1B4A2321	1
I Day	

(Pages: 2)

Reg. No:	***************
Namas	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Physics Degree Examination, April 2023 BPH4B04 - Electrodynamics - II

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

The symbols used in this question papers have their usual meanings

Section A- Short Answer Type

(Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks)

- 1. Discuss Faraday's laws of electromagnetic induction.
- 2. Define intensity of electromagnetic wave and write down its expression in terms of amplitude of electric field vector.
- 3. What do you mean by time constant?
- 4. Compare an ideal constant-voltage source and an ideal constant-current source.
- 5. Write down an equation for a plane wave polarized in Z-direction and propagating in X-direction and mention the terms involved.
- 6. Discuss maximum power transfer theorem.
- 7. Define Poynting vector and write down its equation in terms of E and B vectors.
- 8. Show that the standing wave $f(z,t) = A \sin(kz) \cos(kvt)$ satisfies the wave equation.
- 9. Write down the steps involved in replacing a circuit with its Norton's equivalent circuit.
- 10. Write down the expression for the energy density of an electromagnetic wave and describe the terms involved.
- 11. What do you meant by resonance in an electrical circuit? What is it's condition?
- 12. Write down the wave equations for E and B vectors.

(Ceiling-20)

Section B- Paragraph/ Problem Type

(Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks)

- 13. State and explain Ampere's circuital theorem. Discuss how Maxwell modified Ampere's law.
- 14. How large an inductance, in Henrys, should be connected in series with a 120 V, 60 watt light bulb if it is to operate normally when the combination is connected across a 240 V, 60 Hz line?
- 15. Discuss Coulomb gauge and Lorentz gauge and show that in the Lorentz gauge scalar and vector potentials satisfy inhomogeneous wave equations.
- 16. There is a uniform magnetic field straight up through a circular horizontal region. If the magnetic field is decreased from 1.2 to 0.4 T in 0.4seconds. What is the induced electric field 30cm away from the centre of the region?
- 17. Use Thevenin's theorem to find the current in a load resistance of 2Ω connected between the terminals A and B of the network given below.

- 18. The intensity of sunlight hitting the earth is about 1300 W/m². If sunlight strikes a perfect absorber, what pressure does it exert? If it is on a perfect reflector, what will be the radiation pressure?
- 19. A current of 5A flows through a non-inductive resistance in series with a choke coil when supplied at 250 V, 50 Hz. If the voltage across the resistance is 125 V and across the coil is 200V, calculate the impedance, reactance and resistance of the coil.

(Ceiling-30)

Section C- Essay Type Answer any one question. Answer carries 10 marks

- 20. Explain double energy transients and discuss the undamped, under-damped, over damped and critical damped conditions.
- 21. Write down differential form of Maxwell's equations in matter. Obtain the electromagnetic boundary conditions.

(1x10=10)

B4A23212

(Pages: 2)

Reg. No:.... Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester B.Sc Degree Examination, April 2023

BPH4C04 - Electricity, Magnetism & Nuclear Physics

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

The symbols used in this question paper have their usual meanings

Section A - Short Answer type. Answer all questions in two or three sentences, Each correct answer carries a maximum of 2marks

- 1. Write any four properties of electric field lines.
- 2. Derive coulomb's law from Gauss's theorem.
- 3. Define electric flux. How it is related to the charge enclosed by a surface?
- 4. Explain the Meisner effect.
- 5. Why resistivity of a metal varies with change in temperature?
- 6. Differentiate retentivity and coercivity.
- 7. Derive the relation between magnetic susceptibility and relative permeability
- 8. Define neutron reproduction factor.
- 9. What are the qualities of a substance to be taken as a moderator in nuclear fission?
- 10. Why nuclear fusion reaction called thermo nuclear reaction?
- 11. List out any four elementary particles from lepton family.
- 12. Differentiate between primary and secondary cosmic rays.

(Ceiling-20)

Section B - Paragraph / Problem type.

Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks

- 13. With the help of diagram, explain the conversion of a galvanometer to an ammeter.
- 14. Find the resistance of a hollow cylindrical pipe of length 2m whose inner and outer radii are 20 cm and 30 cm respectively. Given the resistivity of the material of cylinder as $2 \times 10^{-6} \Omega m$.

- 15. Derive the equation for reduction factor of Tangent Galvanometer
- Prove that half-life of radioactive disintegration is inversely proportional to decay constant
- 17. Calculate binding energy per nucleon of $^{20}_{10}$ Ne .Given $m_H=1.007825~u$, $m_n=1.008665~u$, m(Ne)= 19.99244 u
- 18. Write a short note on classification of elementary particles.
- 19. Write the quark combination of following particles
 - a) proton b)neutron c) pion d) kaon

(Ceiling - 30)

SECTION C – Essay type (Essays - Answer in about two pages, any one question. Answer carries 10 marks)

- 20. Explain the terms capacitor and capacitance. How the capacitance of a parallel plate capacitor varies when a dielectric slab introduced between the plates
 - 1) partially 2) completely
- 21. A) Describe how a deflection magnetometer is used to find the moment of a magnet by arranging in Tan A position
 - B) Calculate horizontal and vertical components of earth's magnetic field at a place where the angle of dip is 45^{0} and total intensity of earth's field is $3 \times 10^{-4} \frac{\text{Wb}}{m^{2}}$

 $(1 \times 10 = 10 \text{ marks})$