(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester B.Sc Mathematics Degree Examination, November 2023 BMT1B01 - Basic Logic and Calculus - I

(2022 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

Section A All questions can be attended Each question carries 2 marks

- 1. Write the sentence in if-then form: x = 1 is sufficient for $x^2 = 1$
- 2. Show that $p \rightarrow q \equiv q \rightarrow p$
- 3. Rewrite the implication in inferential form:

$$[(p \to q) \land (\sim q)] \to \sim p$$

- 4. Find $\lim_{x\to 2} \frac{x^2-4}{x-2}$
- 5. Let $f(x) = \frac{1}{x^2}$. Evaluate $\lim_{x \to 0+} f(x)$, $\lim_{x \to 0-} f(x)$ and $\lim_{x \to 0} f(x)$, if they exist.
- 6. Show that $\lim_{x\to 2} [x]$ does not exist.
- 7. Find the extrema of $f(x) = x^2$, -1 < x < 2.
- 8. Verify that $f(x) = x^2 + 1$ satisfies the hypothesis of Mean Value Theorem on [0,2]. Find the value of c.
- 9. Find the points of inflection of $f(x) = x^4 4x^3 + 12$
- 10. Find the horizontal and vertical asymptotes of $g(x) = \frac{x}{x+1}$
- 11. Find two numbers whose difference is 50 and whose product is minimum.
- 12. Find all the anti-derivatives of f(x) = 1 on $(-\infty, \infty)$
- 13. Evaluate $\int \frac{\sin t}{\cos^2 t} dt$
- 14. Evaluate the sum: $\sum_{k=1}^{n} \frac{1}{n} \left(1 + \frac{k}{n}\right)^2$
- 15. Divide the interval [2, 5] imnto n subintervals of equal length and let c_k be any point in $[x_{k-1}, x_k]$. Write $\lim_{n \to \infty} \sum_{k=1}^n \sqrt{1 + c_k^2} \Delta x$ as an integral.

All questions can be attended Each question carries 5 marks

16. Let P(x, y): $y^2 < x$ and x and y are real numbers. Determine the truth values of:

i)
$$(\forall x)(\forall y)P(x,y)$$
 ii) $(\exists y)(\forall x)P(x,y)$

- 17. Construct truth table and verify: $\sim (p \rightarrow q) \equiv p \land \sim q$
- 18. Find $\lim_{x\to 0} x^2 \sin \frac{1}{x}$.
- 19. Using formal definition prove that $\lim_{x\to 2} x^2 = 4$
- 20. Determine the intervals where the function $f(x) = x + \frac{1}{x}$ is increasing and where it decreasing.
- 21. Prove that $\lim_{x\to 0} \frac{1}{x^2} = \infty$.
- 22. Show that $\int_{a}^{b} x \, dx = \frac{1}{2} (b^2 a^2)$
- 23. Find the average value and c guaranteed by the Mean Value Theorem for Integrals for f(x) = 4 2x on [0,2].

(ceiling 35 Marks)

Section C Answer any two questions Each question carries 10 marks

24. a) Test the validity of the argument

b) Prove by contradiction that there is no largest prime number

25. Let
$$f(x) = \begin{cases} ax + b, & \text{if } x \le 1 \\ 4, & \text{if } x = 1 \\ 2ax - b, & \text{if } x > 1 \end{cases}$$
. Find the value of a and b that will make

f continuous on $(-\infty, \infty)$.

26. Sketch the graph $f(x) = x^3 - 3x^2 + 1$.

27. a) Find
$$\frac{dy}{dx}$$
 if $y = \frac{1}{1+t^2} dt$

b)Evaluate
$$\int_{-2}^{2} f(x) dx$$
 where, $f(x) = \begin{cases} -x^2 + 1, & \text{if } x < 0 \\ x^3 + 1, & \text{if } x \ge 0 \end{cases}$

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester B.Sc (Chemistry, Physics & Statistics) Degree Examination, November 2023

BMT1C01 - Mathematics - I

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A All questions can be attended Each question carries 2 marks

- Find $\lim_{h\to 0} \frac{\sqrt{2+h}-\sqrt{2}}{h}$.
- Show that $y = \sin \frac{1}{x}$ has no limit as x approaches zero from either side. 2.
- For what value of , $f(x) = \begin{cases} x^2 1, & x < 3 \\ 2ax, & x > 3 \end{cases}$ is continuous at every x? 3.
- Define g(4) in a way that extends $g(x) = \frac{(x^2 16)}{(x^2 3x 4)}$ to be continuous at x = 4.
- Suppose that f(-1) = 3 and f'(x) = 0. Then find f(x).
- 6. Find $\lim_{x\to 0} \frac{\sin x x}{x^3}$.
- 7. Find the horizontal tangents of the function $f(x) = \frac{x^3}{3} \frac{x^2}{3} + 1$.
- State first derivative theorem for local extreme values.
- 9. Define point of inflection of a graph of a function. Give an example.
- 10. Show that the value of $\int_0^1 \sin x^2 dx$ cannot possibly be 2.
- 11. Find all points in the interval [0, 1] at which the function $f(x) = -3x^2 1$ assumes its average value.
- 12. If $y = \int_1^{\sin x} 3t^2 dt$ find $\frac{dy}{dx}$ by differentiating integral directly.

(Ceiling: 20 Marks)

Section B All questions can be attended Each question carries 5 marks

- 13. Find the derivative of $g(t) = \tan(5 \sin 2t)$.
- 14. Show that the equation $x^3 15x + 1 = 0$ has three solutions in the interval [-4, 4].
- 15. Find an equation of the tangent line to the curve $y = \frac{8}{\sqrt{x-2}}$ at (6, 4).
- 16. Find the tangent and normal to the curve $x^2 + xy y^2 = 1$ at the point (2, 3).
- 17. A hot balloon rising straight up from a level field is tracked by a range finder 500 ft from the lift-off point. At the moment the range finder's elevation angle is $\frac{\pi}{4}$, the angle is increasing at the rate of 0.14 rad/mm. How fast is the balloon rising at the moment?
- 18. Find the absolute extrema of $h(x) = x^{\frac{2}{3}}$ on [-2, 3].
- 19. Find the total area of the region between x-axis and the graph of the function $f(x) = -x^2 2x$, $-3 \le x \le 2$.

(Ceiling; 30 Marks)

Section C Answer any one question Question carries 10 marks

- 20. Graph the function $y = \frac{x^3+1}{x}$. Include the equations of asymptotes and dominant terms.
- 21. (i) Find the intervals on which $f(x) = -x^3 + 12x + 5$, $-3 \le x \le 3$ is increasing and decreasing. Where does the function assume extreme values and what are these values?
 - (ii) Find the asymptotes of the graph of $y = -\frac{x^2-4}{x+1}$.

 $(1 \times 10 = 10 \text{ Marks})$

2B1	N ₂	32	91	(B)
4000		-		

(Pages : 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester B.Sc Computer Science Degree Examination, November 2023 BMT1C01(CS) - Mathematics - I

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A All questions can be attended Each question carries 2 marks

- The power set of the set consists of the letters of the word MATHS is......
- 2. Let A be the set of all straight lines. A relation on R is defined by xRy iff x is perpendicular to y, for all x,y \in A. Is this a transitive relation? Justify.
- Dual of (A∩B^c)^c U B is......
- Negate the statement ¬(p∧¬qvr).
- 5. Define Proposition. Give an example.
- 6. Write a short note on universal and existential quantifiers.
- 7. Position of a particle at a time t is given by the function $p(t) = 3t^2 + 2 \sqrt{t}$. Find the velocity and acceleration of the particle at t = 2.
- 8. Find $\lim_{x\to \frac{\pi}{4}}(2x^2-\cot x)$.
- 9. Find $\frac{d}{dx}(\frac{x}{x^2+1})$.
- 10. Define an increasing function. Give an example.
- 11. Find all the asymptotes of $f(x) = \frac{x^2-4}{x-1}$.
- 12. If f'(x) = 2x, for all $x \neq -2$ and f(-2) = 3. Find f(2)

(Ceiling: 20 Marks)

Section B All questions can be attended Each question carries 5 marks

- 13. In an examination 40% students passed in Maths only, 30% students passed in Physics only and 10% students failed in both subjects. If 400 students passed in Physics, find the total number of students by drawing Venn diagram.
- 14. Show that $[(p \rightarrow q) \land (q \rightarrow r)] \rightarrow (p \rightarrow r)$.
- 15. If P and Q are two relations on a set A, Show that PnQ is a relation on A.

16. Test the continuity of the function
$$f(x) = \begin{cases} x \sin\left(\frac{1}{x}\right), & x \neq 0 \\ 0, & x = 0 \end{cases}$$

17. Find the equations of all the lines having slope -1 that are tangent to the curve

$$y = \frac{1}{(x-1)}$$
.

18. Find the points of inflection of the function $f(x) = 3x^4 - 4x^3 + 1$.

18. Find the points of inflection of the function $\frac{1}{3}x^3$.

- 18. Find the local and absolute extreme values of the function $\frac{1}{3}x^3 2x^2 + 4x$, $0 \le x < \infty$.

(Ceiling: 30 Marks)

Section C Answer any one question Question carries 10 marks

b) Find y' at (-1,1) if $x^2 + 3xy + y^2 = -1$. 20. i) a) Evaluate $\lim_{x\to\infty} \frac{x+\sin x}{2x+7-5\sin x}$

ii)Define contingency. Show that $(pVq)\Lambda(\neg q)$ is a contingency .

21. Graph the function $f(x) = \frac{1}{6}(x^3 - 6x^2 + 9x + 6)$.

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

First Semester BVOC AUTOMOBILE Degree Examination, November 2023 SDC1MT01 - Mathematics

(2022 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

PART A Answer all questions. Each question carries Two marks.

- 1. Find $\lim_{x\to 2} \frac{x^2+3x-10}{x-2}$
- 2. Find $\lim_{x\to\infty} \frac{x-5}{3x-4}$
- 3. State Rolle's theorem for derivative.
- 4. Differentiate $f(x) = 6x^3 + 2x^2 + x + 4$.
- 5. Find the slope of the tangent line to the graph of $f(x) = 3\sqrt{x}$ at x = 9.
- 6. A sphere of radius r millimetres has volume $V = \frac{4}{3}\pi r^3$ cubic millimeters. Find the rate of increase of volume with respect to radius at r = 3.
- 7. Find the second derivative of $f(x) = 2x^3 5x^2 + 4x + 8$
- 8. Evaluate $\int_0^3 (x^2 + x 1) dx$
- 9. If y = f(x) and $2x^2 + 5y^2 = 1$, express dy/dx in terms of x and y.
- 10. Find the sum of the first 100 integers.
- 11. Find the inflection points of $f(x) = x^3 x^2$.
- 12. Analyze the concavity of $f(x) = 10x^3$ at the points x = -1, x = 0, and x = 1.
- 13. Find the volume of a ball of radius r.
- 14. Is the function $f(x) = x^4 + 3x^2 + 12$ odd or even?
- 15. A bus travels $2x^2$ meters in x seconds. Find the instantaneous velocity at the time x = 4.

PART B

Answer all questions. Each question carries Five marks.

- 16. Differentiate $f(x) = (2x^3 5)(4x + 8)$
- 17. Find the equation of the tangent line to the parametric curve $x = t^3$ and $y = t^5$ at t = 2.
- 18. Find the critical points of the function $f(x) = x^3 x$. Are they local maximum or minimum points?
- 19. Find $\sum_{j=3}^{102} (j-2)$.
- 20. A car has position $2t^4 + 5t 6$ at time t. Find the velocity and acceleration of the car at t = 2.
- 21. Find $\lim_{x\to 0} \frac{\cos x-1}{x^2}$
- 22. Draw the graph of the step function g on [-1,2] defined by

$$g(x) = \begin{cases} -4 & if -1 \le x < 0 \\ 2 & if \ 0 \le x \le 1 \\ 3 & if \ 1 < x \le 2 \end{cases}$$

Compute the signed area of the region between its graph and the x axis.

23. Find the area between the graphs $y = x^2$ and y = x + 3 on [-1,1].

[Ceiling = 35 Marks]

PART C

Answer any two questions Each question carries Ten marks.

- 24. Sketch the graph of $f(x) = 2x^3 + 8x + 1$.
- 25. Calculate an approximate value for $\frac{1}{(2.01)^2+(2.01)^3}$.
- 26. (a) Find the average value of $f(x) = x^2$ on [0,2].
 - (b) The region under the graph of $y = x^2$ on [0,1] is revolved about the x axis. Sketch the resulting solid and find its volume.
- 27. (a) Show that if $f'(x_0)$ exists, then f is continuous at x_0 .
 - (b) Does $\lim_{x\to\infty} \frac{|x|}{x}$ exist?