2B6M21621

(Pages :3)

Reg. No:
Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc. Degree Examination, March/April 2021 BMAT6B11 - Numerical Methods

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 120

Section A Answer all twelve questions (Each Question carries one mark)

- 1. Write the inequality for the number of iterations, n required to achieve an accuracy ε in bisection method for finding a root of f(x) = 0, which lies between a and b.
- 2. If $y(x_0) = y_0$, find the value of divided difference, $[x_0, x_0]$.
- 3. Define the shift operator, E.
- 4. Show that $\delta = E^{\frac{1}{2}} E^{-\frac{1}{2}}$, where δ is the central difference operator and E is the shift operator.
- 5. Write the formula for computing the value of $\frac{dy}{dx}$ for tabular values of x using Newton's backward difference formula.
- What is mean by partial pivoting.
- 7. State Adams-Bashforth formula.
- 8. State Newton's backward difference interpolation formula.
- 9. Write second order Runge-Kutta formula
- 10. Define spectral radius of a square matrix.
- 11. Define the central difference operator, δ .
- 12. State Guass' forward formula.

 $(12 \times 1 = 12 \text{ Marks})$

Section B Answer any ten out of fourteen questions. (Each question carries 4 marks.)

- Construct a central difference table for (x_i, y_i) ; i=0,1,2,....6.
- Find, from the following table, the area bounded by the curve and the x-axis from x=7.47 to x=7.52.

			7.40	7.50	7.51	7.52
x	7.47	7.48	7.49	2.01	2.03	2.06
f(x)	1.93	1.95	1.98	2.01	2.03	

- Find a double root of the equation $f(x) = x^3 x^2 x + 1 = 0$. 15.
- The function $y = \sin x$ is tabulated below 16.

ne ranseren y			T
X	0	$\frac{\pi}{4}$	$\frac{n}{2}$
$y = \sin x$	0	0.70711	1.0

Use Lagrange's interpolation formula, find the value of $sin(\frac{\pi}{6})$.

- Given the differential equation $\frac{dy}{dx} = \frac{x^2}{y^2+1}$, y(0)=0, use picard's method to obtain y(0.25). 17.
- Find a real root of equation $f(x) = x^3 x 1 = 0$ using bisection method. 18.
- Show that $\Delta = \nabla E = \delta E^{\frac{1}{2}}$. 19.
- Given (x_0, y_0) , (x_1, y_1) and (x_2, y_2) Where x_i are equally spaced, find 20. $[x_0, x_1]$ and $[x_0, x_1, x_2]$.
- Write Simpson's 1/3 formula. 21.
- Given y' = -y, y(0) = 1, find y(0.04) using Euler's method(Take h = 0.01). 22.
- Find the missing term in the following table: 23.

X	0	1	2	- 3	4
у	1	3	9	_	81

- Use the method of iteration to find a positive root, between 0 and 1, of the equation 24. $xe^x = 1.$
- Find a root of the equation $x \sin x + \cos x = 0$. 25.
- Given $\frac{dy}{dx} = 1 + y^2$, y(0) = 0, and y(0.2) = 0.2027, y(0.4) = 0.4228 and y(0.6) = 0.6841; find 26. y(0.8) using Adams-Moulton method.

Section C Answer any six out of nine questions. (Each question carries 7 rnarks.)

- Find a real root of the equation $x^{2.2} = 69$ which lies between 5 and 8, using regula-falsi 27. method, correct to two decimal places.
- Using method of separation of symbols, show that $\Delta^n u_{x-n} = u_x nu_{x-1} + nu_{x-1}$ 28. $\frac{n(n-1)}{2}u_{x-2} + \dots + (-1)^n u_{x-n}.$
- Show that the nth difference of a polynomial of nthdegree is a constant. 29.
- Tabulate $y = x^3$ for x = 2.3.4 and 5 and calculate the cube root of 10 correct to three 30.

From the following table of values of x and y, obtain $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ at x = 2.2:

X	1.0	1.2	1.4	1.6	1.8	2.0	22
y	2.7183	3.3201	4.0552	4.9530	6.0496	7.3891	9.0250
							2.0230

, Use Guass elimination to solve

$$2x + y + z = 10, 3x + 2y + 3z = 18, x + 4y + 9z = 16$$
.

- Find y(0.1) correct to four decimal places if y(x) satisfies $y' = x y^2$, y(0)=1, using Taylor series method.
- Given $\frac{dy}{dx} = 1 + y^2$, y(0) = 0, Find y(0.2) and y(0.4) using fourth order Runge-Kutta formula.
- Using the following table, find f(x) as a polynomial in x using Newton's divided difference interpolation formula:

х	-1	0	3	6	7
у	3	-6	39	822	1611

Section D Answer any two out of three questions. (Each question carries 13 rnarks)

6. (a) Find a real root of the equation $xe^x=1$ correct to three decimal places using Ramanujan's method.

(b) If
$$y_1 = 4$$
, $y_3 = 12$, $y_4 = 19$, and $y_x = 7$, find x.

- 7. Evaluate $\int_0^1 \frac{1}{1+x} dx$ using
 - (a) trapezoidal rule with h = 0.25 and h = 0.125
 - (b) Simpson's rules with h = 0.25 and h = 0.125.
- Find eigen values and eigen vectors of the matrix $\begin{bmatrix} 5 & 0 & 1 \\ 0 & -2 & 0 \\ 1 & 0 & 5 \end{bmatrix}$

Reg. No:	**************
Mona	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc. Degree Examination, March/April 2021

BMAT6B12 - Number Theory & Linear Algebra

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 120

Part A: Answer all 12 questions. Each question carries 1 Mark.

- 1. State Division Algorithm of any two integers a and b.
- 2. Find the greatest common divisor of (49, 210, 350)
- 3. Illustrate by an example that the product of two integers, neither of which is congruent to 0, may turn out to be congruent to 0.
- 4. Define a multiplicative function
- 5. Find the value of $\phi(30)$
- 6. Evaluate the Euclidean number corresponding to the prime 11.
- 7. If $ca \equiv cb \pmod{n}$ and gcd(c,n) = d, then $\frac{n}{d}$ divides a b. Is the statement true?
- 8. State Fermat's theorem.
- 9. Let $S = \{ \begin{bmatrix} a & b \\ c & d \end{bmatrix} \in M_{2,2} \}$ such that c = 1. Is S a vector space?
- 10. Is union of a set of subspace of a vector space V a subspace?
- 11. Find the subspace of \mathbb{R}^3 spanned by the singleton set $\{(1,0,0)\}$
- 12. If a linear map $f: V \to W$ is injective, then what is Ker f

(12×1=12 marks)

Part B: Answer any TEN questions. Each question carries 4 Marks.

- 13. Assuming that gcd(a,b) = 1, prove that gcd(a+b,a-b) = 1, 2.
- 14. Prove that $n^3 n$ is divisible by 6.
- 15. If P_n is the n^{th} prime, then $P_n \leq 2^{2^{n-1}}$
- 16. Show that $2^{340} \equiv 1 \pmod{341}$
- 17. Show that 6 is an integral root of $x^7 + x + 2 \equiv 0 \pmod{7}$.
- 18. Find all solutions of the congruence $12x \equiv 27 \pmod{8}$, if any exist
- 19. Using binary exponential algorithm calculate 5^{110} (mod 131).

- 20. Evaluate $\phi(p^k)$, where p is a prime, and any integer k>0
- 21. Find the least positive integer x such that $x \equiv 5 \pmod{7}$, $x \equiv 7 \pmod{11}$ and $x \equiv 3 \pmod{13}$
- 22. Define a vector space
- 23. Show that the mapping $f: \mathbb{R}^2 \to \mathbb{R}^3$ given by f(a,b) =(a+b,a-b,b) is linear.
- 24. Let $f: V \to W$ be linear and if Y is a subspace of W, then show that $f^{\leftarrow}(Y)$ is a subspace of V.
- 25. Show that every linearly independent subset I of a finite dimensional vector space V can be extended to form a basis
- 26. Show that no linearly independent subset of a vector space V can containing 0_V .

 $(10\times4=40 \text{ Marks})$

Part C: Answer any SIX questions. Each question carries 7 Marks.

- 27. Find least number which when divided by 9 gives the remainder 8, when divided by 8 gives the remainder 7, when divided by 7 gives the remainder 6, ... when divided by 3 gives the remainder 2, when divided by 2 gives the remainder 1.
- 28. Define the greatest integewr function. State any of the 4 basic properties.
- 29. Compute the remainder of 8103 when divided by 13.
- 30. If $(n-1)! \equiv -1 \pmod{n}$, then show that n is a prime.
- 31. For n > 1, the sum of positive integers less than n and relatively prime to n is $\frac{1}{2}n\phi(n)$
- 32. Determine whether set $\{[\alpha, 3\alpha, 5\alpha] | \alpha \in R\}$ is a subspace of R^3
- 33. Show that the set W of complex metrices $\begin{bmatrix} \alpha & \beta \\ \gamma & -\alpha \end{bmatrix}$ is a real
- 34. Let $f: V \to W$ be linear, then show that
 - $(1) \ f(0_V) = 0_W$
 - (2) For all $x \in V$, f(-x) = -f(x)
- 35. Prove that span $S = \langle S \rangle$

- Part D: Answer any TWO questions. Each question carries 13 Marks. 36. Find the complete solution of the linear diophantine equation
- 37. The quadratic concruence $x^2 + 1 \equiv 0 \pmod{p}$, where p is an odd prime, has a solution if and only if $p \equiv 1 \pmod{4}$
- 38. Show that the linear map $f: R^3 \to R^3$ is given by f(x, y, z) = x + y + 2z. (x, y, z) = x + y + 2z. Show that the line (x+z, x+y+2z, 2x+y+3z) is neither injective nor surjective. $(2\times13=26\,\mathrm{Marks})$

2B6M21623

(Pages:4)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc. Degree Examination, March/April 2021

BMAT6B13 (E01)- Linear Programming

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 80

SECTION A

Answer all the twelve questions. Each question carries 1 mark.

- 1. Show that $S = \{(x_1, x_2, x_3) \mid 2x_1 x_2 + x_3 \leq 4\} \subset \mathbb{R}^3$ is a convex set.
- 2. Prove that intersection of two convex sets is a convex set.
- 3. Define feasible solution of a LPP.
- 4. Define surplus variables.
- 5. When does the simplex method indicate that the LPP has unbounded solution
- 6. In Big M method, what is the cost of artificial variables is called.
- 7. If the dual has no feasible solution, then the primal problem has an objective function that is ————.
- 8. The primal has 3 decision variables and 4 constraints. How many decision variables and constraints are in the dual.
- 9. Define a loop in a transportation problem.
- 10. What is an assignment problem.
- 11. Assignment problem is a special type of transportation problem. Justify your answer.
- 12. Define triangular basis of a transportation problem.

(12 x 1= 12 marks)

SECTION B

Answer any nine out of twelve questions.

Each question carries 2 mark.

- 13. Show that hyperplane in \mathbb{R}^3 is a convex set.
- 14. Plot the feasible region in the plane for the LPP constraints: $x_1 + 2x_2 \le 10$, $x_1 + x_2 \le 6$, $x_1 \le 4$ and $x_1, x_2 \ge 0$.
- 15. What are the characteristics of the standard form of LPP.
- 16. Write a note on basic feasible solution and optimal basic feasible solution.
- 17. If k^{th} constraint of the primal problem is an equality, show that the k^{th} dual variable will be unrestricted in sign.
- 18. Verify dual of the dual is primal for the LPP. Maximize $z=2x_1+5x_2$ subject to the constraints $5x_1+6x_2 \leq 3$, $-2x_1+x_2 \leq 4$ and $x_1,x_2 \geq 0$.
- 19. Define unrestricted variable in a LPP.
- 20. Suppose optimality criteria of a LPP satisfied. What is indicated by one or more artificial vectors are in the basis at zero level.
- 21. Write the mathematical form of the transportation problem.
- 22. Solve the transportation problem by North West Corner Rule

	I	II	II	IV	Supply
A	13	11 ,	. 15	20	2000
В	17	14	12	13	6000
C	18	18	15	12	7000
Demand	3000	3000	4000	5000	J

- 23. Write a note on unbalanced assignment problem.
- 24. A balanced transportation problem possesses a finite feasible solution and an optimal solution. Justify your answer.

 $(9 \times 2 = 18 \text{ marks})$

SECTION C

Answer any six out of nine questions.

Each question carries 5 mark.

- 5. Prove that the set of all convex linear combinations of a finite number of vectors x_1, x_2, \dots, x_k in \mathbb{R}^n is a convex set.
- 3. Solve graphically, Minimize $z = 6x_1 + x_2$ subject to the constraints: $2x_1 + x_2 \ge 3$, $x_1 x_2 \ge 0$ and $x_1, x_2 \ge 0$.
- 7. State and prove Minimax theorem.
- 3. Explain the Big-M method.
- 9. Write the LPP in the standard form,

Maximize
$$z = 2x_1 + 3x_2 - 4x_3$$

subject to: $4x_1 - x_2 - 3x_3 \ge 2$
 $2x_1 + x_2 - 4x_3 \le 6$
 $x_1 - 3x_2 + 5x_3 = 4$
 $x_1, x_2 \ge 0$ and x_3 is unrestricted

0. Write the dual of the LPP,

Maximize
$$z = x_1 - 2x_2 + 3x_3$$

subject to: $-2x_1 + x_2 + 3x_3 = 2$
 $2x_1 + 3x_2 + 4x_3 = 1$
 $x_1, x_2, x_3 \ge 0$

- 1. Explain Vogel's approximation method.
- 2. Find an initial basic feasible solution by column minima method:

		From		Availability
	16	19	12	14
То	22	13	19	16
	14	28	8	12
Requirements	10	15	17	

3. Solve the cost-minimizing assignment problem:

	I	Π	II	IV	V
A	11	10	18	5	9
В	14	13	12	19	6
C	5	3	4	2	4
D	15	18	17	9	12
E	10	11	19	6	14

 $(6 \times 5 = 30 \text{ marks})$

SECTION D

Answer any two out of three questions.

Each question carries 10 mark.

- 34. Let $A \subset \mathbb{R}^n$ be any set. Prove that the convex hull of A is the set of all finite convex combinations of vectors in A.
- 35. Using simplex method to find the inverse of the matrix $A = \begin{pmatrix} 4 & 1 \\ 2 & 9 \end{pmatrix}$
- 36. Obtain an optimum basic feasible solution to the degenerate transportation problem:

		To		Available
	7	3	4	2
From	2	1	3	3
	3	4	6	5
Demand	4	1	5	10

 $(2 \times 10 = 20 \text{ marks})$

2B6M21623

(Pages:4)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc. Degree Examination, March/April 2021

BMAT6B13 (E01)- Linear Programming

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 80

SECTION A

Answer all the twelve questions. Each question carries 1 mark.

- 1. Show that $S = \{(x_1, x_2, x_3) \mid 2x_1 x_2 + x_3 \leq 4\} \subset \mathbb{R}^3 \text{ is a convex set.}$
- 2. Prove that intersection of two convex sets is a convex set.
- 3. Define feasible solution of a LPP.
- Define surplus variables.
- 5. When does the simplex method indicate that the LPP has unbounded solution
- 6. In Big M method, what is the cost of artificial variables is called.
- 7. If the dual has no feasible solution, then the primal problem has an objective function that is —
- 8. The primal has 3 decision variables and 4 constraints. How many decision variables and constraints are in the dual.
- 9. Define a loop in a transportation problem.
- 0. What is an assignment problem.
- 1. Assignment problem is a special type of transportation problem. Justify your answer.
- 2. Define triangular basis of a transportation problem.

 $(12 \times 1 = 12 \text{ marks})$

SECTION B

Answer any nine out of twelve questions. Each question carries 2 mark.

- 13. Show that hyperplane in \mathbb{R}^3 is a convex set.
- 14. Plot the feasible region in the plane for the LPP constraints: $x_1 + 2x_2 \le 10$, $x_1 + x_2 \le 6$, $x_1 \le 4$ and $x_1, x_2 \ge 0$.
- 15. What are the characteristics of the standard form of LPP.
- 16. Write a note on basic feasible solution and optimal basic feasible solution.
- 17. If k^{th} constraint of the primal problem is an equality, show that the k^{th} dual variable will be unrestricted in sign.
- 18. Verify dual of the dual is primal for the LPP. Maximize $z=2x_1+5x_2$ subject to the constraints $5x_1+6x_2 \leq 3$, $-2x_1+x_2 \leq 4$ and $x_1,x_2 \geq 0$.
- 19. Define unrestricted variable in a LPP.
- 20. Suppose optimality criteria of a LPP satisfied. What is indicated by one or more artificial vectors are in the basis at zero level.
- 21. Write the mathematical form of the transportation problem.
- 22. Solve the transportation problem by North West Corner Rule

	I	II	II	IV	Supply
A	13	11 .	15	20	2000
В	17	14	12	13	6000
C	18	18	15	12	7000
Demand	3000	3000	4000	5000	, .500

- 23. Write a note on unbalanced assignment problem.
- 24. A balanced transportation problem possesses a finite feasible solution and an optimal solution. Justify your answer.

 $(9 \times 2 = 18 \text{ marks})$

SECTION C

Answer any six out of nine questions.

Each question carries 5 mark.

Prove that the set of all convex linear combinations of a finite number of vectors x_1, x_2, \dots, x_k in \mathbb{R}^n is a convex set.

Solve graphically, Minimize $z = 6x_1 + x_2$ subject to the constraints: $2x_1 + x_2 \ge 3$, $x_1 - x_2 \ge 0$ and $x_1, x_2 \ge 0$.

State and prove Minimax theorem.

Explain the Big-M method.

Write the LPP in the standard form,

Maximize
$$z = 2x_1 + 3x_2 - 4x_3$$

subject to: $4x_1 - x_2 - 3x_3 \ge 2$
 $2x_1 + x_2 - 4x_3 \le 6$
 $x_1 - 3x_2 + 5x_3 = 4$
 $x_1, x_2 \ge 0$ and x_3 is unrestricted

Write the dual of the LPP,

Maximize
$$z = x_1 - 2x_2 + 3x_3$$

subject to: $-2x_1 + x_2 + 3x_3 = 2$
 $2x_1 + 3x_2 + 4x_3 = 1$
 $x_1, x_2, x_3 \ge 0$

- Explain Vogel's approximation method.
- . Find an initial basic feasible solution by column minima method:

	From			Availability	
	16	19	12	14	
То	22	13	19	16	
	14	28	8	12	
Requirements	10	15	17		

Solve the cost-minimizing assignment problem:

	I	II	II	IV	V
A	11	10	18	5	9
В	14	13	12	19	6
С	5	3	4	2	4
D	15	18	17	9	12
E	10	11	19	6	14

 $(6 \times 5 = 30 \text{ marks})$

SECTION D Answer any two out of three questions. Each question carries 10 mark.

- 34. Let $A \subset \mathbb{R}^n$ be any set. Prove that the convex hull of A is the set of all finite convex combinations of vectors in A.
- 35. Using simplex method to find the inverse of the matrix $A = \begin{pmatrix} 4 & 1 \\ 2 & 9 \end{pmatrix}$
- 36. Obtain an optimum basic feasible solution to the degenerate transportation problem:

		To	luin and	Available
	7	3	4	2
From	2	1	3	3
	3	4	6	5
Demand .	4	1	5	10

(2 x 10= 20 marks)

(Pages :2) 98 Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc. Degree Examination, March/April 2021

BMAT6B09 - Real Analysis

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 120

Section A Answer all questions. Each question carries 1 mark.

- 1. Is it true always that the image of a bounded interval by a continuous function is a bounded interval? Give reason.
- 2. Give example of a continuous function with absolute maximum, but not with absolute minimum.
- 3. Prove that $f(x) = x^2$, $x \in [0,1]$ is a Lipschitz function.
- 4. Find $\| \mathcal{P} \|$, the norm of the partition $\mathcal{P} = \{0, 0.2, 0.45, 0.78, 0.87, 0.93, 0.98, 1\}$ of [0, 1].
- 5. Identify the type of the improper integral $\int_1^{\infty} \frac{1}{1+x^2} dx$.
- 6. Define the radius of convergence of a power series.
- 7. Evaluate $\beta(2,1)$.
- 8. Write $\int_0^{\frac{\pi}{2}} \sin \theta \cos \theta d\theta$ as a Beta function.
- 9. What is the value of $\Gamma(\frac{1}{2})$?
- 10. If $f_n(x) = x^n$, $x \in [0, 1]$, what is the uniform norm of f_n ?
- 11. State the Weierstrass M-test for absolute convergence of a series of functions.
- 12. Define Cauchy's Pricipal Value of an improper integral.

 $12 \times 1 = 12$ marks.

Section B Answer any 10 questions. Each question carries 4 marks.

- 13. If $f:[0,1] \longrightarrow [0,1]$ is a continuous function, prove that $\exists c \in [0,1]$ such that f(c) = c.
- 14. Give example of a uniformly continuous function on a suitable interval that is not a Lipschitz function. Explain your arguments.
- Prove that sin x is uniformly continuous on [0, ∞).
- 16. State the non-uniform continuity criteria.
- 17. For the function $f(x) = x^2$ on [0, 2], taking $\mathcal{P} = \{0, .6, .8, 1.4, 1.8, 2\}$ as a partition and the mid point of each subinterval as the tags, write the Riemann sum.
- 18. State the Cauchy integrability condition. Give example of a function not satisfying the condition.
- 19. Explain the steps to prove that $\int_2^3 x^2 dx = \frac{19}{3}$. State the theorem used.
- 20. State the Taylor's theorem.
- 21. Give example of a convergent series which is not absolutely convergent.

- 22. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{x^n}{n!}$
- 23. Find pointwise limit of the function $f(x) = (1-x)^n$ on [0, 1].
- 24. State the theorem of interchange of limit and continuity. Use it to prove that the convergence of $f_n(x) = x^n$ to 0 on [0, 1] is not uniform.
- 25. If n is a natural number, prove that $\Gamma(\vec{n}) = (n-1)\Gamma(n-1)$.
- 26. Evaluate $\int_0^1 \frac{x}{\sqrt{1-x}} dx$.

 $10 \times 4 = 40 \text{ marks}$

Part C

Answer any Six questions. Each question carries 7 marks.

- 27. State and prove the Bolzano's Intermediate Value theorem.
- 28. Let $f:[a,b] \to \mathbb{R}$ be continuous and let $\varepsilon > 0$. Prove that there exists a step function $s_{\varepsilon}: [a, b] \to \mathbb{R}$ such that $|f(x) - s_{\varepsilon}(x)| < \varepsilon$ for all $x \in [a, b]$.
- 29. Define $f \in \mathcal{R}[a, b]$. Prove the uniqueness of the Riemann integral.
- 30. State and prove the Squeeze theorem for Riemann Integrals.
- 31. Prove that $f:[0,3] \longrightarrow \mathbb{R}$ is Riemann integrable where

$$f(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 2 & 1 < x \le 2 \\ 3 & 2 < x \le 3. \end{cases}$$

- 32. State and prove the Fundamental Theorem of Calculus (First Form).
- 53. Write the formulae to find radius of convergence of a power series $\sum_{n=1}^{\infty} a_n x^n$. Find the radius of convergence of the power series $\sum_{n=0}^{\infty} \frac{n^n x^n}{n!}$.
- 14. State and prove the relation between Beta and Gamma functions.

 $6 \times 7 = 42$ marks.

Part D

Answer any Two question. Each question carries 13 marks.

- 5. State and prove the Location of Roots theorem.
- a) Prove that the sum of two Riemann Integrable functions is Riemann integrable. 6.
 - b) Prove that a monotone function is Riemann Integrable.
- 7. State and prove Integral testfor a series of functions. Use it to discuss the convergence of the p-series $\sum_{1}^{\infty} \frac{1}{n^p}$.

 $2 \times 13 = 26$ marks.

(Pages: 2)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc. Degree Examination, March/April 2021 BMAT6B10 - Complex Analysis

(2018 Admission onwards)

Time: 3 hours

Max. Marks: 120

Section A Answer all twelve questions Each question carries 1mark

- 1. Show that f(z) = Re z is no where differentiable.
- 2. Define analytic function
- 3. Derive $f'(z_0) = e^{-i\theta_0}[u_r + iv_r]$.
- 4. Write $[\exp(2z+i)]$ in terms of x and y.
- 5. State Cauchy Gousat theorem.
- 6. If u and v are harmonic functions conjugate to each other in some domain, then prove that u and v must be constant there.
- 7. Discuss the region of convergence of the series $1 z + z^2 z^3 + \cdots$
- 8. State the extension of Cauchy's integral formula for multiply connected region.
- 9. Show that $e^z = 1 + z + \frac{z^2}{2!} + \frac{z^3}{3!} + \cdots |z| < \infty$.
- 10. Identify the singularity of $e^{\frac{1}{z}}$.
- 11. Define the concept of zeros of order m of an analytic function f at $z=z_0$
- 12. Discuss the nature of singularity of the function $f(z) = \frac{1}{(z-4)^5}$

(12 X 1= 12 marks)

Section B Answer any ten out of fourteen questions Each question carries 4mark

- 13. Let $g(z) = (re^{i\theta})^{\frac{1}{2}}$, r > 0, $-\pi < \theta < \pi$ show that g(z) is analytic in its domain of definition and $g'(z) = \frac{1}{2[g(z)]}$
- 14. Show that if a function f(z) = u + iv is analytic at z = x + iy then the component functions u and vhave continuous partial derivatives of all orders at that point.
- 15. Find all values of z such that $e^z = 3 + 4i$.
- 16. Solve sinz = cosh4.
- 17. Suppose that a function f(z) is analytic inside and on a positive oriented circle C_R , centered at z_0 with radius R and $\lceil f(z) \rceil \leq M_R$ the prove that $\lceil f^n(z) \rceil \leq \frac{n! M_R}{R^n}$.
- 18. Evaluate $\int_0^\infty \frac{dx}{x^2+1}$.
- 19. State and prove Morera's Theorem.

- 20. Integrate $\frac{z^2-1}{z^2+1}$ around |z-i|=1 in the counter clockwise direction.
- 21. Evaluate $\int_{|Z|=\frac{3}{2}} \frac{\tan z \, dz}{z^2-1}$.
- 22. Obtain the Taylor series representation for cosz at $z = \frac{\pi}{4}$.
- 23. Show that $\frac{1}{1-z} = \sum_{n=0}^{\infty} \frac{(z-i)^n}{(1-i)^{n+1}}$.
- 24. Discuss the singularity of the function $\frac{1}{z^2(1+z)}$.
- 25. Find the Lauarents series of $z^2 exp\left(\frac{1}{z}\right)$.
- 26. Find the residue of the function $\exp\left(\frac{1}{z^2}\right)$.

(10 X 4 = 40 marks)

Section C Answer any six out of nine questions Each question carries 7 mark

- 27. Show that for the function $f(z) = \begin{cases} \frac{\overline{z}^2}{z}, & z \neq 0 \\ 0, & z = 0 \end{cases}$ eventhough the partial derivatives of the component function satisfy C-R equations at z=0, f(z) is not differentiable at z=0.
- 28. If $u v = (x y)(x^2 + 4xy + y^2)$ and f(z) = u + iv is an analytic function of z = x + iy. find f(z) in terms of z.
- 29. State and prove Taylors theorem.
- 30. Show that $\int_C (z-z_0)^m dz = \begin{cases} 2\pi i & \text{if } m=-1\\ 0 & \text{if } m\neq -1 \end{cases}$ where m is an integer and C is the circle with center z_0 and radius r in the counter clockwise sense.
- 31. State and prove Cauchy's integral formula,
- 32. State and prove Cauchy's residue theorem.
- 33. Find all Laurent series of f(z) = -1/(z-1)(z-2) about z = 0.
- 34. Find the residue at the singular points of the function $\frac{1}{z(e^z-1)}$
- 35. Evaluate $\int_0^\infty \frac{\cos ax \ dx}{x^2 + h^2}, \ a > 0, b > 0.$

(6 X 7 = 42 marks)

Section D Answer any two out of three questions Each question carries 13 mark

- 36. Suppose f(z) = u + iv and that f'(z) exist at a point $z_0 = x_0 + iy_0$. Then the first order partial derivatives of u and v must exist at (x_0, y_0) and they must satisfy the C.R. equations.
- 37. State and prove the Maximum Modulus Principle.
- 38. Discuss the problem of type $\int_0^{2\pi} F(\sin\theta, \cos\theta) d\theta$ and solve $\int_0^{2\pi} \frac{d\theta}{a + b\cos\theta}$, a > b > 0.

(2 X 13 = 26 marks)