FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Statistics Degree Examination, April 2024 MST2C06 - Probability Theory - II

(2022 Admission onwards)

(2022 Admission onwards)

PART A

Answer any four questions. Each question carries 2 weightages.

- 1. Show that a characteristic function is uniformly continuous over the real line?
- 2. For any characteristic function φ, Show that,
 - a) $\text{Re}(1-\varphi(t)) \ge \frac{1}{4} \text{Re}(1-\varphi(2t))$

Time: 3 hours

- b) $|\varphi(t) \varphi(t+h)|^2 \le 2 \{1 \text{Re } \varphi(h)\}$
- 3. If X_n 's are uniformly bounded and ΣX_n converges almost surely, show that $\Sigma V(X_n)$ and $\Sigma E(X_n)$ converge?
- Let X₁, X₂, be a sequence of iid random variables with common uniform distribution on [0,1]. Also let

 $Z_n = (\prod_{i=1}^n X_i)^{1/n}$. Show that $Z_n \xrightarrow{p} c$ where c is a constant. Find c?

- 5. Establish Lindberg Levy central limit theorem?
- 6. Let x be an integrable random variable defined on (Ω, \mathbb{F}, P) . If $\mathbb{F}_1 \subset \mathbb{F}_2$ are sub σ fields of \mathbb{F} show that $E[(X/\mathbb{F}_2)/\mathbb{F}_1] = E(X/\mathbb{F}_1)$.
- 7. Define a martingale, sub martingale and a super martingale?

 $(4 \times 2 = 8 \text{ weightage})$

Max. Weightage: 30

PART B

Answer any four questions. Each question carries 3 weightages.

- 8. Derive the characteristic function of a standard Cauchy random variable?
- 9. If the series $\sum_r \frac{\mu_r'}{r!} t^r$ converges for some $t_0 > 0$, Show that the sequence of moments $\mu_r' = E(X^r)$ determine the distribution function uniquely?
- 10. State Lindberg -feller central limit theorem. Deduce Liaponove theorem using it?
- 11. State and establish Khintchine's weak law of large numbers.
- 12. State and prove Kolmogorov inequality?

- 13. Let $\{X_n\}$ be a sequence of iid random variables with finite mean $\mu = E(X_1)$, then show that $\frac{S_n}{n} \stackrel{p}{\to} \mu$ as $n \to \infty$, where $S_n = \frac{1}{n} \sum_{i=1}^n X_i$.
- 14. If $\{X_n, \mathbb{F}_n\}$ is a martingale and ϕ is convex, and if $\phi(X_n)$ is integrable, show that $\{\phi(X_n), \mathbb{F}_n\}$ is a submartingale?

 $(4 \times 3 = 12 \text{ weightage})$

PART C

Answer any 2 questions. Each questions carries five weightages.

- 15. State and prove inversion theorem of characteristic function, use it to establish uniqueness theorem?
- 16. State and establish Kolmogorov strong law of large numbers for independent sequence of random variables?
- 17. Let {X_n} be a sequence of independent random variables with the following distributions. In each case examine whether Lindberg condition hold,

a)
$$P(X_n = \frac{1}{2^n}) = P(X_n = -\frac{1}{2^n}) = \frac{1}{2}$$

b)
$$P(X_n = \pm 1) = \frac{1 - 2^{-n}}{2}$$

 $P(X_n = \frac{1}{2^n}) = P(X_n = -\frac{1}{2^n}) = \frac{1}{2^{n+1}}$

- 18. Write a note on the following,
 - a) Doob-Meyer decomposition of a martingale.
 - b) Stopping time.

 $(2 \times 5 = 10 \text{ weightage})$

6	3	3
-	_	-

1 1 1					•
	100	900 BY	88 B	1 /.	0
1M	100	44	20.0	1.0	

(Pages : 2	2)
------------	----

Reg.	No:	 •	٠	•	•	•	•	٠		٠		•		*		٠		2.	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Statistics Degree Examination, April 2024 MST2C07- Applied Regression Analysis

(2022 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A Answer any four (2 weightages each)

- 1. Define multiple linear regression model.
- 2. State Gauss Markov theorem.
- 3. Define multicollinearity. What are the consequences?
- 4. Explain how residual plot are used to check the assumption of normality of the errors in a linear model.
- 5. Describe how splines are used in polynomial regression.
- 6. Explain the use of dummy variables in regression analysis.
- 7. Explain the link function of a generalized linear model

(2 x 4=8 weightages)

PART B

Answer any four (3 weightages each)

- 8. Derive the interval estimation of the mean response of a simple linear regression model.
- 9. Let $y_i = \beta x_i + \varepsilon_i$, i = 1,2 where $\varepsilon_1 \sim N(o, \sigma^2)$, $\varepsilon_2 \sim N(o, 2\sigma^2)$ and ε_1 and ε_2 are statistically independent. If $x_i = +1$ and $x_i = -1$, obtain the weighted least squares estimate of β and find the variance of your estimate.
- 10. Derive expression for Mallow's Cp Statistic.
- 11. Describe the method of detection of multicollinearity based on eigen values of matrix.
- 12. What is the form of Poisson regression model? Also give link functions used for a Poisson regression model?
- 13. Explain the nonlinear regression model. Discuss method of least squares of parameter estimation in this model.

PART C Answer any two (5 weightages each)

- Obtain Maximum likelihood estimates of parameters of multiple linear regression model.
- 15. Define residuals and residual sum of squares. In a linear regression model $Y = X\beta + \varepsilon$, Show that the residual sum of squares $e'e = Y'Y \hat{\beta}X'X\hat{\beta}$
- 16. (a) Describe stepwise regression procedure
 - (b) Explain non parametric Regression
- Explain in detail the analysis and inference methods involved in logistic regression model.

(5x 2=10 weightages)

1B2A24117	(Pages: 2)	Reg. No:
		Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Statistics Degree Examination, April 2024 MST2C08- Estimation Theory

(2022 Admission onwards)

Time: 3 hours Max. Weightage: 30

(Use of Scientific Calculator and Life tables are permitted)

PART A (Answer any 4 questions. Weightage 2 for each question)

- 1. Define a) Minimal sufficient statistic. b)ancillary statistic.
- 2. Give an example to prove that MLE's are not always unbiased.
- 3. Let $X_1, X_2, ..., X_n$ be a sample from $U(-\frac{\theta}{2}, \frac{\theta}{2})$. Find a sufficient estimator of θ .
- 4. Define consistency. Let $X \sim U(0, \theta)$. Show that $X_{(n)} = \max(X_{(1)}, X_{(2)}, \dots, X_{(n)})$ is consistent.
- 5. Describe the method of construction of confidence intervals using pivots.
- 6. Explain the method of percentiles for estimation of parameters.
- 7. Define one parameter Cramer family of distributions.

(4*2=8 weightage)

PART B (Answer any 4 questions. Weightage 3 for each question)

- 8. a) State and prove Neyman-Factorization theorem.
 - b) Let $X_1, X_2, ..., X_n$ be i.i.d Poisson with mean θ and let $T = \sum_{i=1}^n X_i$. Check whether T is sufficient for θ or not.
- 9. Define complete family of distributions. Explain using an example.
- 10. State and prove Cramer-Rao inequality.
- 11. a) Prove or disprove: "If T_n is a CAN estimator of θ then T_n^k is a CAN estimator of θ^k , k is a known positive integer".
 - b) Prove or disprove: MLE's are always consistent.
- 12. a) Let $X \sim B(1, \theta^2)$. Does there exist an unbiased estimator of θ ? Justify your claim.
 - b) Let $X \sim P(\lambda)$. Find a BLUE for λ

- 13. a) Explain the method of construction of confidence interval using maximum likelihood estimator. Illustrate with an example.
 - b)Distinguish between Bayesian and Fiducial interval.
- 14. Let $X_1, X_2, ..., X_n$ be a random sample of size drawn from a Poisson distribution with parameter λ . Assuming that the prior distribution of λ is $G(\alpha, \beta)$.

Find $100(1 - \alpha)\%$ Bayesian confidence interval for λ . Compare it with classical shortest length confidence interval.

(4*3=12 weightage)

PART C (Answer any two questions. Weightage 5 for each question)

- 15. State and prove Cramer-Huzurbazar theorem.
- 16. Apply method of moment estimation to estimate the parameter $\theta = (\mu, \sigma)$ of the following distribution with pdf.

$$f(x;\theta) = \frac{1}{\sigma}e^{\frac{-(x-\mu)}{\sigma}}, x > \mu, \sigma > 0.$$

Show that $(X_{(1)}, \sum_{j=1}^{n} (X_j - X_{(1)}))$ is complete sufficient statistic for $\theta = (\mu, \sigma)$.

- 17. a) State and Prove Lehmann-Scheffe theorem.
 - b) Explain One parameter Exponential family of distributions.
- 18. State and Prove Rao-Blackwell theorem

(2*5=10 weightage)

35

11	V12/	124	16	18
11	1141	IMT		LO

(Pages: 2)	Reg. No:
	Namas

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Second Semester M.Sc Statistics Degree Examination, April 2024

MST2C09 - Stochastic Processes

(2022 Admission onwards)

Time: 3 hours Max. Weightage: 30

(Use of Scientific Calculator is permitted)

PART A Answer any four (2 weightage each)

- 1. Define Stochastic Process. Explain its classification with examples.
- 2. Let Sn be the waiting time for the occurrence of n^{th} renewal and m(t) be the renewal function of renewal process. Show that $E\{S_N(t)+1\} = E(X1)\{1+m(t)\}$.
- 3. State and prove Chapman -Kolmogorov equations for Markov chains.
- 4. Compute the density function Tx, the time until Brownian motion hits x.
- 5. Derive the relationship between Poisson Process and Geometric distribution.
- 6 Define Non homogeneous Poisson Process: Obtain its Probability generating function
- 7. Explain open queueing networks and closed queueing networks.

 $(4 \times 2 = 8 \text{weightage})$

Part B Answer any four (3 weightage each)

- 8. Explain basic characteristic of a queueing system.
- 9. State and prove Ergodic theorem and converse of the Ergodic theorem.
- 10. (a) Define recurrence and obtain a condition for a chain to be recurrent.
 - (b) Check whether Poisson process is stationary or not
- 11. Explain Yule-Furry process. Obtain its probability distribution
- 12. If the intervals between successive occurrences of an event E are independently distributed with a common exponential distribution with mean 1/λ then prove that event E form a Poisson Process with mean λt.
- 13. Explain Stationary and weakly Stationary Processes with the help of examples.
- 14. (a) Show that the renewal function $m(t) = \sum_{n=1}^{\infty} F_n(t)$, $\forall t$, where $F_n(t) = P(S_n \le t)$, $n \ge 0$. (b) Explain Stopping Time

(4x3=12weightage)

PART C Answer any two (5 weightage each)

- 15. Define period of the state of a Markov chain. Show that periodicity is a class property.

 Given an example.
- 16. Derive the p.m.f of Poisson Process.
- 17. (a)Explain renewal reward process and regenerative process.
 - (b) Explain Semi Markov process
 - (c) What do you mean by a queue? Briefly explain Kendall's notation
- 18. Derive the steady state probabilities of M/M/s model

(2x5=10weightage)