1	R	5	N	23	42	7
	v	-	200		200	

(Pages: 2)

Reg.	No:	٠.	•	٠		•	٠	•	٠	•	•	٠	٠	٠	*	•	
N.T																	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Chemistry Degree Examination, November 2023

BCH5B06 - Inorganic Chemistry - III

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

SECTION A

All questions can be attended. Each question carries 2 marks

- 1. What is common ion effect?
- 2. What is meant by roasting?
- 3. CIF3 molecule has a T shaped structure. Explain?
- 4. How does iodine monochloride react with alkali?
- 5. What is the shape of XeO₃ molecule?
- 6. Noble gases have low boiling points. Explain?
- 7. What are called island structures?
- 8. Write short notes on autoionization of solvents with suitable examples.
- 9. How is polymeric sulphur nitride prepared? Give its applications?
- 10. What is the importance of ozone layer? What are the causes of depletion of ozone layer?
- 11. What are the adverse effects of acid rain?
- 12. Triple R is an important term in managing waste. Justify.

(Ceiling 20 Marks)

SECTION B

All questions can be attended. Each question carries 5 marks

- 13. Distinguish between coprecipitation and post precipitation.
- 14. What are intramedullary rods? Discuss their applications.
- 15. What are interhalogen compounds? Give examples. Discuss the structure of IF₅.
- 16. Discuss the structure of XeOF₂.
- 17. Explain with examples any three different kinds of reaction taking place in liquid N_2O_4 and liquid SO_2 .
- 18. What is COD? Explain how COD of water sample is determined?
- 19. Discuss the adverse impacts of e-waste. Explain the methods of disposal of e-waste?

SECTION C Answer any one question. Each question carries 10 mark.

- 20. Discuss the significance and applications of Ellingham Diagrams.
- 21. Discuss the classification of silicates.

 $(1 \times 10 = 10 \text{ Marks})$

B5N23428	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Chemistry Degree Examination, November 2023 BCH5B07 - Organic Chemistry II

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

SECTIONA

All questions can be attended. Each questions carries 2 marks

- 1. An alkoxide is a stronger base than hydroxide. Why?
- 2. How methyl magnesium bromide can be converted to ethanol? Explain.
- 3. What is Victor Meyer's test?
- 4. What are crown ethers? Give two examples.
- 5. How can benzaldehyde be converted to toluene?
- 6. What is Wolf-Kishner reduction?
- Arrange the following in the decreasing order of acidity.
 CH₃COOH, Cl-CH₂-COOH, CCl₃-COOH, (CH₃)₃C-COOH.
- 8. What is Fischer esterification?
- 9. Give an example for the Kolbe's electrolytic reduction.
- 10. Give one method of preparation of pyridine.
- 11. Explain why furan does not show the normal addition reaction?
- 12. How can acetoacetic ester be converted into (i) butanoic acid and (ii) butanone?

(Ceiling 20 Marks)

SECTION B

All questions can be attended. Each questions carries 5 marks

- 13. How is fluorescein prepared? Mention its major applications.
- 14. Discuss Williamson's ether synthesis and its limitations.
- 15. Illustrate Cannizzaro reaction with mechanism.
- 16. What is Beckmann rearrangement? Explain with example.
- 17. How is benzene sulphonic acid prepared? How can it be converted to (i) phenol and (ii) aniline.
- Explain the mechanism and regioselectivity of Hofmann elimination reaction with suitable example.
- 19. Discuss the effect of substituents on the basicity of aromatic amines.

(Ceiling 30 Marks)

SECTION C Answer any one question. Each question carries 10 marks

20. Explain

- (i) Reimer-Tiemann reaction.
- (ii) Oxymercuration-demercuration reaction.
- (iii) Tollen's test
- (iv) Fehling's test

21. Explain

- (i) How citric acid is prepared by Reformatsky reaction?
- (ii) The urease method for the estimation of urea.
- (iii) Sandmeyer reaction.

 $(1 \times 10 = 10 \text{ Marks})$

1B5N23429	1B	5N	123	42	9
-----------	----	----	-----	----	---

(Pages: 2)

Reg.	No:
Nam	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Chemistry Degree Examination, November 2023 BCH5B08 - Physical Chemistry II

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

SECTION A

All questions can be attended. Each question carries 2 marks

- 1. What are consecutive reactions? Give one example
- 2. The rate constant for a first order reaction is 1.54 x 10⁻³ sec⁻¹. Calculate its Half-life period.
- 3. State the adsorption theory of heterogenous catalysis.
- 4. Give Michaelis-Menten equation for enzyme catalysis.
- 5. Give Nernst Distribution law. What are the conditions for the validity of the distribution law?
- 6. What do you mean by eutectic point?
- 7. Explain the system with upper critical point with one example.
- What are selection rules? Give the selection rule for rotational transition for the diatomic rigid rotor.
- 9. State Frank-Condon principle.
- 10. Calculate the NMR frequency (MHz) of the proton (1H) in a magnetic field of intensity 1.4092 tesla, given that nuclear g-factor, $g_N = 5.585$ and nuclear magneton, $\mu_N = 5.05 \times 10^{-27} \, \mathrm{J \, T^{-1}}$
- 11. Define Quantum Yield. Give one example for a reaction with quantum yield greater than one.
- 12. Draw Jablonski diagram and depict various photophysical process in it.

(Ceiling 20 Marks)

SECTION B

All questions can be attended. Each question carries 5 marks

13. 5 ml of ethyl acetate was added to a flask containing 100 of 0.1M HCl placed in a thermostat maintained at 30°C. 5 ml of the reaction mixture was withdrawn at different intervals of time and after chilling, treated against standard alkali. The following data were obtained

Time (Minutes)	0	75	119	ω
ml of alkali used	9.62	12.10	13.10	21.05

From the above data show that the reaction follows first order kinetics

- 14. Derive Langmuir adsorption isotherm and discuss effect of pressure on adsorption
- 15. Derive Gibbs phase rule from thermodynamic considerations.
- 16. The rotational constant (B) for ¹HCl is 10.5909 cm⁻¹. Calculate the rotational constant for ²DCl. Given that mass of ¹H and ²D is 1.673 x 10⁻²⁷ Kg and 3.344 x 10⁻²⁷ Kg respectively. (Assume that the bond length remains same for ¹HCl and ¹DCl)
- 17. What are the factors effecting the line width of spectral lines? Explain.
- 18. Draw the ¹H-NMR spectrum of ethanol in gaseous state and explain spin-spin splitting.
- 19. a)Discuss the mechanism of photosensitization with suitable example.
 - b) State Laws of photochemistry.

(Ceiling 30 Marks)

SECTION C

Answer any one question. Each question carries 10 marks

- 20. A) Describe the Lindemann theory of unimolecular reactions and derive an expression for rate constant (k_{uni}) for a unimolecular reaction, $A \rightarrow P$ (7 marks)

 B) The vapour pressure of water at 100 °C is 760 mm. What will be vapour pressure
 - at 95 °C? The heat of vaporization of water in this range is 41.27 kJmol⁻¹. (3 marks)
- 21. A) Give and sketch the modes of the vibration of CO₂ and H₂O. Comment on its IR and Raman activity. (7 Marks)
 - B) Explain Stokes lines, anti-Stokes lines and comment on relative intensities.

(3 Marks)

(Pages: 1)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Chemistry Degree Examination, November 2023 (Open Course)

BCH5D02 - Chemistry in Daily Life

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A (Short answers)
(Answer questions up to 20 marks, Each question carries 2 marks)

- 1. What are biodegradable polymers? Give an example
- 2. What is Nylon 66? Give any one application of Nylon 66
- 3. What are hormones? Give example.
- 4. What are food preservatives? Give an example.
- 5. What is NPK value?
- 6. What are herbicides? Give an example.
- 7. Explain the cleansing action of soap.
- 8. What are the different kinds of shampoo?
- 9. What are the ingredients present in face powders?
- 10. What are antipyretics? Give an example.
- 11. What is calorific value?
- 12. Explain octane number.

[Ceiling of marks: 20]

Section B (Paragraph) (Answer questions up to 30 marks. Each question carries 5 marks)

- 13. Write a note on harmful effects of modern food habits.
- 14. Explain food preservatives and artificial sweeteners.
- 15. Write a note on impact of excessive use of fertilizers on environment.
- 16. Discuss on harmful effects of cosmetics.
- 17. Explain a) Prodrug, b) Pharmacophore and c) Pharmocognosy
- 18. Discuss in detail the application of dyes.
- 19. Write a note on pollution due to burning of fossil fuels.

[Ceiling of marks: 30]

Section C (Essay) (Answer any one. Each question carries 10 marks)

- 20. Describe in detail the classification of polymers by giving suitable examples.
- 21. Write a note on vitamins with respect to its source, function and deficiency diseases.

 [1 x 1 0 = 10 marks]