1B2A24019	(Pages : 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Chemistry Degree Examination, Apr'il 2024 BCH2B02 - Theoretical and Inorganic Chemistry-II

(2022 Admission onwards)

Time: 2 hours Marks: 60

Section A (Short answers) (Answer questions up to 20 marks. Each question carries 2 marks)

- 1. What is meant by ultraviolet catastrophe?
- 2. Show that the ground state energy of hydrogen atom is equal to the energy of He⁺ in its first excited state if their Rydberg constants are equal.
- Calculate the uncertainty in momentum of an electron whose position can be determined with an uncertainty of 50 pm.
- 4. What is meant by a well-behaved wave function?
- 5. What is an eigen function? Find the eigenvalue when d^2/dx^2 operates on $\cos \omega x$.
- 6. What is Hamiltonian Operator?
- 7. State variation theorem.
- 8. Differentiate between bonding and antibonding molecular orbitals.
- State Born Oppenheimer approximation.
- 10. Show that He2 molecule does not exist.
- 11. Draw the potential energy diagram of H₂ molecule formation.
- 12. Draw the structure of PCl₅. Mention the type of hybridization involved.

[Ceiling of marks: 20]

Section B (Paragraph) (Answer questions up to 30 marks. Each question carries 5 marks)

- 13. How did Bohr's quantization principle ensured the stability of atom model? Derive an expression for the radius of Bohr orbits.
- 14. Explain wave particle duality. Calculate the energy and wavelength associated with an α particle that has fallen through a potential of 4.0 V (Mass of α particle is 6.64 x 10^{-27} kg)
- 15. What is the radius of maximum probability for Hydrogen atom at its ground state? Sketch the radial probability distribution curves for 3s and 3d orbitals.
- 16. Explain the significance of quantum numbers n,l and m.

- 17. Draw the MO diagrams of CO and O2. Calculate the bond order.
- Explain the concept of LCAO of central atom. Give the coefficients of linear combination of atomic orbitals for sp² and sp³ hybridization.
- 19. Explain the hybridization and structure of IF7.

[Ceiling of marks: 30]

Section C (Essay) (Answer any one. Each question carries 10 marks)

- 20. Explain the quantum mechanical treatment for the calculation of a free particle constrained in a one-dimensional box. Explain the difference in probability of finding particle at the midpoint of box at ground state and first excited state.
- 21. Compare the VB and MO theory of boding using H2 molecule as an example.

 $[.1 \times 10 = 10 \text{ marks}]$

1B2A24020	(Pages ; 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester B.Sc Degree Examination, April 2024 BCH2C02 - Physical Chemistry

(2022 Admission onwards)

Time: 2 hours Max. Marks: 60

Section A (Short answers) (Answer questions up to 20 marks. Each question carries 2 marks)

- 1. What are the causes of deviation of real gases from ideal behaviour?
- 2. What is the effect of increasing temperature on the solubility of a gas in a liquid?
- In a certain process, 750 J of heat is absorbed by a system while 400 J of work is done on the system. Calculate the internal energy change in the process.
- 4. The resistance of 0.01M solution of weak acid is $5x10^3$ ohms, when taken in a conductivity cell of cell constant $0.5cm^{-1}$. Calculate the molar conductance of the solution
- 5. At what temperature will the RMS velocity of O2 gas be equal to that of H2 molecule at 27°C?
- 6. What is meant by space lattice?
- 7. Define the term standard potential.
- 8. What is reverse osmosis?
- 9. Define most probable velocity of a gas.
- 10. What is meant by buffer action?
- 11. Define Gibbs free energy. What is its physical significance?
- 12. Differentiate between extrinsic and intrinsic imperfections in crystals.

[Ceiling of marks: 20]

Section B (Paragraph) (Answer questions up to 30 marks. Each question carries 5 marks)

- 13. How do the molar conductivities of strong and weak electrolytes vary with dilution? Explain.
- 14. Write a note on Maxwell's equation for the distribution of molecular velocities.
- 15. Explain the construction and working of calomel Electrode.
- 16. ΔH and ΔS for the reaction 2NO $_{(g)}+O_{2(g)}$ 2NO $_{2(g)}$ at 500 K are -223.6KJ and -187.8 JK⁻¹. Calculate ΔG and predict whether reaction is spontaneous or not at 500K.
- 17. State and explain Henry's law. Mention any two applications of the law.
- 18. Derive Bragg's equation and mention its application.
- 19. What are the laws of Osmotic pressure? Derive an expression for osmotic pressure.

[Ceiling of marks: 30]

Section C (Essay)

(Answer any one. Each question carries 10 marks)

- 20. (a)At 25°C, the conductivity of 0.1M KCl is 0.01291 ohm⁻¹. Its resistance in a conductivity cell at the same temperature is found to be 192.4 ohm. A solution of another electrolyte BA with concentration 0.01M offers a resistance of 250 ohms in the same cell. Calculate the molar conductance of BA
 - (b) Derive Ostwald's dilution law and mention its limitations.
- 21. Discuss the stoichiometric defects found in crystal

 $(1 \times 10 = 10 \text{ Marks})$