1B2A22105	(Pages: 2)	Reg. No:
		Namas

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Degree Examination, April 2022

BCH2B02 - Theoretical and Inorganic Chemistry II

(2019 Admission onwards)

Time: 2 hours Max. Marks: 60

Section A (Short answers) (Answer questions up to 20 marks. Each question carries 2 marks)

- 1. State and explain photoelectric effect.
- 2. Calculate the de Broglie wave length of electron moving with a velocity of 1.20×10^5 m s⁻¹
- 3. Explain any two limitations of Bohr's theory.
- 4. State and explain Pauli's exclusion principle.
- 5. What is meant by radial probability distribution? Draw the radial probability distribution of 1s atomic orbital.
- 6. State the variation theorem.
- 7. What is Born Oppenheimer approximation?
- 8. Calculate the bond order of Be₂ molecule.
- 9. What is meant by 'sigma' molecular orbitals?
- 10. Account for the reactivity of PCl₅.
- 11. Define hybridisation of atomic orbitals.
- 12. What is the geometry of IF₇ molecule? Mention the hybridisation involved.

[Ceiling of marks: 20]

Section B (Paragraph)

(Answer questions up to 30 marks. Each question carries 5 marks)

- 13. Explain the postulates of quantum mechanics.
- 14. Explain the term degeneracy from the expression of energy of particle in three dimensional box.
- 15. Explain the formation of hydrogen spectra.
- 16. Discuss Einstein's explanation of photoelectric effect using quantum theory.
- 17. Point out the differences between bonding and antibonding molecular orbitals.
- 18. Explain the formation of sp² hybridization using LCAO approximation.
- 19. Explain the hybridisation and geometry of SF₆ molecule.

[Ceiling of marks: 30]

Section C (Essay)

(Answer any one. Each question carries 10 marks)

- 20. Derive the expression for energy of a particle in one dimensional box.
- 21. a) Construct molecular orbital diagram of CO molecule.
 - b) Calculate the bond order and explain the stability and magnetic behaviour of the molecule.

 $[1 \times 10 = 10 \text{ Marks})$

B2A22106

(Pages : 2)	Reg, No:
	Manag

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.ScDegree Examination, April 2022

BCH2C02 - Physical Chemistry

(2019 Admission onwards)

ime: 2 hours Max, Marks: 60

Section A (Short answers) (Answer questions up to 20 marks. Each question carries 2 marks)

- What is meant by standard electrode potential? >>
- Explain why water wets glass while mercury does not. 4
- 3. Sketch the (222) planes of a bcc lattice.
- 4. How does pressure affect the solubility of a gas in a given liquid?
- 5. State third law of thermodynamics.
- An aqueous solution of ferric chloride is acidic in nature. Justify.
- 7. State the law of rationality of indices. V
- 8. What is entropy? Explain its significance.
- 9. What is the internal energy change when a system absorbs 3000 J of heat and performs 2000 J of work?
- 10. The specific conductance of a decinormal solution of an electrolyte is 0.0025ohm⁻¹cm⁻¹.

 Calculate the equivalent conductance of the solution .
- 11. What is state function? Give two examples.
- 12. Define ionic product of water. What is its value at 298 K?

[Ceiling of marks: 20]

Section B (Paragraph) (Answer questions up to 30 marks. Each question carries 5 marks)

- What is meant by molar conductance of an electrolyte solution? How does it vary with dilution for: a) a strong electrolyte b) for a weak electrolyte.

 Justify your answer.
- Discuss the stochiometric defects found in crystals.
- 15. Derive the Van't Hoff osmotic pressure equation.
- 16.\ Explain the entropy criterion for reversible and irreversible processes.
- 17. ~ Discuss how real gases deviate from Boyle's law.

- 18. Sketch and explain the conductometric titration curves for
 - a) a strong acid weak base titration and
 - b) weak acid- strong base titration.
- 19. State and explain Kohlrausch's Law. Discuss its applications.

[Ceiling of marks: 30]

Section C (Essay) (Answer any one. Each question carries 10 marks)

- 21 a)Derive Bragg's equation. Discuss its applications.
 - b) The first order Bragg's reflection from (100) plane of a cubic crystal with
 - $d_{100} = 4.8 \frac{0}{A}$ occurs at a glancing angle of 20°. Calculate the wavelength of X- rays used.
- 22. a)Discuss H₂ O₂ Fuel cell.
 - b) Explain the variation of viscosity and surface tension of a liquid with temperature.

 $[1 \times 10 = 10]$