11	A23228
1014	

(Pages: 2)

Reg. No:.... Name:

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Statistics Degree Examination, April 2023 MST4C14 - Multivariate Analysis

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

PART A Answer Any four questions. Weightage 2 for each question

- 1. Define a non-singular multivariate normal distribution. If $X \to N_p(\mu, \Sigma)$, find the marginal distribution of any sub-vector of X?
- 2. If $X \sim N_p(\mu, \Sigma)$ then derive the distribution of $(X \mu)' \Sigma^{-1} (X \mu)$.
- 3. Distinguish between simple, partial and multiple correlation.
- 4. What is generalized variance? Mention its distribution?
- Show that Hotellings T^2 is invariant under non-singular transformation.
- 6. Describe the test for the mean vector of a multivariate normal distribution when its dispersion matrix is known.
- Write short note on classification problem.

(4x2=8 Weightage)

PART B Answer Any four questions. Weightage 3 for each question

- 8. Find means, variances and correlation coefficient, when X follows bivariate normal with density function $f(x) = \frac{1}{2.4 \pi} \exp \frac{1}{0.72} \left(\frac{x^2}{4} - 1.6 \frac{xy}{2} + y^2 \right)$.
- 9. If $X \sim N_p(0, I)$, show that the characteristic function of X'AX is $|I 2itA|^{-1/2}$.
- 10. Obtain the MLE's of μ and Σ in $N_p(\mu, \Sigma)$. Show that they are independent.
- 11. Define Wishart distribution. If A follows Wishart distribution $W(m, \Sigma)$, then find the distribution of CAC'.
- 12. Explain the sphericity test.
- 13. Derive the test for independence of sub vectors of a multivariate normal random vector.
- 14. What are principal components? Obtain their relations with eigen values and eigen vectors of dispersion matrices.

(4x3=12 Weightage)

PART C Answer Any 2 questions. Weightage 5 for each question

15. Let $X = {X^{(1)} \choose X^{(2)}}$ follows $N_p(\mu, \Sigma)$, where $X^{(1)}$ is of order of qx1.

- (a) Derive a necessary and sufficient condition for the independence of the sub vectors $X^{(1)}$ and $X^{(2)}$.
- (b) Obtain the conditional distribution of $X^{(1)}$ given $X^{(2)} = x^{(2)}$
- 16. (a) Find the characteristic function of Wishart distribution.
 - (b) What do you mean by canonical correlation analysis? What are their uses?
- 17. (a) Define Hotellings T^2 distribution and obtain its density function.
 - (b) Explain any two uses of Hotellings T^2 in the construction of confidence regions.
- 18. (a) Describe the procedure of classification into one of two known multivariate normal populations with the same known dispersion matrix.
 - (b) Describe orthogonal factor model. What are factor loadings?

(2x5=10 Weightage)

Reg. No:	••••
Name:	

FAROOK COLLEGE (AUTONOMOUS), KOZHIKODE

Fourth Semester M.Sc Statistics Degree Examination, April 2023 MST4E01 - Operations Research - I

(2019 Admission onwards)

Time: 3 hours

Max. Weightage: 30

Part A (Short answer questions) Answer any four questions. Weightage two for each question.

- Define basic solution of a system of linear equations. When it will become degenerate?
 Illustrate it with the help of an example.
- 2. Define dual of a linear programming. State and prove weak duality theorem.
- 3. Define a transportation problem. Show that a balanced transportation problem always will have a feasible solution.
- 4. Explain the concept of loop in a transportation problem. How it is related to a basic feasible solution of a transportation problem?
- 5. Differentiate between sensitivity analysis and parametric programming problem.
- 6. Give any two application of 0-1 programming.
- 7. Define pure and mixed strategies associated with a game. Why we need to introduce mixed strategies?

Part B (Short essay type questions) Answer any four questions. Each question carries 3 weightage each.

- 8. Define a convex set and extreme point of a convex set. Show that optimum feasible solution of a linear programming problem if it exists will always be at one of the extreme points.
- 9. Explain the step by step algorithm associated with solving a linear programming problem.
- 10. Define an assignment problem. Explain the steps involved in solving an assignment problem.

11. Sole the transportation problem

-	n	D ₂	D ₃	D ₄	
_	D ₁	10	15	22	300
010		30	24	8	175
O ₂	19		18	35	225
03	30	25	E STORY	150	
	100	200	150	150	_1

- 12. Describe the steps involved in obtaining the optimal sequencing of 3-job n-mechine problem.
- 13. Discuss graphical method of solving an mx2 game.
- 14. Explain how an mxn game can be transformed in to a linear programming problem.

Part C (long essay questions) Answer any two questions .Each question carry 5 weight.

15. Solve the LPP by dual simplex method

Max
$$Z = 2x_1 + 5x_2 + 4x_3$$

Subject to

$$5x_1+3x_2+x_3 \ge 10$$

 $3x_1+4x_2+2x_3 \ge 12$; x_1, x_2, x_3 nonnegative.

- 16. A .Discuss Vogal's method of finding an initial basic solution to a transportation problem.
 - B .Explain iterative steps involved in solving a transportation problem.
- 17. Define an integer programming problem .Differentiate between pure and mixed integer programming problems. Discuss Gomery's cutting method of solving an integer programming problem.
- 18. Solve the game

	B ₁	B ₂	B ₃	B ₄
A ₁	10	14	17	8
A ₂	18	32	16	20
A ₃	-2	9	22	28