Z	В	3	N	2	40	8	6

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Degree Examination, November 2024

BMT3B03 - Theory of Equations and Number Theory

(2022 Admission onwards)

Time: 2 1/2 hours

Max. Marks: 80

Section A All questions can be attended Each question carries 2 marks.

- 1. Show that $x^4 + 3x^2 + 3x + 2$ is divisible by x + 2
- 2. Write the cubic equation with the roots 0, i, -i.
- 3 Find the quotient and remainder when $2x^4 6x^3 + 3x^2 5x + 1$ is divided by x + 2.
- 4. Find \triangle of the equation $x^3 6x 6 = 0$
- 5. State Identity theorem.
- 6. How many real roots has the equation $x^6 x^3 + 2x^2 3x 1 = 0$
- 7. Find the quotient and remainder when 78 is divided by 11.
- 8. State the Pigenhole Principle.
- 9. Express (28, 12) as a linear combination of 28 and 12.
- 10. State Lamé's Theorem.
- 11. Find the canonical decomposition of 1863
- 12. Determine whether the LDE 6x + 8y = 25 is solvable.
- 13. Define Pseudoprime. Give an example.
- 14. Find $\sigma(28)$, where σ is a sigma function.
- 15. If (a, b) = d, prove that $\frac{a}{d}$ and $\frac{b}{d}$ are relatively prime.

Section B All questions can be attended Each question carries 5 marks.

- 16. Solve the cubic equation whose roots are a, b, c: $2x^3 x^2 18x + 9 = 0$ if a + b = 0.
- 17. Find an upper limit of the positive roots of the equation $2x^5 7x^4 5x^3 + 6x^2 + 3x 10 = 0$.
- 18. Prove that that f_m and f_n are relatively prime, where f_i is the *i*th Fermat number. m and n be distinct nonnegative integers.
- 19. Find the number of primes ≤ 100
- 20. Prove that $[a, b] = \frac{ab}{(a, b)}$, where a and b be positive integers.
- 21. Find the remainder when 16⁵³ is divided by 7.
- 22. If $ac \equiv bc \pmod{m}$ and (c, m) = 1, prove that $a \equiv b \pmod{m}$.
- 23. Prove that $\varphi(P^e) = p^e p^{e-1}$, where p is a prime and e is any positive integer.

(Ceiling: 35 Marks)

Section C Answer any two Question Each question carries 10 marks.

- 24. Solve $x^3 x^2 18x + 9 = 0$ by using cardan's formula.
- 25. (a) Find the number of positive integers ≤ 2076 and divisible by neither 4 nor 5.
 - (b) Solve the congruence $12x \equiv 48 \pmod{18}$.
- 26. State and prove Fermat's Little Theorem.
- 27. (a) If f is a multiplicative function, then prove that $F(n) = \sum_{d/n} f(d)$ is multiplicative.
 - (b) Prove that the tau and sigma functions are multiplicative.

 $(2\times10=20 \text{ Marks})$

2B3N24087	(Pages : 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Physics, Chemistry & Statistics Degree Examination, November 2024

BMT3C03 - Mathematics - 3

(2022 Admission onwards)

Time: 2 hours Max, Marks: 60

Section A

All questions can be attended. Each question carries 2 marks. Overall ceiling 20

- 1. Let f(x) = x Evaluate $\int_0^4 \sin x \, dx$ by trapezoidal rule with n = 4.
- 2. Find the components and length of the vector \vec{v} with given initial point P:(0,0,1) and terminal point Q:(1,0,1).
- 3. Let $\vec{a} = [1,1,1], \vec{b} = [-1,-1,-1]$ and $\vec{c} = [3,3,3] = Verify$ whether $\vec{a} \cdot (\vec{b} + \vec{c}) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}$.
- 4. Find a parametric representation of the straight line through the origin in the direction of the vector i j.
- 5. Find the directional derivative of x + y at (-1,1) in the direction of i j.
- 6. State Stoke's theorem.
- 7. Write a parametric representation of the sphere $x^2 + y^2 + z^2 = 64$.
- 8. Evaluate the line integral $\int_C F(r) dr$ where F(r) = xyi + yzj + zxk and C is the straight line segment ti + tj + tk, $0 \le t \le 1$.
- 9. Evaluate the integral $\int_C F.dr$ from (0,1,2) to (1,-1,7), where $F = (3x^2dx + 2yz dy + y^2dz).$ Given that F has potential $f(x,y,z) = x^3 + y^2z$.
- 10. Find the polar form of $5 \sqrt{2}i$.
- 11. Find the value of the derivative (z + i)/(z i) at -i.
- 12. Define analytic function, Give an example.

Section B

All questions can be attended. Each question carries 5 marks. Overall ceiling 30

- 13. Sketch the graph and level curves at c = 0.1.4 of the function $f(x, y) = x^2 y^2$.
- 14. Find the gradient of the function $F(x, y, z) = xy^2 + yx^2 z^3$ at (0, -1, 1).
- 15. Find an equation for the tangent plane to the surface $z = xy^2$ at the point (0,1,4).
- 16. Find the value of c if $u = (cxy z^2)i + (x^2 + 2yz)j + (y^2 cxz)k$ is irrotational.
- 17. If $f(x,y) = x^2y 2xy$ and $R: 0 \le x \le 3, -2 \le y \le 0$, then evaluate $\iint_R f(x,y) \ dA.$
- 18. Evaluate $\int_0^3 \int_0^2 \int_0^1 (x y + 2z) \, dz \, dx \, dy$.
- 19. Integrate $\frac{z^4 3z^2 + 6}{(z+i)^3}$ in the counter clockwise sense around the circle |z| = 1.

Section C

Answer any one of the questions. The question carries 10 marks.

- 20. Find the counterclockwise outward flux of the field F = (x y)i + (y x)j across the square bounded by x = 0, x = 1, y = 0, y = 1.
- 21. (a) Prove that $f(z) = x^2 + y^2$ is nowhere analytic.
 - (b) Evaluate $\oint_C \frac{5z+7}{z^2+2z-3} dz$, where C: |z-2| = 2.

2B3	N24	1088

(Pages: 2)

Reg. No:.....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester B.Sc Computer Science Degree Examination, November 2024 BMT3C03(CS) – Mathematics

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A All questions can be attended. Each question carries 2 marks. Overall ceiling 20

- 1. Evaluate $\int_0^2 |t\mathbf{i} + 2t^2\mathbf{j}| dt$.
- 2. Describe the curve represented by the vector equation r(t) = (1 t)i + 3tj + 2tk.
- 3. Find the intervals on which the vector valued function $\mathbf{r}(t) = e^{-t}\mathbf{i} + \cos\sqrt{4-t}\mathbf{j} + \frac{1}{t^2-1}\mathbf{k} \text{ is continuous.}$
- 4. Find an equation of the tangent plane to the graph of $z = \frac{1}{2}x^2 + \frac{1}{2}y^2 + 4$ at the point (1, -1, 5).
- 5. Write the formula for three-dimensional Laplace Equation.
- 6. Find the level surface of $F(x, y, z) = x^2 + 3y^2 + 6z^2$.
- 7. Convert $(2, \pi/3, 1)$ in cylindrical coordinates to rectangular coordinates.
- 8. Integrate f(z) = Re Z along the line segment from z = 0 to z = 1 + i.
- 9. Express $z = -2 + 2i\sqrt{3}$ in polar form.
- 10. Determine the principal value of the arguments of $(\sqrt{3} i)^6$.
- 11. Find the domain of definition of the function $f(z) = \frac{1}{1-|z|^2}$.
- 12. Give the points at which the function $f(z) = \frac{z}{z-3i}$ will not be analytic.

Section B All questions can be attended. Each question carries 5 marks. Overall ceiling 30

- 13. Find the antiderivative r(t) of $r'(t) = \cos t \mathbf{i} + e^{-t} \mathbf{j} + \sqrt{t} \mathbf{k}$ satisfying the initial condition $\mathbf{r}(0) = \mathbf{i} + 2\mathbf{j} + 3\mathbf{k}$.
- 14. Verify that $\frac{\partial^2 w}{\partial y \partial x} = \frac{\partial^2 w}{\partial x \partial y}$, when $w = x^y + \sin(xy)$.
- 15. Find the directional derivative of $F(x, y, z) = \sqrt{x^2y + 2y^2z}$ at the point (-2, 2, 1) in the direction of the negative z-axis.
- 16. Prove that $|z_1 + z_2| \le |z_1| + |z_2|$.
- 17. Find the three cube roots of -8i.
- 18. Show that $f(z) = z^n (n \ge 1)$ is an integer) is differentiable for all z.
- 19. If $z = 16x^2y^3 + 4x^3 + 7y^6 + 9$ find $\frac{\partial z}{\partial x}$ and $\frac{\partial z}{\partial y}$.
- 20. Evaluate $\int_C \bar{z} dz$, where C is given by x = 3t, $y = t^2$, $-1 \le t \le 4$.

Part C Answer any one of the question. The question carries 10 marks.

- 21. Prove that $u = x^2 y^2$, $v = \frac{-y}{(x^2 + y^2)}$ both are harmonic, but u + iv is not an analytic function of z.
- 22. Show that if z_0 is any constant complex number interior to any simple closed

contour C,
$$\oint_C \frac{1}{(z-z_0)^n} dz = \begin{cases} 2\pi i, & n=1\\ 0, & n \text{ an integer } \neq 1 \end{cases}$$