2M3N24089	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Mathematics Degree Examination, November 2024

MMT3C11 - Multivariable Calculus & Geometry

(2022 Admission onwards)

Time: 3hours Max. Weightage :30

Part A Answer all questions. Each question carries one weightage.

- 1. Prove that if $A \in L(\mathbb{R}^n, \mathbb{R}^m)$, then $|A| < \infty$ and A is a uniformly continuous mapping of \mathbb{R}^n .
- 2. Define dimension of a vector space. Show that $dim R^n = n$.
- 3. Prove that any reparametrization of a regular curve is regular.
- 4. Verify whether $\sigma(u, v) = (u, v^2, v^3)$; $u, v \in R$ a regular surface patch or not.
- 5. Show that $x^2 + y^2 + z^4 = 1$ is a smooth surfaces.
- 6. Calculate the first fundamental form of the surface $\sigma(u,v) = (\cos u, \sin u, v)$. What kind of surface is this?
- 7. Show that the Weingarten map changes sign when the orientation of the surface changes.
- 8. Compute the second fundamental form of the elliptic paraboloid $\sigma(u, v) = (u, v, u^2 + v^2)$.

(8x1=8 weightage)

Part B Answer any two questions from each unit. Each carries two weightage.

Unit 1

- 9. Let Ω be the set of all invertible linear operator on \mathbb{R}^n , show that
 - (a) If $A \in \Omega$, $B \in L(\mathbb{R}^n)$, and $||B A|| \cdot ||A^{-1}|| < 1$, then $B \in \Omega$.
 - (b) Ω is an open subset of $L(\mathbb{R}^n)$, and the mapping $A \to A^{-1}$ is continuous on Ω .
- 10. Show that, if f maps an open set $E \subset \mathbb{R}^n$ into \mathbb{R}^m , then $f \in C'(E)$ if and only if the partial derivatives $D_j f_i$ exist and are continuous on E for $1 \le i \le m, 1 \le j \le n$.
- 11. If [A] and [B] are n by n matrices, then show that det([B][A]) = det[B] det[A].

Unit 2

- 12. Show that a parametrized curve has a unit-speed reparametrization if and only if it is regular.
- 13. Let γ be a unit-speed curve in R^3 with constant curvature and zero torsion. Prove that γ is a parametrization of (part of) a circle.
- 14. Suppose that two smooth surfaces S and \tilde{S} are diffeomorphic and that S is orientable. Prove that \tilde{S} is orientable.

Unit 3

- 15. What is meant by an oriented surface? Show that Mobius band is not orientable.
- 16. Calculate the Gaussian curvature of $\sigma(u, v) = (f(u)cosv, f(u)sinv, g(u))$ where f > 0 and $\dot{f}^2 + \dot{g}^2 = 1$.
- 17. Prove that the area of a surface patch is unchanged by reparametrization.

(6x2=12 weightage)

Part C Answer any two questions. Each carries 5 weightage

- 18. State and prove inverse function theorem.
- 19. (a) Let r be a positive integer. If a vector space X is spanned by a set of r vectors, then prove that $dimX \le r$.
 - (b) Suppose X is a vector space, and dimX = n. Prove that a set E of n vectors in X if and only if E is independent.
- 20. Let $\gamma(t)$ be a regular curve in R^3 with nowhere vanishing curvature. Prove that its torsion is given by $\tau = \frac{(\gamma X \tilde{\gamma}).\tilde{\gamma}}{||\tilde{\gamma} X \tilde{\gamma}||^2}$, where X indicate the vector product and the dot denotes d/dt.
- 21. Let S and \tilde{S} be surfaces and let $f: S \to \tilde{S}$ be a smooth map. Then, prove that f is a local diffeomorphism if and only if, for all $p \in S$, the linear map

$$D_p f: T_p S \to T_{f(p)} \tilde{S}$$
 is invertible.

(2x5=10 weightage)

45

21	м	31	N2	40	90	

(Pages: 2)

Reg. No:....

Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Mathematics Degree Examination, November 2024 MMT3C12 - Complex Analysis

(2022 Admission onwards)

Time: 3 hours

Max. Weightage:30

Part A

Answer all questions. Each question has weightage 1.

- 1. Find the point in unit sphere S in \mathbb{R}^3 corresponding to the point 1 + i in C.
- 2. Evaluate the cross ratio $(i-1, \infty, 1+i, 0)$.
- 3. Prove that a branch of Logarithm function is analytic and its derivative is $\frac{1}{2}$.
- 4. Evaluate the integral $\int_{r} \frac{dz}{z^2 + a}$ where $\gamma(t) = 2e^{it}$, $0 \le t \le 2\pi$
- 5. Prove or disprove: A non constant entire function is not bounded.
- 6. Prove that if f has an isolated singularity at a point z = a and $\lim_{z \to a} (z a) f(z) = 0$, then z = a is a removable singularity
- 7. State Rouche's theorem.
- 8. Let $f(z) = [(1-z^4)]^{-1}$. Determine the poles of f.

 $(8 \times 1 = 8 \text{ Weightage})$

Part B

Answer six questions choosing two from each unit. Each question has weightage 2.

Unit 1

- 9. Let G be either the whole plane C or some open disk. If $U: G \to R$ is a harmonic function, then show that U has a harmonic conjugate.
- 10. Show that a Mobius transformation S is the composition of translations, dilations and the inversions.
- 11. Prove that the cross ratio of 4 distinct points in the extended complex plane is a real number if and only if they all lie on a circle.

Unit2

- 12. Let G be a connected open set and let $f:G \to C$ be an analytic function. Prove that if $\{z \in G: f(z)=0\}$ has a limit point in G, then there is a point a in G such that $f^{(n)}(a)=0$ for each $n \ge 0$.
- 13. Let G be a region and $f: G \to C$ be a non constant analytic function on G. Prove that f(U) is open for all open set U of G.
- 14. Define the winding number of a closed rectifiable curve γ around a point not on $\{\gamma\}$. Prove that it is always an integer.

Unit 3

- 15. Prove that if f has an essential singularity at z = a, then f(z) comes arbitrarily close to every complex number as z approaches a.
- 16. Let f be a meromorphic function on a region G. Show that neither the poles nor the zeros of f have a limit point.
- 17. Let G be a region in C and f an analytic function on G. Suppose there is a constant M such that $\limsup_{z\to a} |f(z)| \le M$ for all a in the boundary $\partial_{\infty}G$ in C_{∞} . Prove that $|f(z)| \le M$ for all z in G.

 $(6 \times 2 = 12 \text{ Weightage})$

Part C Answer any two questions. Each question has a weightage 5.

- 18. Let $\gamma:[a\ b] \rightarrow C$ be piecewise smooth.
 - (a) Show that γ is of bounded variation and the total variation $v(\gamma) = \int_a^b |\gamma'(t)| dt$
 - (b) Suppose that $f: [a \ b] \to C$ is continuous. Then prove that $\int_a^b f \ d\gamma = \int_a^b f(t) \gamma'(t) dt$.
- 19. (a) Let $\sum_{n=0}^{\infty} a_n (z-a)^n$ be a given power series and $\frac{1}{R} = \lim \sup |a_n|^{\frac{1}{n}}$. Prove the following.
 - (i) If |z a| < R, then the series converges absolutely
 - (ii) If |z a| > R, the series diverges.
 - (b) Find the radius of convergence of the series $\sum_{n=1}^{\infty} \frac{z^n}{n^2+1}$
- 20. State and prove Laurent series development.
- 21. Let G be an open set and let $f: G \rightarrow C$ be a differentiable function. Prove that f is analytic on G.

 $(2 \times 5 = 10 \text{ Weightage})$

21	VI	3	N	7	n	0	1
21	7.8	.,		-	T U	1	A

	**	0	×
	Pages	 100	٩
п	1 101	10.00	и
u	1 44-00	 -	,

Reg.	No:			٠.			142			٠.	
Nam	e:	 			 				-		

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Mathematics Degree Examination, November 2024 MMT3C13 - Functional Analysis

(2022 Admission onwards)

Time: 3 hours

Max. Weightage:30

Part A

Answer all questions. Each question carries 1 weightage.

- 1. Define Metric space and Normed space. Give an example for each.
- 2. Show by an example that there are divergent sequences (x_n) in l^p such that the sequence $(x_n(j))$ converges in the scalar field for each $j = 1, 2, \ldots$
- 3. Prove by an example that a bounded set need not be totally bounded.
- 4. Let X and Y be normed spaces and $F: X \to Y$ be linear. If F is bounded on $\overline{U}(0,r)$ for some r > 0 then prove that $||F(x)|| \le \alpha ||x||$ for all $x \in X$ and some $\alpha > 0$.
- 5. Let X be a normed space over \mathbb{K} , and f be non-zero linear functional on X. If E is an open subset of X, then show that f(E) is an open subset of \mathbb{K} .
- 6. Show that the linear space C_{00} cannot be a Banach space in any norm.
- 7. Let X and Y be normed spaces and $F: X \to Y$ be linear. Prove that F is continuous if and only if $g \circ F$ is continuous $\forall g \in Y'$.
- 8. If a bijective map F is closed, then prove that F^{-1} is also closed.

(8x1 = 8 weightage)

Part B

Answer any two questions from each unit. Each question carries 2 weightages.

UNIT-1

- Sate and prove Holder's inequality for measurable functions.
- 10. If $m(E) < \infty$ and $1 \le p < \infty$, then show that the set of all bounded continuous function on E is dense in $L^p(E)$.
- 11. Let E be a convex subset of a normed space X. Show that \overline{E} and \overline{E} are also convex.

UNIT-II

- 12. Show that a linear functional f on a normed space X is continuous iff Z(f) is closed in X.
- 13. Let X be a normed space over \mathbb{K} , $f \in X'$ and $f \neq 0$. Let $a \in X$ with f(a) = 1 and r > 0. Then Prove that $U(a,r) \cap Z(f) = \emptyset$ if and only if $||f|| \leq \frac{1}{r}$.
- 14. Prove that a Banach space cannot have a denumerable (Hamel) basis.

UNIT-III

- 15. Let X and Y be normed spaces, $F: X \to Y$ is continuous and $G: X \to Y$ is closed. Show that $F + G: X \to Y$ is closed.
- 16. If X is a normed space and $P: X \to X$ is a projection, then show that P is a closed map if and only if the subspace R(P) and Z(P) are closed in X.
- 17. State and prove Bounded inverse Theorem.

(6x2 = 12 weightages)

Part C

Answer any two questions. Each question carries 5 weightages.

- 18. (a) For $1 \le p < \infty$, prove that the metric space l^p is separable.
 - (b) Let Y be a closed subspace of a normed space X. For $x + Y \in X/Y$, define $|||x + Y||| = \inf\{||x + y||: y \in Y\}$. Show that ||||.||| is a norm on X/Y.
- 19. (a) Let *X* and *Y* be normed spaces with *X* finite dimensional. Then prove that every bijective linear map from *X* to *Y* is a homeomorphism.
 - (b) State and prove the Hahn-Banach separation theorem.
- 20. (a) Show that a normed space *X* is a Banach space iff every absolute summable series of elements in *X* is summable in *X*.
 - (b) Let X and Y be normed spaces and $X \neq \{0\}$. Then show that BL(X,Y) is a Banach space in the operator norm if and only if Y is a Banach space.
- 21. State and prove closed graph theorem.

(2x5 = 10 weightages)

FAROOK COLLEGE (AUTONOMOUS). KOZHIKODE

Third Semester M.Sc Mathematics Degree Examination, November 2024 MMT3C14 - PDE & Integral Equations

(2022 Admission onwards)

Time: 3 hours Max. Weightage: 30

Part A Answer all questions. Each question carries 1 weightage

- 1. Solve the equation $-yu_x + xu_y = u$ with the initial condition u(x, 0) = f(x).
- 2. Find the quadrants in which the following equation is hyperbolic.

$$(1 - \sqrt{xy})u_{xx} + 2u_{xy} + (1 + \sqrt{xy})u_{yy} = 0$$

3. If u(x, t) is the solution of the Cauchy problem

$$u_{tt} - u_{xx} = 0 ; 0 < x < \infty, t > 0,$$

$$u(0,t) = t^{2} ; t > 0,$$

$$u(x,0) = x^{2} ; 0 \le x < \infty,$$

$$u_{t}(x,0) = 6x ; 0 \le x < \infty,$$

evaluate the value of u(1,4)

- 4. Define Dirichlet problem, Neumann problem and Robin problem.
- 5. Show that the Dirichlet problem in a bounded domain:

$$\Delta u = f(x, y); \quad (x, y) \in D$$
$$u(x, y) = g(x, y); \quad (x, y) \in \partial D$$

has at most one solution in $C^2(D) \cap C(\overline{D})$.

- 6. Find the integral equation which is equivalent to the IVP y' y = 0, y(0) = 1.
- 7. Determine p(x) and q(x) in such a way that the equation $x^2y'' 2xy' + 2y = 0$ is equivalent to the equation $\frac{d}{dx}\left(p\frac{dy}{dx}\right) + qy = 0$.
- 8. Suppose that the solution of the integral equation $f(x) = x + \int_0^1 x \xi f(\xi) d\xi$, has the form f(x) = ax. Find the value of a.

 $(8 \times 1 = 8 \text{ weightage})$

Part B

Answer any two questions from each unit. Each question carries 2 weightage

Unit I

9. Suppose that the equation $au_{xx} + 2bu_{xy} + cu_{yy} + du_x + eu_y + fu = g$, where a, b, \ldots, f, g are given functions of x and y, is elliptic in a planar domain D. Assume further that a, b, c are real analytic functions in D. Show that there exists a coordinate system (ξ, η) in which the equation has the canonical form

$$w_{\xi\xi} + w_{\eta\eta} + l_1[w] = G(\xi,\eta),$$

where l_1 is a first-order linear differential operator, and G is a function which depends on the given PDE.

10. Solve the Cauchy problem

$$u_{tt} - u_{xx} = t^7; -\infty < x < \infty, t > 0$$

 $u(x, 0) = 2x, +\sin x, u_t(x, 0) = 0; -\infty < x < \infty.$

11. Show that the Cauchy problem $u_x + u_y = 1$; u(x, x) = x has infinitely many solutions. Find at least two of them.

Unit II

- 12. Use the method of separation of variables to solve the Heat equation with homogeneous boundary conditions.
- 13. Solve the problem

$$u_{tt} - u_{xx} = \cos 2\pi x. \cos 2\pi t \; ; \quad 0 < x < 1, \qquad t > 0,$$

$$u_x(0, t) = u_x(1, t) = 0 \; ; \quad t \ge 0$$

$$u(x, 0) = \cos^2 \pi x \; ; \quad 0 \le x \le 1$$

$$u_t(x, 0) = 2\cos 2\pi x \; ; \quad 0 \le x \le 1$$

14. Solve the Laplace equation $\Delta u = 0$ in the square $0 < x, y < \pi$, subject to the boundary condition $u(x, 0) = u(x, \pi) = 1$, $u(0, y) = u(\pi, y) = 0$.

- 15. Prove that the equation $y(x) = F(x) + \frac{1}{\pi} \int_0^{2\pi} \sin(x + \xi) \ y(\xi) d\xi$ possesses no solution when F(x) = x, but that it possesses infinitely many solutions when F(x) = 1. Determine all such solutions.
- 16. Show that the characteristic numbers of a Fredholm integral equation $y(x) = \lambda \int_a^b K(x,\xi) \ y(\xi) \ d\xi, \text{ with a real symmetric kernel } K(x,\xi), \text{ are all real.}$
- 17. Write a note on Neumann series

 $(6 \times 2 = 12 \text{ weightage})$

Part C Answer any two questions. Each question carries 5 weightage

- 18. (a) Derive d'Alembert's formula for the Cauchy problem for the one-dimensional homogenous wave equation.
 - (b) State and prove the existence and uniqueness theorem for the Cauchy problem of first order Quasilinear equations.
- 19. (a) Apply the method of separation of variables to solve the problem:

$$u_{tt} - c^2 u_{xx} = 0; \quad 0 < x < L, \qquad t > 0,$$

$$u_x(0, t) = u_x(L, t) = 0; \quad t \ge 0,$$

$$u(x, 0) = f(x); \quad 0 \le x \le L,$$

$$u_t(x, 0) = g(x); \quad 0 \le x \le L.$$

- (b) State and prove The weak maximum principle and The strong maximum principle.
- 20. (a) Use the iterative method to solve the equation $y(x) = 1 + \lambda \int_0^1 (1 3x \, \xi) \, y(\xi) \, d\xi$.
 - (b) Determine the eigen values and eigen functions of the integral equation

$$y(x) = F(x) + \lambda \int_0^{2\pi} \cos(x + \xi) \ y(\xi) \ d\xi$$

21. Discuss the method of Lagrange to solve first order Quasilinear PDE and use it to solve the Cauchy problem $-yu_x + xu_y = 0$; $u(x, 0) = \sin x$, x > 0

 $(2 \times 5 = 10 \text{ weightage})$

2M3N24093	(Pages: 2)	Reg. No:
		Name

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Third Semester M.Sc Mathematics Degree Examination, November 2024 MMT3E03 – Measure & Integration

(2022 Admission onwards)

Time: 3 hours Max. Weightage: 30

Part A

Answer all questions. Each question carries 1 weightage.

- Let X be a measurable space and f be a complex measurable function on X. Then
 prove that there exist a complex measurable function α such that |α| = 1 and
 f = α|f|.
- 2. Let μ be a positive measure on a σ -algebra \mathfrak{M} . Then prove that $\mu(A_n) \to \mu(A)$ as $n \to \infty$ if $A = \bigcap_{n=1}^{\infty} A_n$, $A_n \in \mathfrak{M}$, $A_1 \supset A_2 \supset A_3 \supset \cdots$ and $\mu(A_1)$ is finite.
- 3. Let $\{E_k\}$ be a sequence of measurable sets in X, such that $\sum_{k=1}^{\infty} \mu(E_k) < \infty$. Then prove that almost all x in X lie in at most finitely many of the sets E_k .
- Define lower semi continuous function. Give an example of a lower semicontinuous which is not upper semicontinuous.
- 5. Let X be an uncountable set and \mathfrak{M} be the collection of all sets $E \subset X$ such that either E or E^c is countable. Prove that \mathfrak{M} is a σ -algebra in X.
- 6. Suppose μ , λ_1 and λ_2 are measures on a σ -algebra $\mathfrak M$ and μ is positive. If $\lambda_1 \ll \mu$ and $\lambda_2 \perp \mu$, then prove that $\lambda_1 \perp \lambda_2$.
- 7. Let f be $(S \times T)$ -measurable on $X \times Y$. Then prove that for each $x \in X$, f_x is a T-measurable function on Y.
- 8. Give an example to show that σ -finiteness is necessary in the hypothesis of Fubini theorem.

Part B

Answer two questions from each unit. Each question carries 2 weightage.

Unit I

- 9. State and prove Lebesgue's dominated convergence theorem.
- 10. Suppose f and $g \in L^1(\mu)$ and α and β are complex numbers. Then prove that $\alpha f + \beta g \in L^1(\mu)$ and $\int_X (\alpha f + \beta g) d\mu = \alpha \int_X f d\mu + \beta \int_X g d\mu$.
- 11. Let (X, \mathfrak{M}, μ) be a measure space. Then prove that there is a σ -algebra \mathfrak{M}^* which is the μ -completion of the σ -algebra \mathfrak{M} .

Unit II

- 12. Let X be locally compact Hausdorff space in which every open set is σ -compact. Let λ be any positive Borel measure on X such that $\lambda(K) < \infty$ for every compact set K. Then prove that λ is regular.
- 13. If μ is a complex measure on X, then prove that $|\mu|(X) < \infty$.
- 14. State and prove Hahn Decomposition theorem.

Unit III

- 15. Let (X, S, μ) and (Y, T, λ) be measure spaces If $E \in S \times T$, then prove that $E_x \in T$ and $E^y \in S$ for every $x \in X$ and $y \in Y$
- 16. State and prove Fubini theorem.
- 17. Let m_k denote Lebesgue measure on \mathbb{R}^k . If $k = r + s, r \ge 1$, then prove that m_k is the completion of the product measure $m_r \times m_s$.

Part C Answer any two questions. Each question carries 5 weightage.

- 18. (i). Suppose f and g ∈ L¹(μ) and α and β are complex numbers. Then prove that αf + βg ∈ L¹(μ) and ∫_X (αf + βg)dμ = α ∫_X fdμ + β ∫_X gdμ.
 (ii) If f ∈ L¹(μ), then prove that |∫_X fdμ| ≤ ∫_X |f|dμ.
- 19. State and prove the Vitali-Caratheodory Theorem.
- 20. Let μ be a positive σ -finite measure on a σ -algebra $\mathfrak M$ in a set X, and let λ be a complex measure on $\mathfrak M$. Then prove that there is a unique pair of complex measures λ_a and λ_s on $\mathfrak M$ such that $\lambda = \lambda_a + \lambda_s$, $\lambda_a \ll \mu$, $\lambda_s \perp \mu$. Further prove that there is a unique $h \in L^1(\mu)$ such that $\lambda_a = \int_E h d\mu$ for every set $E \in \mathfrak M$.
- 21. Let (X, S, μ) and (Y, T, λ) be measure spaces. Then prove that $S \times T$ is the smallest monotone class which contains all elementary sets.