerization techniques.
- 21. Explain preparation, properties and applications of
 - (a) nylone 66
- (b) Kevlar
- (c) neoprene and
- (d) Teflon.

 $(1 \times 10 = 10 \text{ marks})$