	N172	1	11	
1133	N23	Ţ	O.	

(Pages: 2)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Physics Degree Examination, November 2023

BPH3B03 - Electrodynamics - I

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

The symbols used in this question papers have their usual meanings

Section A- Short Answer Type

(Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks)

- 1. Write down Gauss's law in presence of dielectrics and explain the terms involved.
- 2. State Biot-Savart law.
- 3. Define Gauss's divergence theorem.
- 4. Under what condition Poisson's equation reduces to Laplace's equation?
- 5. Write down the expression for the torque experienced by a magnetic dipole placed in a uniform magnetic field.
- 6. Write down the equation of continuity and mention the terms involved.
- 7. What are linear dielectrics?
- 8. Write down the electrostatic boundary conditions for the electric field vector.
- 9. What do you mean by magnetic susceptibility? Write the relation between magnetic susceptibility and permeability.
- 10. Write down the expressions for bound surface charge density and bound volume charge density.
- 11. Define curl of a vector function. Give its physical interpretation.
- 12. What are linear magnetic materials?

(Ceiling-20 Marks)

Section B- Paragraph/ Problem Type

(Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks)

- 13. Three charges are situated at the corners of a square of side 'a'. How much work does it take to bring in another charge '+q', from far away and place it in the fourth corner?
- 14. Obtain the expression for the torque experienced by a dipole placed in an uniform electric field.

 What will be the net force on the dipole if the electric field is non-uniform?
- 15. State and explain Ampere's circuital theorem. Using this theorem find the magnetic field due to a very long solenoid.
- 16. Explain spherical polar coordinates. Obtain the expressions for general infinitesimal displacement vector, surface element and volume element in spherical polar coordinates.
- 17. Explain Gauss's law in electrostatics. Find the electric field intensity at a point inside the charged sphere whose charge density varies with the distance from the centre of the sphere as $\rho = k r$, where k is a constant.
- 18. Evaluate the integral $\int_{-\infty}^{+\infty} ln(x+3)\delta(x+2) dx$
- 19. What are magnetic domains? Draw the hysteresis curve of a ferromagnetic material and explain it.

(Ceiling-30Marks)

Section C- Essay Type Answer any one question. Answer carries 10 marks

- 20. Discuss electrostatic properties of a conductor. Obtain the expression for electrostatic pressure on the surface of a conductor.
- 21. State and explain magnetic Lorentz force. Obtain the trajectory of a charged particle of charge 'q' moving in a crossed uniform electric and uniform magnetic field.

(1x10= 10 Marks)

1B3N23102

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2023 BPH3C03 - Mechanics, Relativity, Waves & Oscillations

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A - Short Answer type. (Answer all questions in 2 or 3 sentences, each correct answer carries a maximum of 2 marks)

- With example, define inertial frame of reference. 1.
- Use Galilean transformations to show that the distance between two points (x_1, y_1, z_1) and 2. (x2, y2, z2) is invariant in two inertial frames.
- Explain the principle of the rocket 3.
- Comment on 'Moving clock runs slow.' 4.
- What happens to the amplitude as time increases during damping? 5.
- What is a centre of mass reference? Is it an inertial frame or non-inertial frame of 6. reference?
- Give two limitations of classical mechanics. 7.
- What do you meant by energy density? 8.
- Write down the momentum -energy relation in relativity. Explain the symbols. 9.
- Define central force motion. List any two features of central force motion. 10.
- What is ultra violet catastrophe? 11.
- Obtain the differential equation of a simple harmonic oscillator. 12.

(Ceiling - 20)

Section B - Paragraph / Problem type. (Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks)

- Describe the Michelson Morley experiment 13.
- Explain the concept of potential energy curve. 14.
- State the law of conservation of angular momentum. Explain one application. 15.

- 16. If a force acting on a particle at any point (x, y, z) is $(5x\hat{i} + xy\hat{j} + z\hat{k})$, how much work is done, when the particle moves from the point (5,2,1) to the point (5,3,2)?
- 17. In the laboratory the life time of a particle moving with speed 2.8× 10⁸ m/sec, is found to be 2.5× 10⁻⁷ sec. Calculate the proper life time of the particle.
- 18. The work function for Tungsten is 4.52 eV. Radiation of wavelength 198 nm is incident on a piece of Tungsten. Find (a) the cutoff wavelength for Tungsten (b) the stopping potential and (c) maximum kinetic energy of photoelectrons.
- 19. A plane wave of frequency 256 Hz and amplitude 0.001 mm is produced in air. Calculate the energy density and energy current, given the velocity of sound in air =332 m/s and density of air =1.29 kg/m³.

(Ceiling-30)

SECTION C - Essay type (Essays - Answer in about two pages, any one question. Answer carries 10 marks)

- 20. Discuss the motion of particle under damped motion and obtain its differential equation. Write the probable solution and represent it graphically.
- 21. Briefly explain the physics in a rotating system. Define the coriolis force.

 $(1 \times 10 = 10 \text{ marks})$