5 h (Pages : 2)

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Mathematics Degree Examination, April 2024

BMT6B10 - Real Analysis

(2019 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

Section A All questions can be attended Each question carries 2 marks

- 1. Define Thomae's function.
- 2. State maximum minimum theorem for continuous functions.
- 3. Define non-uniform continuity criteria
- 4. State Weierstrass Approximation Theorem.
- 5. Let $f: [a, b] \rightarrow \mathbb{R}$ be defined by f(x) = k. Show that f is Riemann integrable.
- 6. State first form of fundamental theorem of calculus
- 7. Evaluate $\int_{1}^{4} \frac{\cos \sqrt{t}}{\sqrt{t}} dt$
- 8. Discuss the convergence of $g_n(x) = x^n$, $x \in \mathbb{R}$, $n \in \mathbb{N}$.
- 9. Define uniform norm on a set of bounded functions.
 - 10. State the theorem on interchange of limit and integral.
 - 11. State Cauchy's criterion for uniform convergence of series of functions.
 - 12. Evaluate $\int_{-1}^{0} \frac{dx}{\sqrt[3]{x}}$.
 - 13. Evaluate $\int_{-\infty}^{\infty} \frac{dx}{x^2}$.
 - 14. Find Cauchy's Principal value of $\int_{-\infty}^{\infty} x dx$
 - 15. Prove that $\Gamma n = (n-1)\Gamma(n-1)$.

Section B All questions can be attended Each question carries 5 marks

- 16. State and prove Boundedness Theorem on Continuous functions.
- 17. If $f: [a, b] \rightarrow R$ is continuous on [a, b], then prove that $f \in R[a,b]$.
- 18. If $f \in R[a, b]$ and if $|f(x)| \le M$ for all $x \in [a, b]$, then prove that |f| is in R[a,b] and

$$\left| \int_{a}^{b} f(x) dx \right| \leq \dot{M}(b-a).$$

- 19. Let (f_n) be a sequence of continuous functions on A⊂R and suppose that (f_n) converges uniformly on A to a function f:A→R. Then prove that f is continuous on A.
- 20. If $f \in R[a, b]$ then prove that f is bounded on [a, b].
- 21. Prove that $\lim_{n\to\infty} \frac{\sin(nx+n)}{n} = 0$, for $x \in \mathbb{R}$.
- 22. Show that even though the improper integral $\int_{-1}^{5} \frac{dx}{(x-1)^3}$ does not converge its Cauchy Principal value exists.
- 23. Show that $\Gamma(\frac{1}{2}) = \sqrt{\pi}$.

Ceiling - 35 Marks

Section C Answer any two questions Each question carries 10 marks

- 24. (a) State and prove Uniform Continuity Theorem.
 - (b) If $f:A \to R$ is uniformly continuous on a subset A of R and if (x_n) is a Cauchy sequence in A, then prove that $(f(x_n))$ is a Cauchy sequence in R
- 25. State and prove Cauchy's criterion for Riemann integrable functions.
- 26. (a) If $f \in R[a, b]$, then prove that the value of the integral is uniquely determined.
 - (b) Prove that a sequence (f_n) of bounded functions on $A \subseteq \mathbb{R}$ converges uniformly on A to f if and only if $||f_n f||_A \to 0$ as $n \to \infty$.
- 27. (a) Prove that B(m,n) = $2 \int_{0}^{\pi/2} \sin^{2m-1}\theta \cos^{2n-1}\theta d\theta$
 - (b) Prove that $B(m.n) = \frac{\Gamma m \Gamma n}{\Gamma(m+n)}$.

1B6	47	47	nc	
100	μ_{L}	43	uo	

(Pages	٠	2)
11 agus		41

Reg.	N	lo	 •	200	•	•		•	•	•			٠	•		•		•••
NT.																		

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Mathematics Degree Examination, April 2024 BMT6B11 - Complex Analysis

(2019 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

SECTION A Answer the following questions. Each carries two marks (Ceiling 25)

- 1. Show that $f(z) = e^x e^{-iy}$ is no where differentiable.
- 2. Evaluate $\lim_{z\to 2+1} \frac{z^2-4z+5}{z^3-z-10i}$.
- 3. Define analytic function and singular point of a function with an example
- 4. If f(z) = u + iv is analytic in a domain D then prove that its component functions u and v are harmonic in D.
- 5. Write |exp(2z+i)| and $|exp(iz^2)|$ in terms of x and y.
- 6. Let C denote the curve defined by $y = 2x + 1, -1 \le x \le 0$. Then evaluate $\int_C (3x^2 + 6y^2) ds$.
- 7. If f is continuous and $|f(z)| \le M$ every where on a contour C and L is the length of C then prove that $|\int_C f(z)dz| \le ML$
- 8. State Cauchy Goursat Theorem and solve $\int_C f(z)dz$ where $f(z) = \frac{z^2}{z^2+9}$ and C:|z-1| = 1
- 9. Evaluate $\oint_C \frac{z^2-1}{z^2+1} dz$, C:|z-i|=1
- 10. Prove that the series $\sum_{k=1}^{\infty} z_k$, where $z_k = i^k/k^2$ converges
- 11. Find the radius of convergence and circle of convergence of $\sum_{n=0}^{\infty} (\frac{6n+1}{2n+5})^n (z-2i)^n$
- 12. Obtain the Taylor series representation for $1/z^2$ about z=2
- 13. Determin the zeros and their order of the function $f(z) = (z + 2 i)^2$
- 14. Identify the type of singularity of (a) $\frac{z^2}{1+z}$ (b) $ze^{1/z}$
- 15. Find the residue at the singular point (a) $\frac{3e^z}{z^5}$ (b) e^{1/z^2}

SECTION B

Answer the following questions. Each carries five marks (Ceiling 35)

- 16. Show that for the function $f(z) = \begin{cases} \frac{\bar{z}^2}{z}, & when \ z \neq 0 \\ 0 & when \ z = 0 \end{cases}$ even though partial derivative of component function exists and satisfy C-R equations at z = 0, f(z) is not differentiable at z = 0.
- 17. Explain Cauchy Riemann Equation in polar co-ordinates.
- 18. Find the image of the annulus $2 \le |z| \le 4$ under the logarithmic mapping w = Lnz.
- 19. Integrate $\int_C \frac{\tan z}{z^2-1} dz$ C: |z| = 3/2 in clockwise direction
- 20. Let C be the arc of the circle |z|=2 from z=2 to z=2i that lies in the first quadrant. Without evaluating integral show that $|\int_C \frac{dz}{z^2-1}| \leq \frac{\pi}{3}$
- 21. State Maximum Modulus Theorem and find the maximum of sinz in the region $R: 0 \le x \le \pi, \ 0 \le y \le 1$
- 22. Find all Maclaurin and Laurent series representation of the function $f(z) = \frac{-1}{(z-1)(z-2)}$ about z = 0.
- 23. Evaluate $\oint_C \frac{dz}{z_{stnz}}$ where C is the unit circle in the positive direction.

SECTION C

Answer any two questions $(2 \times 10 = 20 \text{ Marks})$

- 24. (a) If f is a analytic in a simply connected domain D, then prove that f has an antiderivative in D, that is there exist a function F such that F'(z) = f(z)
 - (b) Evaluate $\int_0^{1+i} e^{\pi z} dz$
- 25. (a) Let f(z) = u(x,y) + iv(x,y) is differentiable at a point z = x + iy. Then prove that at z the first order partial derivatives of u and v exist and satisfy the Cauchy-Riemann equations.
 - (b) If f is analytic in a simply connected domain D and let C be a simple closed contour lying entirely in D. Then prove that for any point z_0 in C $f(z_0) = \frac{1}{2\pi i} \int_C \frac{f(z)}{(z-z_0)} dz.$
- 26. State and Prove Taylor's Theorem
- 27. Show that $\int_{-\infty}^{\infty} \frac{2x^2-1}{x^4+5x^2+4} = \pi/4$

1B	6A	24	30	7
----	----	----	----	---

(Pages: 2)	Reg. No:
	Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Mathematics Degree Examination, April 2024

BMT6B12 - Calculus of Multivariable - 2

(2019 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

Section A All questions can be attended Each question carries 2 marks

- 1. Define and write the equation of tangent plane and normal line.
- 2. Evaluate $\int_{1}^{2} \int_{0}^{1} 3x^{2}y \, dx \, dy$.
- 3. Let $f(x,y) = x^2 + y^2 4x 6y + 17$. Find the critical point of f and show that f has a relative minimum at that point.
- 4. Write the formula for finding the area of the surface.
- 5. Use a double integral to find the area enclosed by one loop of the three leaved rose $r = \sin 3\theta$.
- 6. Define Jacobian. State Change of variables in double integrals.
- 7. Find the gradient vector field of $f(x, y, z) = x^2 + xy + y^2z^3$
- 8. Find the divergence of $F(x, y, z) = xyz i + x^3y^2z j + xy^2k$ at the point (1,-1,2).
- 9. Evaluate $\iiint_B (x^2y + yz^2)dV$, where $B = \{(x, y, z): -1 \le x \le 1, 0 \le y \le 3, 1 \le z \le 2\}$.
- 10. Evaluate $\int_C kz \, ds$, where k is a constant and C is the circular helix.
- 11. Determine whether the vector field $F(x,y) = (x^2 2xy + 1)i + (y^2 x^2)j$ is conservative.
- 12. State Green's theorem.
- 13. Find a parametric representation of helicoid.
- 14. Identify the surface represented by $r(u, v) = 2 \cos u i + 2 \sin u j + v k$ with parameter domain $D = \{(u, v) | 0 \le u \le 2\pi, 0 \le v \le 3\}$.
- 15. Define Surface integral of Scalar and Vector Fields.

(Ceiling 25 Marks)

Section B All questions can be attended Each question carries 5 marks

- 16. Show that the point (0,0) is a critical point of $f(x,y) = y^2 x^2$ but that it does not give rise to a relative extremum of f.
- 17. Evaluate $\int_0^1 \int_y^1 \frac{\sin x}{x} dx dy$
 - 18. Evaluate $\iint_{\Gamma} z \, dV$ where T is the solid in the first octant bounded by the graphs of $z = 1 x^2$ and y = x.
 - 19. Evaluate $\int \int_R \cos\left(\frac{x-y}{x+y}\right) dA$, where R is the trapezoidal region with vertices (1,0), (2,0), (0,2) and (0,1).
 - 20. Show that the divergence of the electric field $E(x, y, z) = \frac{kQ}{|r|^3} r$, where r = xi + yj + zk, is zero.
 - 21. Suppose that F is a continuous vector field in a region R. Then $\int_C F \cdot d\mathbf{r}$ is independent of path iff $\int_C F \cdot d\mathbf{r} = 0$ for every closed path C in R.
 - 22. Evaluate $\int \int_S x \, dS$, where S is the part of the plane 2x + 3y + z = 6 that lies in the first octant.
 - 23. Find the flux of the vector field F(x, y, z) = yi + xj + 2zk across the unit sphere $x^2 + y^2 + z^2 = 1$

(Ceiling 35 Marks)

Section C Answer any two questions Each question carries 10 marks

- 24. Find the relative extrema of $f(x,y) = x^3 + y^2 2xy + 7x 8y + 2$
- 25. Evaluate $\iint_{\Gamma} \sqrt{x^2 + z^2} \, dV$, where T is the region bounded by the cylinder $x^2 + z^2 = 1$ and the planes y + z = 2 and y = 0.
- 26. Let $F(x, y, z) = 2xyz^2i + x^2z^2j + 2x^2yz k$.
 - (a) Show that F is conservative, and find a function f such that $F = \nabla f$
 - (b) If F is a force field, find the work done by F in moving a particle along any path from (0,1,0) to (1,2,-1).
- 27. Evaluate $\oint (y^2 + \tan x) dx + (x^3 + 2xy + \sqrt{y}) dy$, where C is the circle $x^2 + y^2 = 4$ and is oriented in a positive direction.

(2x10 = 20 Marks)

1	13	6	17	43	n	Я
	v	UZ	7	7.	v	U

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Mathematics Degree Examination, April 2024 BMT6B13 - Differential Equations

(2019 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

Section A

All questions can be attended. Each question carries 2marks.

- 1. Find an integrating factor for the equation $\frac{dy}{dt} + 4y = e^{-t}$.
- 2. Show that the equation $\frac{dy}{dx} = \frac{x^2}{1-y^2}$ is separable.
- 3. Solve $\frac{dy}{dx} = \frac{y}{x}$.
- 4. State the existence and uniqueness theorem for first-order linear equations.
- 5. Solve y'' + 5y' + 6y = 0.
- 6. Find the Wronskian of $y_1 = e^t \sin t$, $y_2 = e^t \cos t$.
- State Abel's theorem.
- 8. Determine the longest interval in which the solution of the initial value problem ty'' + 3y = t, y(1) = 1, y'(1) = 2, is certain to exist.
- 9. Find the general solution of y'' + 9y = 0.
- 10. Find a particular solution of $y'' 3y' 4y = 3e^{2t}$.
- 11. Find $\mathcal{L}^{-1}\left[\frac{1-e^{2s}}{s^2}\right]$.
- 12. Find the Laplace transform of $\{4 t \cos 2t 5 e^{2t}\}$.
- 13. Write the explicit form of $g(t) = u_1(t) + 2u_3(t) 6u_4(t)$.
- 14. What is the primitive period of $\sin 3x$.
- 15. Write the formulae for computing the Fourier coefficients in the Fourier series, expansion of a periodic function f(x) of period 2L.

PARTB

All the questions can be attended. Each question carries 5 marks.

- 16. Solve the IVP $y' = \frac{3x^2 + 4x + 2}{2(y-1)}$, y(0) = -1 and determine the interval in which the solution exists.
- 17. Check the exactness and solve the differential equation (2x + 4y) + (2x 2y)y' = 0.
- 18. Use the method of reduction of order to find a second solution of the differential equation $t^2y'' + 2ty' 2y = 0$, t > 0, $y_1(t) = t$.
- 19. Use the method of variation of parameters to find the general solution of the differential equation $y'' 5y' + 6y = e^{2t}$.
- 20. Using the definition of Laplace transform find $L[\cos at]$.
- 21. Using convolution theorem, find $\mathcal{L}^{-1}\left[\frac{1}{S^2(s-1))}\right]$.
- 22. Obtain the half range cosine series of f(x) = x, when 0 < x < 2.
- 23. Replace the PDE $xu_{xx} + u_t = 0$ by a pair of ordinary differential equations using the method of separation of variables.

(Ceiling 35 Marks)

PART C

Answer any two questions. Each question carries 10 marks.

- 24. (a) Solve the differential equation xdy ydx = 0.
 (b) Solve the IVP y' = y, y(0) = 1, by Picard's iteration method (do three steps).
 Also find the exact solution.
- 25. Find the general solution of the differential equation $y'' 4y' + 4y = t^3e^{2t} + te^{2t}$.
- 26. Using Laplace transformation solve $y'' + 3y' + 2y = \delta(t 5) + u_{10}(t)$, y(0) = 0, y'(0) = 1/4.
- 27. Find the Fourier series for the function $f(x) = \begin{cases} -k, & when \pi < x < 0 \\ k, & when 0 < x < \pi \end{cases}$ and $f(x + 2\pi) = f(x)$ and hence deduce the Madhav-Gregory series $\frac{\pi}{4} = 1 \frac{1}{3} + \frac{1}{5} \cdots$.

 $(2 \times 10 = 20 \text{ Marks})$

1B6	A24309	

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Sixth Semester B.Sc Mathematics Degree Examination, April 2024 BMT6B14(E03) - Mathematical Programming with Python and Latex

(2019 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A All questions can be attended. Each question carries 2 marks.

- 1. Modify the expression print 5**2+5*2 to get a result 40.
- 2. What is the difference between a[6:] and a[:6] where a= 'mathematics'.
- 3. What is List in Python?
- 4. Explain while statement in Python?
- 5. Write a python program that uses if ... else statement.
- 6. Write the effect of break statement in Python.
- 7. What is meant by slicing of a string?, Give example.
- 8. What is the output of the following Python program?

From numpy import *

a = arrange(20)

b = reshape(a, [4,5])

print b

- 9. Write a Python code for plotting the points (0,0), (1,-1) and (4,5) on the plane.
- 10. Write a short note on 2D plots using colours using Python.
- 11. Write a Latex statement to create the matrix $\begin{bmatrix} 1.1 & -2.4 & 4.3 \\ 6.7 & -5.6 & 3.4 \end{bmatrix}$
- 12. Name two environments in Latex and explain the purpose.

(Ceiling... 20 marks)

Section B All questions can be attended. Each question carries 5 marks.

- 13. Write a short note on operators and their precedence in python.
- 14. What is the Scope of variables in python?
- 15. Write a Python program to find the inverse of the matrix $\begin{bmatrix} 4 & 2 & -2 \\ 2 & -3 & 3 \\ -6 & -2 & 1 \end{bmatrix}$
- 16. Write a python program to draw a pie chart for the following data:

Item: Frogs Hogs Dogs Logs
Percentage: 25 25 30 20

- 17. Write a short note on the trapezoidal rule to find $\int_a^b f(x) dx$. Write a Python program to evaluate $\int_0^{\pi} \sin x dx$, using 100 subintervals of $[0, \pi]$.
- 18. Write a Python program to evaluate $cos(x) = 1 \frac{x^2}{1!} + \frac{x^4}{4!} + \cdots$
- 19. Write a Latex command to for

(i)
$$\frac{-b\pm\sqrt{b^2-4ac}}{2a}$$
 (ii) $\sum_{n=0}^{\infty} a_n (x-x_0)^n$

(Ceiling... 30 marks)

Section C Answer any One Question.

- 20. (a) Write a Python Program to input an integer to check whether it is a perfect number.
 - (b) Implement the bisection method in Python to find the root of a function with a given tolerance level.
- 21. (a) Prepare a sample index using Latex.
 - (b) Typeset a Python program to generate the multiplication table of 5, using verbatim.

 $(1 \times 10 = 10 \text{ marks})$