74

1B5N24205	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Mathematics Degree Examination, November 2024

BMT5B05- Abstract Algebra

(2022 Admission onwards)

Time: 2 ½ hours Max. Marks: 80

PART - A

(All questions can be attended. Each questions carries 2 marks.)

- State true or false: Usual addition + on the set R of real numbers induce a binary operation on the set R* of non-zero real numbers. Justify your answer.
- 2. Give an example of a commutative and associative binary operation on Z⁺.
- 3. Is the set Z⁺ under addition a group ?Justify your claim.
- 4. Give an example of a finite group.
- 5. Find a subgroup of the group Z.
- 6. Define the symmetric group S_n on n letters.
- 7. Define orbits of a permutation on a set A.
- 8. Define alternating group A_n on n letters.
- 9. Define the left and right cosets of a subgroup H of the group G.
- 10. Find all the generators of \mathbf{Z}_{10} .
- 11. Define kernel of a homomorphism $\emptyset : R \to R'$ where R and R' are groups.
- 12. Give an example of a ring.
- 13. Define zero divisors in a ring.
- 14. Define integral domain.
- 15. State true or false : As a ring, Z is isomorphic to nZ for all $n \ge 1$.

(Ceiling: 25 Marks)

PART - B

(All questions can be attended. Each questions carries 5 marks.)

- 16. Show that the binary structures (Q, +) and (Z,+) under the usual addition are not isomorphic.
- 17. Define group and show that * defined on Q^+ by $a^*b = \frac{ab}{2}$ is a group.
- 18. Prove that every cyclic group is abelian.

- 19. If H is a subgroup of a finite group G, prove that the order of H is a divisor of the order of G.
- 20. If H is a subgroup of G and the relation \sim_L defined on G by $a \sim_L b$ if and only if $a^{-1}b \in H$, prove that \sim_L is an equivalence relation on G.
- 21. Define integral domain and prove that every finite integral domain is a field.
- 22. If H and K are subgroups of an abelian group G, show that $HK = \{ hk : h \in H, k \in K \}$ is a subgroup of G.
- 23. Find all subgroups of Z_{18} and draw their subgroup diagram.

(Ceiling: 35 Marks)

PART - C (Answer any two questions. Each questions carries 10 marks.)

- 24. (a) Prove that a subgroup of a cyclic group is cyclic.
 - (b) Is every abelian group is cyclic? Justify with example.
- 25. If R is a ring with additive identity 0, prove that for any $a,b \in R$
 - (a) 0a = a0 = 0.
 - (b) a(-b) = (-a)b = -(ab).
 - (c) (-a)(-b) = ab.
- 26. (a) Prove that every permutation of a finite set is a product of disjoint cycles.
 - (b) By an example show that the product of two cycles need not be a cycle.
- 27. If F is a field of quotients of D and L is any field containing D, prove that there exists map $\varphi : F \to L$ that gives an isomorphism of Fwith a subfield of L such that $\varphi(a) = a$ for $a \in D$.

 $(2 \times 10 = 20 \text{ Marks})$

75 (Pages : 2)

Reg.	N	0:.					٠						
Nam													

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE Fifth Semester B.Sc Mathematics Degree Examination, November 2024

BMT5B06 - Basic Analysis

(2022 Admission onwards)

Time: 2 ½ hours Max. Marks: 80

Section A

All Questions can be attended. Each question carries 2 marks. Ceiling 25 marks

- 1. Define Denumerable set and give an example for Denumerable set.
- 2. If a and b in Rare such that a.b = 0, then either a = 0 or b = 0
- 3. Let a,b,c be any elements of R and if a > b the a + c > b + c.
- 4. Write the set of real numbers x satisfying $x^2 + x > 2$
- 5. Let $a \in R$. If x belongs to the neighborhood $V_{\varepsilon}(a)$ for every $\varepsilon > 0$, then prove that x = a
- 6. If $S = \left\{1 \frac{(-1)^n}{n} : n \in N\right\}$, find Inf S and Sup S
- 7. Define an unbounded set and give an example for unbounded set
- 8. An upper bound u of a non-empty set S in R is the supremum of S then prove that for every $\varepsilon > 0$ there exists an $S_{\varepsilon} \in S$ such that $u S_{\varepsilon} < S$
- Define subsequence of a sequence. Give an example of an unbounded sequence that
 has a convergent subsequence
- 10. Prove that convergent sequence of real numbers is a Cauchy sequence
- 11. Prove that the sequence $(1 + (-1)^n)$ is divergent.
- 12. Find the real part of $\frac{(4+5i)+2i^3}{(2+i)^2}$
- 13. Define bounded subset of a complex plane
- 14. Find the polar form of a complex number $z = -\sqrt{3} i$
- 15. Find the real and imaginary part of the complex function $f(z) = z^2$

Section B

All Questions can be attended. Each question carries 5 marks. Ceiling 35 marks

16. Let S be a nonempty bounded set in R. Let a < 0 and let $aS = \{as : s \in S\}$. Prove that Sup (a S) = a Inf S

- 17. State and Prove Cantor's theorem
- 18. State and Prove Bernoulli's Inequality
- 19. Show that every convergent sequence is bounded
- 20. Let (x_n) be a sequence of real numbers that converges to x and suppose that $x_n \ge 0$. Then the sequence $(\sqrt{x_n})$ of positive square roots converges and Lim $(\sqrt{x_n}) = \sqrt{x}$
- Prove that every Contractive sequence is a Cauchy sequence and therefore is convergent
- 22. Find the three cube roots of z = i
- 23. Find an upper bound for $\left| \frac{-1}{z^4 5z + 1} \right|$ if |z| = 2

SECTION C Answer any Two Questions. Each question carries 10 Marks.

- 24. Let a >0. Construct a sequence (s_n) of real numbers that converges to a by using Monotone Convergence theorem.
- 25. State and prove the existence and uniqueness of Nested Intervals Property
- 26. If c >0, then prove that $\lim_{n \to \infty} (c^{\frac{1}{n}}) = 1$
- 27. (a) Prove that $||z_1 + z_2||^2 + |z_1 z_2|^2 = 2|z_1|^2 + 2|z_2|^2$ and interpret the result geometrically
 - (b) Evaluate Im $(\bar{z}^2 + z^2)$

 $(2 \times 10 = 20 \text{ Marks})$

76 (Pages : 2)

Reg.	N	o:	 ٠			٠			+	•	*	•			•		
Vam	e:													4			

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Mathematics Degree Examination, November 2024

BMT5B07 - Numerical Analysis

(2022 Admission onwards)

Time: 2hours Max. Marks: 60

Section A

All questions can be attended. Each question carries 2marks.

- 1. Use Bisection method to find p_3 for $f(x) = \sqrt{x} \cos x = 0$, on [0, 1].
- 2. Write sufficient conditions for the existence and uniqueness of a fixed point.
- 3. Use method of False Position to find p_2 for $f(x) = x^2 6$ with $p_0 = 1$.
- 4. Determine the coefficient polynomials $L_0(x)$, $L_1(x)$ and $L_2(x)$ through the nodes $x_0 = 0$, $x_1 = 0.6$, and $x_2 = 0.9$.
- 5. Construct a forward difference table for $f(x) = x^3 + 2x + 1$ for x = 1, 2, 3, 4, 5.
- 6. Compute f'(0.4) by using the data f(0.0) = 0.0000, f(0.2) = 0.74140, f(0.4) = 1.3718.
- 7. Use three-point endpoint formula to determine f'(8.1) by using the data f(8.1) = 16.94410, f(8.3) = 17.56492, f(8.5) = 18.19056.
- 8. Approximate $\int_{1}^{1.6} \frac{2x}{x^2-4} dx$ using Simpson's rule.
- 9. The Trapezoidal rule applied to $\int_0^2 f(x) dx$ gives the value 4 and Simpson's rule gives the value 2. What is f(1)?
- 10. Use the Composite Simpson's rule to approximate the integral $\int_{-2}^{2} x^3 e^x dx$, n = 4.
- 11. Show that the IVP $y' = \frac{4t^3y}{1+t^4}$ $0 \le t \le 1$, y(0) = 1 has a unique solution.
- 12. Write the conditions for the well-posedness of an IVP y' = f(t, y), $a \le t \le b$, $y(a) = \alpha$.

(Ceiling ... 20 Marks)

Section B All questions can be attended. Each question carries 5marks.

- 13. Use Newton's Method to find the root of $x^4 5x^3 + 9x + 3 = 0$ accurate to six decimal places in the interval [4,6]. Use $p_0 = 5$.
- 14. Determine Lagrange interpolating polynomial of degree at most two to approximate f(0.45). for the function $f(x) = \sqrt{1+x}$, using the points $x_0 = 0$, $x_1 = 0.6$ and $x_2 = 0.9$. Also, find the absolute error of the approximation.
- 15. Let $f(x) = xe^x$. Use second derivative midpoint formula to approximate f''(2.0) by using the following table with h = 0.2. Compare the result to the exact value.

x	1.8	1.9	2.0	2.1	2.2
f(x)	10.889365	12.703199	14.778112	17.148957	19.855030

- 16. Use open Newton-Cotes formula for n = 3 to approximate the integral $\int_{0.5}^{1} 5xe^{3x^2} dx$.
- 17. Use the Composite Trapezoidal rule to approximate the integral $\int_0^{\pi} x^2 \cos x \ dx$, n = 6.
- 18. Use Euler's method to approximate the solutions for the initial value problem

$$y' = \frac{2}{t}y + t^2e^t$$
, $1 \le t \le 2$, $y(1) = 0$, with $h = 0.1$.

19. Use the midpoint method to approximate the solution to the initial value problem $y' = 1 + (t - y)^2$, $2 \le t \le 3$, y(2) = 1, with h = 0.5.

(Ceiling ... 30 Marks)

Section C Answer any ONE question.

- 20. (a) Let $f(x) = e^x 3x$. With $p_0 = 0$ and $p_1 = 1$, find p_4 using Secant Method.
 - (b) Use Stirling's formula to approximate f(0.65) using the following data:

t	0.5	0.6	0.7	0.8	0.9
f(t)	1.64872	1.82212	2.01375	2.22554	2.46227

- 21. (a) Use Taylor's method of order two to approximate the solution for the initial-value problem $y' = 1 + \frac{y}{t}$, $1 \le t \le 2$, y(1) = 2, with h = 0.25.
 - (b) Given $\frac{dy}{dt} = \frac{2ty + e^t}{t^2 + te^t}$ where y(1) = 0. Find y(1.4) using fourth order Runge-Kutta method taking h = 0.2.

 $(1 \times 10 = 10 \text{ Marks})$

77

1B5N24208

(Pages: 4)

Reg. No:.....

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE Fifth Semester B.Sc Mathematics Degree Examination, November 2024

BMT5B08 - Linear Programming

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Session A

All questions can be attended. Each question carries 2 marks.

- 1) Define a canonical maximization linear programming problem.
- 2) Sketch the constraint set and find the extreme points of constraint set of the following LPP

Maximize
$$P = 2x + 3y$$

Subject to $3x + 2y \le 6$
 $x + 2y \le 8$
 $x, y \ge 0$

3) Show that the linear programming problem

$$P = 3x + 2y$$
subject to $2x - y \le -1$

$$x - 2 \ge 0$$

$$x, y \ge 0$$

is infeasible.

4) Find the basic solution of the following tableau.

$$x_{1} = -1/2 = 3/2 = 15/2$$

$$x_{2} = -1 = 1 = 5$$

$$t_{p} = 1/2 = 1/2 = 25/2$$

$$-1 = -100 = 50 = -2500$$

$$= x_{3} = t_{p} = C$$

- 5) Prove that in a maximum basic feasible tableau, the basic solution is a feasible solution.
- 6) State the dual canonical maximization problem of the following problem

Minimize
$$g(x, y, z) = 2x + 3y + 2z$$

Subject to $2x + 3y \le 2$, $x - y + z \ge 1$, $z \ge 2$, $x, y, z \ge 0$

7) Write the canonical maximum and minimum problem represented by

$$\begin{array}{c|cccc}
x_1 & x_2 & -1 \\
y_1 & 1 & -1 & -1 \\
y_2 & -1 & -1 & -1 & = -t_1 \\
-1 & 1 & -2 & 0 & = f \\
= s_1 = s_2 & = g
\end{array}$$

- 8) State the duality equation.
- 9) Define complementary slackness.
- 10) Apply minimum entry method to obtain an initial basic feasible solution of the transportation problem

- 11) Give the mathematical form of a general balanced assignment problem.
- 12) A basic feasible solution of a transportation problem.

$$isx_{11} = 25, x_{14} = 45, x_{21} = 20, x_{22} = 35, x_{31} = 40, x_{33} = 50.$$

Check the optimality of this solution.

Session B All questions can be attended. Each question carries 5 marks.

13) Find all the extreme points of the constraint set of the following LPP.

Maximize
$$f(x, y, z) = x - 2y - z$$

Subject to
$$10x + 5y + 2z \le 1000$$

$$2y + 4z \le 800$$

$$x, y, z \ge 0$$

14) Formulate the following problem mathematically and solve it graphically.

Food X contains 6 units of vitamin A per gram and 7 units of vitamin B per gram. Food Y contains 8 units of Vitamin A per gram and 12 units of Vitamin B per gram. Food X costs 12 rupees per gram and Y costs 20 rupees per gram. The daily minimum requirements of Vitamin A and Vitamin B are 100 units and 120 units respectively. Find the minimum cost of the product mix.

15) Solve the following canonical LPP

Minimize
$$C = x_1 - 3x_2 + 2x_3$$

Subject to $3x_1 - x_2 + 2x_3 \le 7$
 $2x_1 - 4x_2 \ge -12$
 $4x_1 - 3x_2 - 8x_3 \ge -10$
 $x_1, x_2, x_3 \ge 0$

16) Solve the non-canonical LPP

Maximize
$$f(x,y) = x + y$$

Subject to $2x + y = 5$
 $x - y = -2$
 $x + 3y = 6$
 $x, y \ge 0$

- 17) Prove that a pair of feasible solution of dual canonical linear programming problem exhibit complementary slackness if and only if they are optimal solution.
- 18) By applying VAM, find a basic feasible solution of the following transportation problem

		Ware	house	s	
50	4	8	7	5	30
Factories	6	2	9	6	50
Fact	5	4	6	3	80
	20	60	55	40	1

19) Solve the assignment problem

P_1	P_2	P_3	P_4
1	4	6	3
9	7	10	9
4	5	11	7
8	7	8	5
	1 9 4	1 4 9 7 4 5	1 4 6 9 7 10 4 5 11

Session C Answer any one. Question carries 10 marks

20) Prove that the following problem has infinitely many solutions and find all the solutions.

Maximize
$$f(x, y, z) = x - y + z$$

Subject to $x + y \ge 2$
 $z - y \ge 3$
 $2x + z \le 8$

21) Write the transportation algorithm and using this solve the transportation problem.

1	5	9	10	6	4
	10	7	5	5	⁺ 5
	4	5	5	4	4
	6	5	7	5	3
ı	3	4	4	3	

78

1B5N24209

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Mathematics Degree Examination, November 2024

BMT5B09 - Calculus of Multivariable - 1

(2022 Admission onwards)

Time: 2 hours Max. Marks: 60

Section A All questions can be attended Each question carries 2 marks

- 1. Find the polar coordinates of the point (1,-1) taking r>0 and $0 \le \theta \le 2\pi$.
- 2. Sketch the curve represented by $x = \sqrt{t}$ and y = t.
- 3. Convert the polar equation $r^2 = 4r \cos \theta$ to a rectangular equation.
- 4. Find parametric equations for the line passing through the points (2, 1, 4) and (1, 3, 7).
- 5. Express the point $(-\sqrt{2}, \sqrt{2}, 2)$ in rectangular co-ordinates in terms of cylindrical co-ordinates.
- 6. Find an equation in spherical coordinates for the paraboloid with rectangular equation $4z = x^2 + y^2$.
- 7. (a) Find $\lim_{t\to 0} \langle e^{-t}, \frac{\sin t}{t}, \cos t \rangle$.
 - (b) let $\mathbf{r}(s) = 2\cos 2s\mathbf{i} + 2\sin 2s\mathbf{j} + 4s\mathbf{k}$ where $s = t^2$. Find $\frac{d\mathbf{r}}{dt}$.
- 8. Determine the velocity vector, speed and acceleration vector of an object that moves along the plane curve described by the position vector $\mathbf{r}(t) = 2\cos t\mathbf{i} + \sin t\mathbf{j}$.
- 9. Find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$ if $x^2 + xy x^2z + yz^2 = 0$
- 10. Let $z = 2x^2 xy$. Find Δz .
- 11. Sketch the curve defined by the vector function $\mathbf{r}(t) = \cos t \mathbf{i} + \sin t \mathbf{j} + t \mathbf{k} \ 0 \le t \le 2\pi$.

12. Show that $\lim_{(x,y)\to(0,0)} \frac{3xy}{3x^2+y^2}$ does not exist.

(Ceiling 20 Marks)

Section B All questions can be attended Each question carries 5 marks

- 13. Find $\frac{dy}{dx}$ and $\frac{d^2y}{dx^2}$ if $x = e^{-t}$ and $y = e^{2t}$.
- 14. Determine the slope of the tangent line to the cardioid $r=1+\cos\theta$ at the point where $\theta=\frac{\pi}{6}$.
- 15. Find the length of the cardioid $r = 1 + \cos \theta$.
- 16. Determine the points of intersection of $r = \cos \theta$ and $r = \cos 2\theta$.
- 17. Identify and sketch the surface $4x 3y^2 12z^2 = 0$.
- 18. Find parametric equations for the line of intersection of the planes defined by 2x 3y + 4z = 3 and x + 4y 2z = 7.
- 19. Find the curvature of a circle of radius a.

(Ceiling 30 Marks)

Section C Answer any one question

- 20. (a) A moving object has an initial position and an initial velocity given by the vectors $\mathbf{r}(0) = \mathbf{j} + \mathbf{k}$ and $\mathbf{v}(0) = \mathbf{i} + \mathbf{k}$. Its acceleration at time t is $\mathbf{a}(t) = \mathbf{i} t\mathbf{j} + (1+t)\mathbf{k}$. Find its velocity and position at time t.
 - (b) A particle moves along a curve described by the vector function $\mathbf{r}(t) = t\mathbf{i} + t^2\mathbf{j} + t^3\mathbf{k}$. Find the tangential scalar and normal scalar components of acceleration of the particle at any time t.
- 21. (a) Prove that $\lim_{(x,y)\to(a,b)} x = a$
 - (b) Suppose a point charge Q(in coulombs) is located at the origin of a three dimensional coordinate system. This charge produces an electric potential V(in volts) given by $V(x,y,z) = \frac{kQ}{\sqrt{x^2+y^2+z^2}}$ where k is a positive constant and x,y and z are measured in meters
 - i. Find the rate of change of the potential at the point P(1, 2, 3) in the direction of the vector $\mathbf{v} = 2\mathbf{i} + \mathbf{j} 2\mathbf{k}$.
 - ii. In which direction does the potential increase most rapidly at P and what is the rate of increase.

1B5N24210

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fifth Semester B.Sc Mathematics Degree Examination, November 2024 (Open Course)

BMT5D03- Linear Mathematical Models

(2022 Admission onwards)

Time: 2 hours Max. Marks: 60

Section A All questions can be attended Each Question carries 2 marks

- 1. Find the slope of the line joining the points (2, -1) and (3,2).
- 2. Let f(x) = 2x + 3. Find the value of x such that f(x)=5.
- 3. Write a short note on the objective function in a linear programming problem.
- 4. Define the corner point of the feasible region.
- 5. Write the augmented matrix for the system of equations 2x + 3y z = 1, 3x + 5y + z = 3.
- 6. Let $A = \begin{bmatrix} 2 & -1 \\ 5 & 8 \end{bmatrix}$ and $B = \begin{bmatrix} 3 \\ -2 \end{bmatrix}$. Find AB.
- 7. Graph the inequality 3x + y < 4.
- 8. What is the feasible region for solving a system of inequalities?

9. Find
$$A^T + B$$
, where $A = \begin{bmatrix} 1 & 2 & -3 \\ 0 & -2 & 3 \end{bmatrix}$ and $B = \begin{bmatrix} -1 & 2 \\ 0 & 3 \\ 3 & 5 \end{bmatrix}$.

- 10. Explain the role of the slack variable in an optimization problem.
- 11. Write the standard form of a maximization problem.
- 12. If B is the inverse of the matrix $A = \begin{bmatrix} -1 & 0.5 \\ 0.7 & 3 \end{bmatrix}$. Then B^{-1} is

(Ceiling 20 mark)

Section B All questions can be attended Each questions carries 5 marks

- 13. Find the least square line for the set of points (1,1),(1,2) (3,1) (4,2).
- 14. Find the equation of the line passing through (3,7) and perpendicular to the line 3x-4y=11.
- 15. Graph the feasible region for the following system of inequalities

$$x + 3y \le 6$$
, $2x + 4y \le 7$

- 16. Find the inverse of the matrix $A = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 3 \\ 4 & -3 & 8 \end{bmatrix}$
- 17. Formulate a Linear programming problem (LPP).

Two products 'A' and 'B' are to be manufactured. Single unit of 'A' requires 2.4 minutes of punch press time and 5 minutes of assembly time, while single unit of 'B' requires 3 minutes of punch press time and 2.5 minutes of welding time. The capacity of punch press department, assembly department, and welding department are 1200 min/week, 800 min/week and 600 min/week respectively. The profit from 'A' is Rs.60 and from 'B' is Rs.70 per unit. Formulate LPP such that, profit is maximized.

18. Write the dual of the LPP

Maximize
$$Z = 3x + 5y$$

Subject to $x + y \le 10$
 $2x + y \le 8$
 $x, y \ge 0$

19. Use graphical method to solve

Maximize
$$Z=3x + 4y$$

 $2x + y \le 4$
 $-x + 2y \le x, y \ge 0$

(Ceiling 30 Marks)

Section C Answer any One question

20. Solve the following linear programming problem using simplex method.

Maximize
$$Z=2x_1 + 5x_2 + x_3$$

Subject to $x_1 - 5x_2 + 2x_3 \le 30$
 $4x_1 - 3x_2 + 6x_3 \le 72$
 $x_1, x_2, x_3 \ge 0$

21. Use the Gauss -Jordan method to solve the following system of equations,

$$x + 2y - 7z = -2$$

 $-2x-5y+2z=1$
 $3x + 5y + 4z = -9$

(1x10 = 10 marks)