4	2
•	* Committee

100	4 7	1003
IBZ.	AL	4082

(Pages: 2)	Reg. No:	
	Namas	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Mathematics Degree Examination, April 2024

BMT2B02 - Calculus 2

(2022 Admission onwards)

Time: 2 ½ hours Max. Marks: 80

Section - A (All questions can be answered. Each question carries 2 marks.)

- 1. Write the formula for finding the volume of the solid generated by revolving about the y-axis the region between the y-axis and the graph of the continuous function x = g(y), $c \le y \le d$.
- If f is smooth on [a,b], write the formula for finding the length of the curve y = f(x) from a to b.
- 3. Find the derivative of $f(x) = \log |\cos x|$.
- 4. Write the value of e correct to 3 decimal places.
- 5. If $y = 3^{sinx}$, find $\frac{dy}{dx}$.
- 6. Find the range of the function $y = \cosh x$.
- 7. State the L- Hopital's rule for finding the limit of a function.
- 8. Determine whether the integral $\int_0^4 \frac{dx}{x-3}$ is proper or improper.
- 9. Write the inductive definition of the Fibonacci sequence.
- 10. Define bounded sequence.
- 11. Define the sequence of partial sums of an infinite series.
- 12. State the limit comparison test for the convergence of an infinite series.
- 13. Define the radius of convergence of a power series.
- 14. Write an example of a series which is conditionally convergent.
- 15. Write the Maclaurin's series expansion of sinx.

(Ceiling: 25 Marks)

Section - B

(All questions can be answered. Each question carries 5 n. Ks.)

- 16. Find the area of the region bounded by the curve $y = x^2-1$, the x-axis, y-axis and the line x = 3.
- 17. Find the length of the asteroid $x^2/3 + y^2/3 = 1$.
- 18. Using logarithmic differentiation find the derivative of the function $y = (\tan x)$ $\sqrt{2x+1}$.
- 19. Show that $e = \lim_{h\to 0} (1+h)^{1/h}$
- 20. Prove that $\cosh^{-1}x = \log(x + \sqrt{x^2 1}), x \ge 1$.
- 21. Prove that the limit of a sequence if it exists, is unique.
- 22. Find the radius of convergence of the power series $\sum_{n=1}^{\infty} \frac{(-1)^n}{n!} (x-1)^n$.
- 23. Find the Taylor series of $f(x) = \sin x$ at $x = \frac{\pi}{2}$.

(Ceiling: 35 Marks)

Section- C (Answer any two questions. Each question carries 10 marks.)

- 24. Prove that the geometric series $\sum_{n=1}^{\infty} ar^{n-1}$ converges if |r| < 1 and its sum is $\frac{a}{1-r}$ and the series diverges if $r \ge 1$.
- 25. Find the Maclaurin series expansion for
 - (a) cosx.
 - (b) $\cos^2 x$.
- 26. (a). Show that $(\cosh x + \sinh x)^n = \cosh nx + \sinh nx$.
 - (b). For any two real numbers x and y, prove that e^x . $e^y = e^{x+y}$.
- 27. Find the volume of the solid generated by revolving the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ about the x-axis.

 $(2 \times 10 = 20 \text{ Marks})$

1B2A	24083	3
------	-------	---

(Pages: 2)	Reg. No:	
	Nomes	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Chemistry, Physics & Statistics Degree Examination, April 2024 BMT2C02-Mathematics - 2

(2022 Admission onwards)

Time: 2 hours

Max. Marks: 60

Section A All questions can be attended Each question carries 2 marks

- 1. Evaluate $\frac{dy}{dx}$ where $y = tanh\sqrt{1 + x^2}$
- 2. What is the polar equation corresponding to the Cartesian equation $x^2 + y^2 = 4$
- 3. Find the polar equation for the hyperbola with eccentricity 3/2 and directrix x = 2.
- 4. Rank of the matrix $A = \begin{pmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 5 & 7 \end{pmatrix}$ is
- 5. State Cayley- Hamilton theorem
- 6. Find the characteristic equation of the matrix $A = \begin{pmatrix} 2 & 2 & 1 \\ 1 & 3 & 1 \\ 1 & 2 & 2 \end{pmatrix}$
- 7. State non decreasing sequence theorem.
- 8. Find $\lim_{n\to\infty} \frac{2^n}{5n}$
- 9. Sum the series $\frac{1}{9} + \frac{1}{27} + \frac{1}{81} + \cdots$
- 10. Is the series $\sum \frac{n^2}{2n}$ converges?
- 11. For what value of x, the series $\sum x^n$ converges?
- 12. Define Taylor series generated by a function f

(Ceiling: 20 Marks)

Section B All questions can be attended Each question carries 5 marks

13. Evaluate
$$\int_0^1 \frac{2dx}{\sqrt{3+4x^2}}$$

- 14. Graph the curve $r = 1 \cos\theta$
- 15. Solve the system of equations using matrix.

$$x_1 + 2x_2 + x_3 = 2$$
, $3x_1 + x_2 - 2x_3 = 1$, $4x_1 - 3x_2 - x_3 = 3$, $2x_1 + 4x_2 + 2x_3 = 4$

- 16. Reduce the matrix $A = \begin{pmatrix} 1 & 2 & 0-1 \\ 3 & 4 & 1 & 2 \\ -2 & 3 & 2 & 5 \end{pmatrix}$ into normal form
- 17. Find $\lim_{n\to\infty} a_n$ where $a_n = \left(\frac{n+1}{n-1}\right)^n$
- 18. Check the convergence of the series $\sum a_n$ where $a_n = \frac{(2n)!}{n!n!}$
- 19. Find the Taylor series generated by $f(x) = e^x$ at x = 0

(Ceiling: 30 Marks)

Section C Answer any one question Question carries 10 marks

20. (a) Write the equation of the region between the origin and the curve

$$r = f(\theta), \alpha \le \theta \le \beta$$

- (b) Find the area of the region in the plane enclosed by the cardioid $r = 2(1 + \cos\theta)$
- 21. (a) Find the sum of the series $\sum \frac{(3^{n-1}-1)}{6^{n-1}}$
 - (b) Prove that $\tan^{-1} x = x \frac{x^3}{3} + \frac{x^5}{5} \frac{x^7}{7} + \cdots$

 $(1 \times 10 = 10 \text{ Marks})$

1B2A24084	(Pages : 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Computer Science Degree Examination, April 2024 BMT2C02(CS) - Mathematics - 2

(2022 Admission onwards)

Time: 2 hours Max. Marks : 60

Section A All questions can be attended. Each question carries 2 marks.

- 1. Define a sequence. Give example.
- 2. Evaluate the definite integral $\int_0^2 (3x + 5) dx$.
- 3. Find the length of the graph $\frac{x^3}{3} + \frac{1}{4x}$ on the interval [1,3].
- 4. Describe the curve represented by $x = 4 \cos \theta$ and $= 3 \sin \theta$; $0 \le \theta \le 2\pi$.
- 5. Find $\frac{d}{dx} [\cosh^2(\ln 2x)]$.
- 6. Prove that $\frac{d}{dx}(\sinh x) = \cosh x$.
- 7. List the terms of the sequence $\left\{\sin\frac{n\pi}{3}\right\}_{n=0}^{\infty}$.
- 8. Determine whether the sequence $\{(-1)^n\}$ converges or diverges.
- 9. Find $\lim_{n\to\infty}\frac{(-1)^n}{n}$.
- 10. Determine whether the series $3 \frac{3}{2} + \frac{3}{4} \frac{3}{8} + \cdots$ converges or diverges. If it converges find its sum.
- 11. Evaluate the area of the surface obtained by revolving the graph x^2 on [0, 1] about the x axis.
- 12. Find $\lim_{n\to\infty} \frac{1}{n^r}$ if r>0.

(Ceiling: 20 Marks)

Section B All questions can be attended Each question carries 5 marks

- 13. Show that $\sinh^{-1} x = \ln(x + \sqrt{x^2 + 1})$.
- 14. Find the area of the region bounded by the graphs of $y = 2 x^2$ and y = -x.
- 15. Find the area of the surface obtained by revolving the graph of $f(x) = \sqrt{x}$ on the interval [0, 2] about the x-axis.
- 16. Prove the identity $\cosh 2x = \cosh^2 x + \sinh^2 x$.
- 17. Determine whether the series $\sum_{n=1}^{\infty} \left(\frac{1}{n} \frac{1}{n+1}\right)$ converges. If the series converges, find its sum.
- 18. Let $f(x) = e^x$. Find the Maclaurin series of f, and determine its radius of convergence.
- 19. Show that the series $\sum_{n=1}^{\infty} \frac{2n^2+1}{3n^2-1}$ is divergent.

(Ceiling: 30 Marks)

Section C Answer any one question. Question carries 10 marks

- 20. Find the area of the region S bounded by the graphs of y = cosx and $y = \left(\frac{2}{\pi}\right)x 1$ and the vertical lines x = 0 and $x = \pi$.
- 21. a) Find the radius of convergence and the interval of convergence of $\sum_{n=0}^{\infty} n! x^n$.
 - b) Find a power series representation for $tan^{-1}x$ by integrating a power series representation of $f(x) = \frac{1}{(1+x^2)}$.