	22005
1824	23095

(D-	
1 Pages	71
(Pages	41

Reg. No:	

Mana	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Degree Examination, April 2023

BPH2C02 - Optics, Laser & Electronics

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A- Short Answer Type

(Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks, Overall Ceiling 20)

- I. Distinguish between optical path and geometrical path.
- 2. Why are Newton's rings circular?
- 3. Draw the intensity distribution curve of Fraunhofer diffraction at a single slit.
- 4. What are central maxima and principal maxima in the diffraction grating?
- 5. State Rayleigh's criterion for resolution of spectral lines.
- 6. What is the difference between unpolarized light and circularly polarized light?.
- 7. What is the main the difference between positive crystals and negative crystals?
- 8. Explain any one application of optical activity of plane polarized light.
- 9. Define Peak Inverse Voltage in a half wave rectifier.
- 10. Why are Zener diodes used as voltage regulators?
- 11. Draw the circuit diagram of a NOT gate using transistors.
- 12. What is metastable state in a laser?

(Ceiling-20)

Section B- Paragraph/ Problem Type

(Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks)

- 13. Newton's rings are observed in reflected light of $\lambda = 5.9 \times 10^{-5}$ cm. The diameter of the 10th dark ring is 0.5cm. Find the radius of curvature of the lens and the thickness of the air film.
- 14. Distinguish between resolving power and dispersive power of a grating.
- 15. A parallel beam of light of wavelength 5460A⁰ is incident at an angle of 30⁰ on a plane transmission grating which has 6000 lines/cm. Find the highest order spectrum that can be observed.
- 16. Distinguish between quarter wave plate and half wave plate. Explain how plane polarized light is converted to circularly polarized light using wave plates.
- 17. A sugar solution in a tube of length 20cm produces optical rotation of 130. The solution is then diluted to one-third of its previous concentration. Find the optical rotation produced by 30cm long tube containing the diluted solution.
- 18. A full wave rectifier uses two diodes, each having internal resistance 20Ω . The transformer r.m.s secondary voltage from centre tap to each end of secondary is 50V and load resistance is 980Ω. Find 1)Mean load current 2)r.m.s value of load current.
- 19. What are the basic components of a laser system? Explain.

(Ceiling- 30)

Section C- Essay Type

Answer any one question. Answer carries 10 marks

- 20. Explain interference in plane parallel film due to reflected light and obtain conditions for
- 21. What are different transistor configurations? Explain characteristics of a transistor

(1x10=10)

(Pages:2)

Reg. No:	
Names	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Physics Degree Examination, April 2023 BPH2B02 – Mechanics – II

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

(The symbols and notations used in this question papers have their usual meanings)

Section A- Short Answer Type (Answer all questions in two or three sentences, each correct answer carries a maximum of 2 marks)

- 1. Distinguish between phase velocity and group velocity of waves? Represent each of them in terms of ω and k.
- 2. Give any two properties of bodies moving under the influence of a central force.
- 3. Give the differential equation of a two-dimensional wave propagating along a surface. Explain each term in it.
- 4. Write the condition for standing wave formation. Define a "node".
- 5. What is the physical origin of Coriolis force? Give any one example.
- 6. A person stands on the weighing machine placed in an upward accelerating lift. What effect can you note on his apparent weight?
- 7. How are beats generated? Mention any one of its application.
- 8. Distinguish the dynamics of an over damped and critically damped oscillator. Give its time dependent graphical representation.
- 9. What is 'quality factor' of an oscillator? Give its physical relevance.
- 10. Give the differential equation of a forced harmonic oscillator. Explain each term.
- 11. Differentiate between dispersive and non-dispersive media. Give one example for each.
- 12. "Triangular wave sequence is an example for complex wave"- Justify the statement.

(Ceiling-20 Marks)

Section B - Paragraph/ Problem Type

(Answer all questions in a paragraph of about half a page to one page, each correct answer carries a maximum of 5 marks)

- 13. A body is freely falling down from a height h at a latitude of in the Northern hemisphere If Ω is the angular velocity of rotation of earth, compute the horizontal displacement of the body at the latitude.
- 14. Two functions are given by: a) $y(x,t) = \sin 4x \cos ct$, b) $y(x,t) = x^2 c^2 t^2$, where c is a constant. Verify that whether do they represent real wave function.
- 15. A body having mass of 4 kg executes SHM. 24N force acts on the body when it got displaced to 8cm from its mean position. Find the period. If the maximum velocity is 500cm/sec, compute the amplitude of oscillation.
- 16. A mechanical wave on a string represented by $y(x,t) = 0.50 \sin(2t-3x) cm$ is reflected back from a rigid surface and superpose with the original wave. Find the amplitude of the resulting standing wave at a distance 2.0cm from the starting point.
- 17. With necessary theory prove that "if S frame is inertial then all frames which are in uniform relative motion w.r.t to S are also inertial".
- 18. Prove that for a body moving in a central force field, "the areal velocity is a constant".
- 19. Prepare a brief note on Foucault Pendulum and derive the expression for its time period.

(Ceiling- 30 Marks)

Section C- Essay Type

(Answer any one question. Answer carries 10 marks)

- 20. Derive the general equation of the orbit of a planet put in the central force of sun.
- 21. With necessary theory, set up the differential equation of a forced (externally driven) damped oscillator and deduce the condition for mechanical resonance.

 $(1 \times 10 = 10 \text{ Marks})$