Reg. No:
Nama

(Pages: 2)

Fourth Semester M.Sc Mathematics Degree Examination, April 2024 MMT4C15 – Advanced Functional Analysis

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A

Answer all questions. Each questions carries I weightage.

- 1. Define approximate eigen value of an operator $A \in BL(X)$. Give an example of an operator A and an approximate eigen value of A which is not an eigen value of A.
- 2. If A is a right shift operator on ℓ^p , then prove that $\sigma_e(A) = \emptyset$.
- 3. Let X be a Banach space over K and $k \in K$. If $k \in \sigma_a(A)$, then prove that $|k| \leq \inf_{n=1,2,3,...} ||A^n||^{\frac{1}{n}} \leq ||A||$.
- 4. Show that ℓ^{∞} is not reflexive.
- 5. Let X and Y be normed spaces and X be finite dimensional. Then prove that every linear map from X to Y is compact.
- 6. State Riesz representation theorem.
- 7. If A_n and B_n are sequences in BL(X) and $A_n \to A$ and $B_n \to B$. Then prove that $A_n + B_n \to A + B$ and $A_n B_n \to AB$.
- 8. Show, by an example, that if $k \in \sigma_e(A)$ does not follow that $\overline{k} \in \sigma_e(A^*)$.

Part B

Answer two questions from each unit. Each questions carries 2 weightage.

Unit I

- 9. Let X be a Banach space and $A \in BL(X)$ and $||A^p|| < 1$ for some positive integer p, Then prove that I - A is invertible.
- 10. Let X and Y be normed spaces and $F, G \in BL(X, Y)$. Then prove that
 - a). (F+G)' = F' + G'
 - b). ||F|| = ||F'|| = ||F''||.
- 11. Prove that dual of K^n with norm $\| \|_p$ is linearly isometric to K^n with norm $\| \|_q$.

Unit II

- 12. Let X be a normed space and $A \in CL(X)$. Then prove that 0 is the only possible limit point of the eigen spectrum of A.
- 13. Let X and Y be normed spaces. If $k \in K$, $F, G \in CL(X, Y)$, then prove that kF, $F + G \in CL(X, Y)$. Further prove that if F is compact bounded linear map and $H \in BL(Y, Z)$, then $HF \in CL(X, Z)$.
- 14. Let H be a Hilbert space, G be a subspace of H and g be a continuous linear functional on G. Then prove that there is a unique continuous linear functional f on H such that $f|_{G} = g$ and ||f|| = ||g||

Unit III

- 15. Let H be a Hilbert space and $A \in BL(H)$. Then prove that there is a unique $B \in BL(H)$ such that $\langle A(x), y \rangle = \langle x, B(y) \rangle$ for all $x, y \in H$.
- 16. Let H be a Hilbert space and $A \in BL(H)$ be self adjoint. Then prove that A or -A is positive if and only if $|\langle A(x), y \rangle|^2 = \langle A(x), x \rangle \langle A(y), y \rangle$ for all $x, y \in H$.
- 17. Let H be a Hilbert space and $A \in BL(H)$ be self adjoint. Then prove that $\{m_A, M_A\} \subset \sigma_a(A) = \sigma(A) \subset [m_A, M_A]$.

Part C

Answer any two questions. Each questions carries 5 weightage.

- 18. Let X be a reflexive normed space. Then prove that
 - a) X is Banach and it remains reflexive in any equivalent norm.
 - b) X' is reflexive
 - c) Every closed subspace of X is reflexive.
- 19. Let X be a nonzero Banach space over \mathbb{C} and $A \in BL(X)$. Then prove that a). $\sigma(A)$ is nonempty.
 - b). $r_{\sigma}(A) = \inf_{n=1,2,\dots} ||A^n||^{\frac{1}{n}} = \lim_{n\to\infty} ||A^n||^{\frac{1}{n}}$.
- 20. Let H be a Hilbert space and $A \in BL(H)$. Then prove that
 - a). $k \in \sigma(A)$ if and only if $\vec{k} \in \sigma(A^*)$.
 - b). $\sigma_e(A) \subset \sigma_a(A)$ and $\sigma(A) = \sigma_a(A) \cup \{k : \overline{k} \in \sigma_e(A^*)\}$
- 21. Let $A \in BL(H)$. Then prove that
 - a). If R(A) is finite dimensional, then A is compact.
 - b). If each A_n is a compact operator on H and $||A_n A|| \to 0$, then A is compact.
 - c). If A is compact then so is A^* .

11		
(Pages	:	2)

Reg.	No:	٠	 	•	 ٠	٠.	٠	• •			٠		* *	
NI														

Fourth Semester M.Sc Mathematics Degree Examination, April 2024 MMT4E09 – Differential Geometry

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Transfer of the

Part A

Answer All questions. Each question carries 1 weightage

- 1. Show that the graph of any function $f: \mathbb{R}^n \to \mathbb{R}$ is a level set for some function $F: \mathbb{R}^{n+1} \to \mathbb{R}$.
- 2. Find the integral curve through the point p = (1, 1) of the vector field $\mathbb{X}(p) = (p, X(p))$, where X(p) = (0, 1) on \mathbb{R}^2 .
- 3. Describe the spherical image of the 2-surface $x_2^2 + x_3^2 = 1$ oriented by $\frac{\nabla f}{\|\nabla f\|}$, where $f(x_1, x_2, x_3) = x_2^2 + x_3^2$.
- 4. Find the velocity, the acceleration and the speed of the curve $\alpha(t) = (\cos t, \sin t, t)$.
- 5. Let S be an n-surface in \mathbb{R}^{n+1} .let $\alpha: I \to S$ be a parametrized curve and let Xbe vector field tangent to S along α . Verify that (fX)' = f'X + fX'.
- Fin 6. Compute $\nabla_{\mathbf{v}} f$ where $f: \mathbb{R}^2 \to \mathbb{R}$ defined by $f(x_1, x_2) = x_1^2 x_2^2$, $v = (1, 1, \cos \theta, \sin \theta)$.
 - 7. Show that local parameterizations of plane curves are unique up to reparametrization.
 - 8. Define normal section of an n-surface.

(8x1=8 weightage)

Part B

Answer any two questions from each unit. Each question carries 2 weightage.

Unit I

- Let U be an open set in Rⁿ⁺¹ and let f: U → R be smooth. Let p ∈ U be a regular point of f, and let c = f(p). Then show that the set of all vectors tangent to f⁻¹(c) at p is equal to [∇f(p)][⊥].
- 10. Let S be an n-surface in \mathbb{R}^{n+1} , $S = f^{-1}(c)$, where $f: U \to R$ is such that $\nabla f(q) \neq 0$ for all $q \in S$. Suppose $g: U \to R$ is a smooth function and $p \in S$ is an extreme point of g on S. Prove that there exists a real number λ such that $\nabla g(p) = \lambda \nabla f(p)$.
- 11. Show that the two orientation on the n-sphere $x_1^2 + x_2^2 + \dots + x_{n+1}^2 = r^2$ of radius r > 0 are given by $\mathbb{N}_1(p) = (p, \frac{p}{r}) \& \mathbb{N}_2(p) = (p, \frac{-p}{r})$.

Unit II

- 12. Let S be an n-surface in \mathbb{R}^{n+1} . Let $p, q \in S$ and α be a piecewise smooth parametrized curve from p to q. Then show that parallel transport $P_{\alpha}: S_p \to S_q$ along α is a vector space isomorphism which preserves dot product.
- 13. Show that the Weingarten map of an n-surface S at a point p in S is self adjoint.
- 14. Let $C = f^{-1}(r^2)$, where $f(x_1, x_2) = (x_1 a)^2 + (x_2 b)^2$, oriented by the outward normal $\frac{\nabla f}{\|\nabla f\|}$. Let $p = (a + r, b) \in C$. Find the local parameterization of C at p. Also compute the curvature of C at p.

Unit III

- 15. Find the Gaussian curvature $K: S \to \mathbb{R}$, where S is the cone $x_1^2 + x_2^2 x_3^2 = 0$, $x_3 > 0$.
- 16. Let $\varphi: U \to \mathbb{R}^3$ be given by $\varphi(\theta, \phi) = (r \cos \theta \sin \phi, r \sin \theta \sin \phi, r \cos \phi)$ where $U = \{(\theta, \phi), \in \mathbb{R}^2: 0 < \phi < \pi\}$ and r > 0. Then show that φ is a parametrized 2-surface.
- 17. State and prove the Inverse function theorem for n-surfaces.

(6x2=12 weightage)

Part C Answer any two questions. Each question carries 5weightages

- 18. (i) Let S be unit circle $x_1^2 + x_2^2 = 1$ and define $g: \mathbb{R}^2 \to \mathbb{R}$ by $g(x_1, x_2) = ax_1^2 + 2bx_1x_2 + cx_2^2$ where $a, b, c \in \mathbb{R}$. Show that the extreme point of g on S are the eigenvector of a matrix $\begin{bmatrix} a & b \\ b & c \end{bmatrix}$.
 - (ii) What do you mean by an oriented n-surface S in \mathbb{R}^{n+1} . Show that on a connected n-surface S in \mathbb{R}^{n+1} there exists always exactly two orientations.
- 19. Let S be a compact connected oriented n-surface in \mathbb{R}^{n+1} exhibited as a level set $f^{-1}(c)$ of a smooth function $f: \mathbb{R}^{n+1} \to \mathbb{R}$ with $\nabla f(p) \neq 0$ for all $p \in S$. Then show that the Gauss map maps S onto the unit sphere S^n .
- 20. Let S be an n-surface in \mathbb{R}^{n+1} , let $p \in S$ and let $v \in S_p$. Then prove there exists an open interval I containing 0 and a geodesic $\alpha: I \to S$ such that:
 - (i) $\alpha(0) = p$ and $\dot{\alpha}(0) = v$.
 - (ii) If $\beta: \hat{l} \to S$ is any other geodesic in S with $\beta(0) = p$ and $\dot{\beta}(0) = w$ then $\hat{l} \subset I$ and $\beta(t) = \alpha(t)$ for all $t \in \hat{l}$.
- 21. Show for a parameterized *n*-surface $\varphi: U \to \mathbb{R}^{n+1}$ in \mathbb{R}^{n+1} and for $p \in U$, there exists an open set $U_1 \subset U$ about p such that $\varphi(U_1)$ is an n-surface in \mathbb{R}^{n+1} .

(2x5=10 weightage)

1M4A24206	(Pages: 2)	Reg. No:
		Name:

Fourth Semester M.Sc Mathematics Degree Examination, April 2024 MMT4E11 – Graph Theory

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A Answer all questions. Each question carries 1weightage

- 1. Prove that an edge e is cut edge of G if e is not contained in the cycle of G.
- 2. Prove that in a nontrivial loopless connected graph G has at least two vertices that are not cut vertices.
- 3. If G is 2-connected, prove that any two vertices of G lie on a common cycle.
- 4. Define matching, perfect matching and maximum matching.
- 5. Prove that a set $S \subseteq V$ is an independent set of G if and only if V\S is a covering set of G.
- 6. Find the Ramsey number r(3,5).
- 7. Prove that in a critical graph, no vertex cut is a clique.
- 8. Prove that a graph is embeddable in plane if it is embeddable in thesphere.

Part B Answer any two questions from each unit. Each questions carries 2weightage.

Unit I

- 9. Show that graph G is forest if and only if every edge of G is cut edge.
- 10. Prove that $k \le \kappa' \le \delta$.
- 11. If G is a simple graph with $v \ge 3$ and $\delta \ge \frac{v}{2}$, prove that G is Hamiltonian.

Unit II

- 12. Let G be a bipartite graph with bipartition (X,Y). Prove that G contains a matching that saturates every vertex in X if and only if $|N(S)| \ge |S| \forall S \subseteq X$.
- 13. If a matching M in graph G is a maximum matching, Prove that G contains no Maugumenting path.
- 14. Prove that every 3-regular graph without cut edges has a perfect matching.

Unit III

- 15. Let G be a k-critical graph with 2-vertex cut $\{u,v\}$, Prove that $d(u)+d(v) \ge 3k-5$.
- 16. If G is connected simple graph and is neither an odd cycle nor a complete graph, prove that $\chi \leq \Delta$.
- 17. Prove that every planar graph is 5-vertex clourable.

Part C Answer any two questions. Each question carries 5weightage.

- 18. (a) If e is a link of G, prove that $\tau(G) = \tau(G-e) + \tau(G.e)$.
- (b) Show that a graph G with $\nu \ge 3$ is 2-connected if and only if any two vertices of G are connected by at least two internally disjoint paths.
- 19. (a)Prove that closure of a graph is well defined.
 - (b)Prove that in a bipartite graph, the number of edges in a maximum matching is equal to the number of vertices in a minimum covering.
- 20 (a) Prove that every k-regular bipartite graph has perfect matching.
 - (b) For any two integers $k \ge 2$ and $\ell \ge 2$, prove that

$$r(k,\ell) \leq r(k,\ell-1) + r(k-1,\ell).$$

21. (a) Prove that in a simple graph G $\pi_k(G) = \pi_k(G - e) - \pi_k(G \cdot e)$ for any edge e of G (b) Prove that a digraph D contains a directed Path of length $\chi - 1$.

1M4A24208	(Pages: 1)	Reg. No:
		Name:

Fourth Semester M.Sc Mathematics Degree Examination, April 2024

MMT4E14 - Computer Oriented Numerical Analysis

(2022 Admission onwards)

Time: 1 ½ hours Max. Weightage: 15

Part A (Short Answer Questions) (Answer all questions. Each question has weightage 1)

- 1. Write the output of 7//3, 5/3 and 7%3.
- 2. Explain break statement with examples.
- 3. Write a short note on the data structures List and Tuple.
- 4. Explain functions in python with example.

(4x 1=4 weightage)

Part B

(Answer any three from the following five questions. Each question has weightage 2)

- 5. Write a python program to find the root of the equation $x^2 5x + 6 = 0$ using Newton Raphson method.
- 6. Write a python program to find the $\int_{a}^{b} f(x)dx$ using trapezoidal rule.
- 7. Write a python program programme to find the value of function using Lagranges interpolation.
- 8. Write a python program to solve the initial value problem by using Runge Kutta method of order 4.
- Write a python programme to solve a system of equations having n equations and n unknowns.

(3x2=6 weightage)

Part C

Answer any one from the following two questions. Each question has weightage 5

- 10. Write a python programme to find the root of the given continuous function f(x) on [a,b] by using bisection method.
- 11. Write a python programme to find the integral using tabulated values by the method of Simpson rule.

(1x5=5 weightage)