1B2A23080

(Pages: 3)

Reg. No:

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Mathematics Degree Examination, April 2023

BMT2B02 - Calculus - 2

(2022 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

All questions can be attended. (Each question carries 2 Marks - Ceiling- 25 Marks.)

- 1. Find the area of the region enclosed by the curves $y = \sqrt{x}$, x = 2 and x axis.
- 2. Find the volume of the solid obtained by revolving the region bounded by the graphs of $y = x^3$, y = 8 and x = 0 about the y axis.
- 3. Write an integral (no need to evaluate) giving the arc length of the graph of $y = \tan x$ from P(0,0) to $Q(\frac{\pi}{4}, 1)$.
- 4. Prove that $\ln\left(\frac{x}{y}\right) = \ln x \ln y$.
- 5. Find $\frac{dy}{dx}$ where $\ln(x+y) \cos y x^2 = 0$.
- 6. Find $\int \frac{\sqrt{\log x}}{x} dx$.
- 7. Prove the identity $\cosh^2 x \sinh^2 x = 1$.
- 8. Evaluate $\lim_{x\to 0} \frac{e^x 1}{x + \sin x}$.
- 9. Show that the sequence $\left(\frac{e^n}{n^2}\right)$ is divergent.
- 10. Give an example to show that sum of two divergent sequences may converge.
- 11. Does the series $\sum_{n=1}^{\infty} \tan^{-1} n$ converges?
- 12. Show that the series $\sum_{n=2}^{\infty} \frac{1}{\sqrt{n^2 1}}$ diverges.
- 13. Test the convergence of $\sum_{n=1}^{\infty} \frac{\cos n\pi}{n}$.

- 14. Give an example of an infinite series which is convergent, but not absolutely convergent.
- 15. Find the Taylor series of $f(x) = \frac{1}{1+x}$ at x = 2.

Section B All questions can be attended. (Each question carries 5 Marks – Ceiling- 35 Marks.)

- 16. Find the number a such that the area of the region bounded by the graph of $x = (y-1)^2$ and the line x = a is $\frac{9}{2}$.
- 17. Find the derivatives of (a) $y = \sin^{-1}\left(\frac{1}{x}\right)$ and (b) $y = (x+2)^{1/x}$.
- 18. Find $\int \frac{\sinh \sqrt{x}}{\sqrt{x}} dx$.
- 19. Show that $\lim_{x \to \infty} \left(1 + \frac{1}{x}\right)^x = e$.
- 20. Evaluate (a) $\lim_{x\to 0^+} (x-\sin x)^{\sqrt{x}}$ and (b) $\lim_{x\to \pi/2} (\tan x \sec x)$
- 21. Test the convergence of the series $\sum_{n=1}^{\infty} \frac{\tan^{-1} n}{n^2 + 1}$.
- 22. Show that the infinite series $\sum_{n=1}^{\infty} \frac{\sqrt{n} + \ln n}{n^2 + 1}$ converges.
- 23. Find the radius of convergence and the interval of convergence of $\sum_{n=0}^{\infty} \frac{(-1)^n 2^n x^n}{\sqrt{n+1}}$.

Section C Answer any TWO questions. (Each question carries 10 Marks)

- 24. (a) Find the volume of the solid generated by revolving the region enclosed by the astroid $x^{2/3} + y^{2/3} = a^{2/3}$ about the x axis.
 - (b) Find the area of the surface obtained by revolving the graph of $f(x) = \sqrt{x}$ on [0, 2]

25. (a) Evaluate
$$\int_{0}^{\infty} \frac{e^{-\sqrt{x}}}{\sqrt{x}} dx$$
.

- (b) State a comparison test for improper integrals. Use it to show that $\int_{0}^{\infty} e^{-x^{2}} dx$ is convergent.
- 26. (a) State squeeze theorem for sequences. Use it to prove that the sequence $\left(\frac{n!}{n''}\right)$ converges to 0.
 - (b) Find the sum of the series $\sum_{n=1}^{\infty} [2(0.1)^n + 3(-1)^n (0.2)^n]$.
- 27. (a) Find a power series representation for $tan^{-1}x$ by integrating a power series for $f(x) = 1/(1+x^2)$.
 - (b) Find the Maclaurin series of $\sin x$ and use it to find $\lim_{x\to 0} \frac{\sin x x + \frac{1}{6}x^3}{x^5}$. $(2 \times 10 = 20 \text{ marks})$

	173	ΛX	1
1B2/	123	UU	-

(Pages : 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc (Physics, Chemistry & Statistics)Degree Examination, April 2023 BMT2C02 – Mathematics – 2

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A All questions can be attended. Each question carries 2 marks.

- 1. Using the definition, show that $\cosh^2 x \sinh^2 x = 1$.
- 2. Find the Cartesian equation corresponding to the polar equation $r = 1 + 2r \cos\theta$.
- 3. Find the rank of the matrix $\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 5 \\ 2 & 4 & 8 \end{bmatrix}$
- 4. Define elementary (raw) matrix.
- 5. What is the normal form of a matrix? Give an example.
- 6. Find the characteristic equation of the matrix $\begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}$
- 7. Show that $\lim_{n\to\infty} \frac{1}{n} = 0$
- 8. Find $\lim_{n\to\infty} \frac{2^n}{5n}$
- 9. Find $\sum_{n=1}^{\infty} \frac{4}{2^{n-1}}$
- 10. Check the convergence of the series $\sum_{n=1}^{\infty} \frac{n^2}{2^n}$
- 11. For what value of x, the power series $\sum_{n=1}^{\infty} (-1)^{n-1} \frac{x^n}{n}$, is convergent?
- 12. Define the Taylor series generated by the function f(x) at a.

(Ceiling: 20 Marks)

Section B All questions can be attended Each question carries 5 marks

13. Evaluate
$$\int_0^1 \frac{2 \, dx}{\sqrt{3+4x^2}}$$

- 14. Graph the curve $r^2 = 4 \cos \theta$
- 15. What are the basic elementary (raw) transformations? Explain with examples, one each,
- 16. Solve the following system of linear equations using Cramer's rule.

$$2x_1 + x_2 + 5x_3 + x_4 = 5, x_1 + x_2 - 3x_3 - 4x_4 = -1,$$

$$3x_1 + 6x_2 - 2x_3 + x_4 = 8, 2x_1 + 2x_2 + 2x_3 - 3x_4 = 2$$

- 17. Find $\lim_{n \to \infty} a_n$ where $a_n = \left(\frac{n+1}{n-1}\right)^n$
- 18. Prove that $\tan^{-1} x = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \cdots, -1 < x < 1$
- 19. State and prove n^{th} root test.

(Ceiling: 30 Marks)

Section C Answer any one question. Question carries 10 marks

- 20. Determine the characteristic roots and associated vectors of the matrix $\begin{bmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{bmatrix}$
- 21. (a) Find the length of the Cardioids $r = 1 \cos\theta$
 - (b) Find the Taylor series and Taylor polynomial generated by $f(x) = e^x$ at x = 0.

(1x10 = 10 Marks)

		$\alpha o \tau$
1B2/	123	UOZ

(Pages: 2)

Reg. No:.... Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Computer Science Degree Examination, April 2023

BMT2C02(CS) - Mathematics - 2

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A All questions can be attended. Each question carries 2 marks.

- 1. Prove that $\cosh^2 x \sinh^2 x = 1$.
- Test the Convergence of the series $1 \frac{1}{\sqrt{2}} + \frac{1}{\sqrt{4}} \frac{1}{\sqrt{8}} + \frac{1}{\sqrt{16}} \dots$
- 3. Evaluate $\int \sinh^2 x \, dx$.
- 4. Show that $\lim_{n\to\infty} \frac{2n}{n^2+1} = 0$.
- What is the polar coordinates of (x, y) = (4, -2)?
- Write down the Maclaurien series for cos x.
- 7. Test the convergence of the series $\sum_{n=1}^{\infty} (-1)^{n-1}$.
- 8. What is a p-series? Write the rule of its convergence.
- 9. Determine whether the series $\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}}$ converges or diverges.
- 10. The point $\left(4,\frac{\pi}{6}\right)$ is given in polar coordinates. Find its representation in rectangular coordinates.
- 11. Find the average value of $f(x) = 4 x^2$ over the interval [-1, 3].
- 12. Define a sequence. Give the first 5 terms of the sequence $\left\{\frac{\sqrt{n}}{2^{n-1}}\right\}$.

(Ceiling: 20 Marks)

Section B All questions can be attended Each question carries 5 marks

- 13. Find the length of the curve $y = \frac{4\sqrt{2}}{3}x^{\frac{3}{2}} 1$ where $0 \le x \le 1$.
- 14. Find the length of the perimeter of the cardioid $r = a(1 \cos\theta)$.
- 15. Using Maclaurin's series expand $\tan^{-1} x$. Hence deduce the Gregory series $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{\pi}{3}$

$$\frac{1}{5} - \frac{1}{7} \dots$$

- 16. Determine whether the sequence $\left\{\frac{n}{n+1}\right\}$ converges or diverges
- 17. Find the volume of the solid obtained by revolving the region under the graph of $y = \sqrt{x}$ on [0,2] about the x-axis.
- 18. State and Prove the Mean Value Theorem for Integrals.
- 19. Find the area of the region bounded by the graphs of $y = 2 x^2$ and y = -x.

(Ceiling: 30 Marks)

Section C Answer any one question. Question carries 10 marks

- 20. a) Evaluate $\int_{1}^{\infty} \frac{\ln x}{x^2} dx$, if it exists.
 - b) Find the area of the region shared by the cardioids $r=2(1+\cos\theta)$ and $r=2(1-\cos\theta)$.
- 21. Sketch the graphs of the polar equations, and reconcile your results by finding the corresponding rectangular equations.
 - a) r=2
 - b) $\theta = \frac{2\pi}{3}$

(1x10 = 10 Marks)