(Pages: 2)

Reg. No:....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Mathematics Degree Examination, November 2023 BMT3B03 – Theory of Equations and Number Theory

(2022 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

Section A All questions can be attended Each question carries 2 marks.

- 1. Show that $x^5 3x^4 + x^2 2x 3$ is divisible by x 3.
- 2. Write the cubic equation with the roots 0, 1, 2.
- 3. Find the quotient and remainder when $3x^4-2x^3+2x^2-5x+1$ is divided by x-2.
- 4. Find Δ of the equation $x^3 + 6x^2 + 9x + 8 = 0$.
- 5. State Fundamental theorem of Algebra.
- 6. How many real roots has the equation $x^6 + x^4 x^3 2x 1 = 0$.
- 7. State well ordering principle.
- 8. Find the quotient and remainder when -325 is divided by 13.
- 9. Express (18,28) as a linear combination of 18 and 28.
- 10. State Lamé's Theorem.
- 11. Find the canonical decomposition of 1661.
- 12. Determine whether the LDE 12x + 18y = 30 is solvable.
- 13. Define Pseudoprime. Give an example.
- 14. Find $\varphi(81)$, where φ Euler's Phi function.
- 15. Prove that the product of any two integers of the form 4n+1 is also of the same form.

(Ceiling: 25 Marks)

Section B All questions can be attended Each question carries 5 marks.

- 16. Solve the equation $3x^3 16x^2 + 23x 6 = 0$, if the product of the root is 1.
- 17. Find an upper limit of the positive roots of the equation $2x^5 7x^4 5x^3 + 6x^2 + 3x 10 = 0$.
- 18. Factorise into real linear and quadratic factors: $x^4 + x^3 + x^2 + x + 1$.
- 19. Prove that there are infinitely many primes.
- 20. Find six consecutive integers that are composites.
- 21. Prove that if p/ab, then p/a or p/b, where p is a prime.
- 22. Find the remainder when 3^{247} is divided by 17.
- 23. Prove that $a^{\phi(m)} \equiv 1 \pmod{m}$, where m is a positive integer and a any integer with (a, m) = 1.

(Ceiling: 35 Marks)

Section C Answer any two Question Each question carries 10 marks.

- 24. Examine whether the equation $x^6+3x^5-36x^4-45x^3+93\dot{x}^2+132x+140=0 \text{ has integral roots or not.}$
- 25. (a) Find the number of positive integers ≤ 3000 and divisible by 3, 5 or 7.
 (b) Solve the congruence 12x ≡ 48(mod18).
- 26. State and prove Wilson's Theorem.
- 27. (a) If f is a multiplicative function, then prove that $F(n) = \sum_{d/n} f(d)$ is multiplicative.
 - (b) Prove that the tau and sigma functions are multiplicative.

 $(2\times10=20 \text{ Marks})$

Reg. No:.....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Physics, Chemistry & Statistics Degree Examination, November 2023

BMT3C03 - Mathematics - 3

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A All questions can be attended. Each question carries 2 marks. Overall ceiling 20

- 1. Let $f(x) = \sin x$. Evaluate $\int_0^{\pi} \sin x \, dx$ by trapezoidal rule with n = 2.
- 2. Find the components and length of the vector \vec{v} with given initial point P: (3,9,1) and terminal point Q: (3-9,1).
- 3. Let $\vec{a} = [1,3,2], \vec{b} = [2,0,-5]$. Find $\vec{a} \cdot (\vec{a} \vec{b})$ and $\vec{a} \cdot (\vec{b} \vec{a})$
- 4. Find a parametric representation of the straight line through the point (4,2,0) in the direction of the vector i + j.
- 5. Find the directional derivative of $x^2 + y^2$ at (1,1) in the direction of 2i 4j.
- 6. State Green's theorem in the plane.
- 7. Write a parametric representation of the sphere $x^2 + y^2 + z^2 = 16$.
- 8. Evaluate the line integral $\int_C F(r) dr$ where $F(r) = 5zi + xyj + x^2zk$ and C is the straight line segment ti + tj + tk, $0 \le t \le 1$.
- 9. Evaluate the integral $\int_C \mathbf{F} \cdot d\mathbf{r}$ from (0,1,2) to (1,-1,7), where $\mathbf{F} = (3x^2dx + 2yz \, dy + y^2dz)$. Given that \mathbf{F} has potential $f(x,y,z) = x^3 + y^2z$.
- 10. Find the polar form of $3 + 3\sqrt{3}i$.
- 11. Find the value of the derivative (z i)/(z + i) at i.
- 12. Find an upper bound for the absolute value of the integral.

(Ceiling 20 Marks)

Section B All questions can be attended. Each question carries 5 marks. Overall ceiling 30

- 13. Sketch the graph and level curves at c = 0,1,2 of the function $f(x,y) = x^2 + y^2$.
- 13. Sketch the graph and level cut visual 14. Find the gradient of the function $F(x, y, z) = xy^2 + 3x^2 z^3$ at (4, -2, 8).
- 15. Find an equation for the tangent plane to the surface $z = x^2y$ at the point (2,1,4).
- 16. Find the value of a if $u = (axy z^2)i + (x^2 + 2yz)j + (y^2 axz)k$ is irrotational.
- 17. If $f(x,y) = x^2y 2xy$ and $R: 0 \le x \le 3, -2 \le y \le 0$, then evaluate $\iint_R f(x,y) dA$.
- 18. Evaluate $\int_{0}^{3} \int_{0}^{2} \int_{0}^{1} (x + y + z) dz dx dy$.
- 19. Integrate $\frac{z^4 3z^2 + 6}{(z+1)^3}$ in the counter clockwise sense around the circle |z| = 1.5.

(Ceiling 30 Marks)

Section C Answer any one of the questions. The question carries 10 marks.

- 20. Using divergence theorem evaluate the net outward flux of the field $F = (x^3 i + x^2 y j + x^2 z k)$ across the closed surface S consisting of the cylinder $x^2 + y^2 = 4$, $0 \le z \le 1$ and the circular disks z = 0 and z = 1; $(x^2 + y^2 \le 4)$.
- 21. (a) Prove that $f(z) = x^2 + y^2$ is nowhere analytic.
 - (b) Evaluate $\oint_C \frac{5z+7}{z^2+2z-3} dz$, where C: |z-2| = 2.

 $(1 \times 10 = 10 \text{ Marks})$

		107	n	00)
1B	31	123	v	oc)

(Pages: 2)

Reg. No:.....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Computer Science Degree Examination, November 2023 BMT3C03(CS) – Mathematics

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A All questions can be attended. Each question carries 2 marks. Overall ceiling 20

- 1. Show that the function $f(z) = z^2 + 2z + 1$ is analytic for all z.
- 2. Express the complex number $\frac{2}{i}$ in the form a + ib.
- 3. Evaluate $\int_0^1 \mathbf{r}(t)dt$, where $\mathbf{r}(t) = t^2\mathbf{i} + 5t\mathbf{j} + 6t^3\mathbf{k}$.
- 4. The characteristic equation of the matrix $\begin{bmatrix} 3 & 4 \\ 5 & 2 \end{bmatrix}$ is ______.
- 5. The Rank of the matrix $A = \begin{bmatrix} 1 & 2 \\ 3 & 6 \end{bmatrix}$ is _____
- 6. Convert $(1, 0, -\sqrt{3})$ given in rectangular coordinates to spherical coordinates.
- State Cayley Hamilton Theorem.
- 8. Find the Polar form of the complex number $z = -\sqrt{3} + i$.
- 9. Find the derivative of $f(z) = (4z + 3)(Z^2 8z + 4i)$.
- 10. If $z = 3x^2y^2 + 9x^3 + y^6 + 5$, find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 11. The vector function $r(t) = a \cos t i + a \sin t j$, $0 \le t \le 2\pi$ represents
- 12. Show that $\frac{z+\bar{z}}{2} = Re(z)$.

Section B All questions can be attended. Each question carries 5 marks. Overall ceiling 30

- 13. Show that $f(z) = \overline{z}$ is no where differentiable.
- 14. Find the parametric equation of the tangent to the ellipse $\frac{x^2}{9} + \frac{y^2}{4} = 1$ at $P: (1, \sqrt{2}, 0)$.
- 15. Find the gradient of the function $f(x, y) = e^x y + \sin(xy)$ at (2,0).
- 16. Find all solutions of the equation $z^4 + 1 = 0$.
- 17. Find all Eigen values of the matrix $A = \begin{bmatrix} 2 & 1 & -2 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$.
- 18. If F is a vector field having continuous second partial derivatives, then prove that div(curl F)=0.
- 19. Compute $(2-2i)^5$.
- 20. Let C denote the line segment y = 2x + 1, $-1 \le x \le 0$ and $G(x, y) = 6x^2 + 3y^2$. Evaluate the line integrals $\int_C G(x, y) dy$.

Part C Answer any one of the question. The question carries 10 marks.

- 21. State Cauchy's Integral formula. Evaluate $\oint_C \frac{z^2 (\frac{1}{3})}{z^3 z} dz$, where C is the circle |z 1/2| = 1, oriented in the counter clockwise direction.
- 22. Let $u(x,y) = \log_e(x^2 + y^2)$. Verify that u is harmonic. Find the harmonic conjugate function of u and form the corresponding analytic function f(z) = u + iv.

8